1
linux/mm/slob.c
Nick Piggin cf40bd16fd lockdep: annotate reclaim context (__GFP_NOFS)
Here is another version, with the incremental patch rolled up, and
added reclaim context annotation to kswapd, and allocation tracing
to slab allocators (which may only ever reach the page allocator
in rare cases, so it is good to put annotations here too).

Haven't tested this version as such, but it should be getting closer
to merge worthy ;)

--
After noticing some code in mm/filemap.c accidentally perform a __GFP_FS
allocation when it should not have been, I thought it might be a good idea to
try to catch this kind of thing with lockdep.

I coded up a little idea that seems to work. Unfortunately the system has to
actually be in __GFP_FS page reclaim, then take the lock, before it will mark
it. But at least that might still be some orders of magnitude more common
(and more debuggable) than an actual deadlock condition, so we have some
improvement I hope (the concept is no less complete than discovery of a lock's
interrupt contexts).

I guess we could even do the same thing with __GFP_IO (normal reclaim), and
even GFP_NOIO locks too... but filesystems will have the most locks and fiddly
code paths, so let's start there and see how it goes.

It *seems* to work. I did a quick test.

=================================
[ INFO: inconsistent lock state ]
2.6.28-rc6-00007-ged31348-dirty #26
---------------------------------
inconsistent {in-reclaim-W} -> {ov-reclaim-W} usage.
modprobe/8526 [HC0[0]:SC0[0]:HE1:SE1] takes:
 (testlock){--..}, at: [<ffffffffa0020055>] brd_init+0x55/0x216 [brd]
{in-reclaim-W} state was registered at:
  [<ffffffff80267bdb>] __lock_acquire+0x75b/0x1a60
  [<ffffffff80268f71>] lock_acquire+0x91/0xc0
  [<ffffffff8070f0e1>] mutex_lock_nested+0xb1/0x310
  [<ffffffffa002002b>] brd_init+0x2b/0x216 [brd]
  [<ffffffff8020903b>] _stext+0x3b/0x170
  [<ffffffff80272ebf>] sys_init_module+0xaf/0x1e0
  [<ffffffff8020c3fb>] system_call_fastpath+0x16/0x1b
  [<ffffffffffffffff>] 0xffffffffffffffff
irq event stamp: 3929
hardirqs last  enabled at (3929): [<ffffffff8070f2b5>] mutex_lock_nested+0x285/0x310
hardirqs last disabled at (3928): [<ffffffff8070f089>] mutex_lock_nested+0x59/0x310
softirqs last  enabled at (3732): [<ffffffff8061f623>] sk_filter+0x83/0xe0
softirqs last disabled at (3730): [<ffffffff8061f5b6>] sk_filter+0x16/0xe0

other info that might help us debug this:
1 lock held by modprobe/8526:
 #0:  (testlock){--..}, at: [<ffffffffa0020055>] brd_init+0x55/0x216 [brd]

stack backtrace:
Pid: 8526, comm: modprobe Not tainted 2.6.28-rc6-00007-ged31348-dirty #26
Call Trace:
 [<ffffffff80265483>] print_usage_bug+0x193/0x1d0
 [<ffffffff80266530>] mark_lock+0xaf0/0xca0
 [<ffffffff80266735>] mark_held_locks+0x55/0xc0
 [<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd]
 [<ffffffff802667ca>] trace_reclaim_fs+0x2a/0x60
 [<ffffffff80285005>] __alloc_pages_internal+0x475/0x580
 [<ffffffff8070f29e>] ? mutex_lock_nested+0x26e/0x310
 [<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd]
 [<ffffffffa002006a>] brd_init+0x6a/0x216 [brd]
 [<ffffffffa0020000>] ? brd_init+0x0/0x216 [brd]
 [<ffffffff8020903b>] _stext+0x3b/0x170
 [<ffffffff8070f8b9>] ? mutex_unlock+0x9/0x10
 [<ffffffff8070f83d>] ? __mutex_unlock_slowpath+0x10d/0x180
 [<ffffffff802669ec>] ? trace_hardirqs_on_caller+0x12c/0x190
 [<ffffffff80272ebf>] sys_init_module+0xaf/0x1e0
 [<ffffffff8020c3fb>] system_call_fastpath+0x16/0x1b

Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-02-14 23:27:49 +01:00

650 lines
16 KiB
C

/*
* SLOB Allocator: Simple List Of Blocks
*
* Matt Mackall <mpm@selenic.com> 12/30/03
*
* NUMA support by Paul Mundt, 2007.
*
* How SLOB works:
*
* The core of SLOB is a traditional K&R style heap allocator, with
* support for returning aligned objects. The granularity of this
* allocator is as little as 2 bytes, however typically most architectures
* will require 4 bytes on 32-bit and 8 bytes on 64-bit.
*
* The slob heap is a set of linked list of pages from alloc_pages(),
* and within each page, there is a singly-linked list of free blocks
* (slob_t). The heap is grown on demand. To reduce fragmentation,
* heap pages are segregated into three lists, with objects less than
* 256 bytes, objects less than 1024 bytes, and all other objects.
*
* Allocation from heap involves first searching for a page with
* sufficient free blocks (using a next-fit-like approach) followed by
* a first-fit scan of the page. Deallocation inserts objects back
* into the free list in address order, so this is effectively an
* address-ordered first fit.
*
* Above this is an implementation of kmalloc/kfree. Blocks returned
* from kmalloc are prepended with a 4-byte header with the kmalloc size.
* If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
* alloc_pages() directly, allocating compound pages so the page order
* does not have to be separately tracked, and also stores the exact
* allocation size in page->private so that it can be used to accurately
* provide ksize(). These objects are detected in kfree() because slob_page()
* is false for them.
*
* SLAB is emulated on top of SLOB by simply calling constructors and
* destructors for every SLAB allocation. Objects are returned with the
* 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
* case the low-level allocator will fragment blocks to create the proper
* alignment. Again, objects of page-size or greater are allocated by
* calling alloc_pages(). As SLAB objects know their size, no separate
* size bookkeeping is necessary and there is essentially no allocation
* space overhead, and compound pages aren't needed for multi-page
* allocations.
*
* NUMA support in SLOB is fairly simplistic, pushing most of the real
* logic down to the page allocator, and simply doing the node accounting
* on the upper levels. In the event that a node id is explicitly
* provided, alloc_pages_node() with the specified node id is used
* instead. The common case (or when the node id isn't explicitly provided)
* will default to the current node, as per numa_node_id().
*
* Node aware pages are still inserted in to the global freelist, and
* these are scanned for by matching against the node id encoded in the
* page flags. As a result, block allocations that can be satisfied from
* the freelist will only be done so on pages residing on the same node,
* in order to prevent random node placement.
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/cache.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/rcupdate.h>
#include <linux/list.h>
#include <asm/atomic.h>
/*
* slob_block has a field 'units', which indicates size of block if +ve,
* or offset of next block if -ve (in SLOB_UNITs).
*
* Free blocks of size 1 unit simply contain the offset of the next block.
* Those with larger size contain their size in the first SLOB_UNIT of
* memory, and the offset of the next free block in the second SLOB_UNIT.
*/
#if PAGE_SIZE <= (32767 * 2)
typedef s16 slobidx_t;
#else
typedef s32 slobidx_t;
#endif
struct slob_block {
slobidx_t units;
};
typedef struct slob_block slob_t;
/*
* We use struct page fields to manage some slob allocation aspects,
* however to avoid the horrible mess in include/linux/mm_types.h, we'll
* just define our own struct page type variant here.
*/
struct slob_page {
union {
struct {
unsigned long flags; /* mandatory */
atomic_t _count; /* mandatory */
slobidx_t units; /* free units left in page */
unsigned long pad[2];
slob_t *free; /* first free slob_t in page */
struct list_head list; /* linked list of free pages */
};
struct page page;
};
};
static inline void struct_slob_page_wrong_size(void)
{ BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); }
/*
* free_slob_page: call before a slob_page is returned to the page allocator.
*/
static inline void free_slob_page(struct slob_page *sp)
{
reset_page_mapcount(&sp->page);
sp->page.mapping = NULL;
}
/*
* All partially free slob pages go on these lists.
*/
#define SLOB_BREAK1 256
#define SLOB_BREAK2 1024
static LIST_HEAD(free_slob_small);
static LIST_HEAD(free_slob_medium);
static LIST_HEAD(free_slob_large);
/*
* slob_page: True for all slob pages (false for bigblock pages)
*/
static inline int slob_page(struct slob_page *sp)
{
return PageSlobPage((struct page *)sp);
}
static inline void set_slob_page(struct slob_page *sp)
{
__SetPageSlobPage((struct page *)sp);
}
static inline void clear_slob_page(struct slob_page *sp)
{
__ClearPageSlobPage((struct page *)sp);
}
/*
* slob_page_free: true for pages on free_slob_pages list.
*/
static inline int slob_page_free(struct slob_page *sp)
{
return PageSlobFree((struct page *)sp);
}
static void set_slob_page_free(struct slob_page *sp, struct list_head *list)
{
list_add(&sp->list, list);
__SetPageSlobFree((struct page *)sp);
}
static inline void clear_slob_page_free(struct slob_page *sp)
{
list_del(&sp->list);
__ClearPageSlobFree((struct page *)sp);
}
#define SLOB_UNIT sizeof(slob_t)
#define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT)
#define SLOB_ALIGN L1_CACHE_BYTES
/*
* struct slob_rcu is inserted at the tail of allocated slob blocks, which
* were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free
* the block using call_rcu.
*/
struct slob_rcu {
struct rcu_head head;
int size;
};
/*
* slob_lock protects all slob allocator structures.
*/
static DEFINE_SPINLOCK(slob_lock);
/*
* Encode the given size and next info into a free slob block s.
*/
static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
{
slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
slobidx_t offset = next - base;
if (size > 1) {
s[0].units = size;
s[1].units = offset;
} else
s[0].units = -offset;
}
/*
* Return the size of a slob block.
*/
static slobidx_t slob_units(slob_t *s)
{
if (s->units > 0)
return s->units;
return 1;
}
/*
* Return the next free slob block pointer after this one.
*/
static slob_t *slob_next(slob_t *s)
{
slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
slobidx_t next;
if (s[0].units < 0)
next = -s[0].units;
else
next = s[1].units;
return base+next;
}
/*
* Returns true if s is the last free block in its page.
*/
static int slob_last(slob_t *s)
{
return !((unsigned long)slob_next(s) & ~PAGE_MASK);
}
static void *slob_new_page(gfp_t gfp, int order, int node)
{
void *page;
#ifdef CONFIG_NUMA
if (node != -1)
page = alloc_pages_node(node, gfp, order);
else
#endif
page = alloc_pages(gfp, order);
if (!page)
return NULL;
return page_address(page);
}
/*
* Allocate a slob block within a given slob_page sp.
*/
static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
{
slob_t *prev, *cur, *aligned = 0;
int delta = 0, units = SLOB_UNITS(size);
for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
slobidx_t avail = slob_units(cur);
if (align) {
aligned = (slob_t *)ALIGN((unsigned long)cur, align);
delta = aligned - cur;
}
if (avail >= units + delta) { /* room enough? */
slob_t *next;
if (delta) { /* need to fragment head to align? */
next = slob_next(cur);
set_slob(aligned, avail - delta, next);
set_slob(cur, delta, aligned);
prev = cur;
cur = aligned;
avail = slob_units(cur);
}
next = slob_next(cur);
if (avail == units) { /* exact fit? unlink. */
if (prev)
set_slob(prev, slob_units(prev), next);
else
sp->free = next;
} else { /* fragment */
if (prev)
set_slob(prev, slob_units(prev), cur + units);
else
sp->free = cur + units;
set_slob(cur + units, avail - units, next);
}
sp->units -= units;
if (!sp->units)
clear_slob_page_free(sp);
return cur;
}
if (slob_last(cur))
return NULL;
}
}
/*
* slob_alloc: entry point into the slob allocator.
*/
static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
{
struct slob_page *sp;
struct list_head *prev;
struct list_head *slob_list;
slob_t *b = NULL;
unsigned long flags;
if (size < SLOB_BREAK1)
slob_list = &free_slob_small;
else if (size < SLOB_BREAK2)
slob_list = &free_slob_medium;
else
slob_list = &free_slob_large;
spin_lock_irqsave(&slob_lock, flags);
/* Iterate through each partially free page, try to find room */
list_for_each_entry(sp, slob_list, list) {
#ifdef CONFIG_NUMA
/*
* If there's a node specification, search for a partial
* page with a matching node id in the freelist.
*/
if (node != -1 && page_to_nid(&sp->page) != node)
continue;
#endif
/* Enough room on this page? */
if (sp->units < SLOB_UNITS(size))
continue;
/* Attempt to alloc */
prev = sp->list.prev;
b = slob_page_alloc(sp, size, align);
if (!b)
continue;
/* Improve fragment distribution and reduce our average
* search time by starting our next search here. (see
* Knuth vol 1, sec 2.5, pg 449) */
if (prev != slob_list->prev &&
slob_list->next != prev->next)
list_move_tail(slob_list, prev->next);
break;
}
spin_unlock_irqrestore(&slob_lock, flags);
/* Not enough space: must allocate a new page */
if (!b) {
b = slob_new_page(gfp & ~__GFP_ZERO, 0, node);
if (!b)
return 0;
sp = (struct slob_page *)virt_to_page(b);
set_slob_page(sp);
spin_lock_irqsave(&slob_lock, flags);
sp->units = SLOB_UNITS(PAGE_SIZE);
sp->free = b;
INIT_LIST_HEAD(&sp->list);
set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
set_slob_page_free(sp, slob_list);
b = slob_page_alloc(sp, size, align);
BUG_ON(!b);
spin_unlock_irqrestore(&slob_lock, flags);
}
if (unlikely((gfp & __GFP_ZERO) && b))
memset(b, 0, size);
return b;
}
/*
* slob_free: entry point into the slob allocator.
*/
static void slob_free(void *block, int size)
{
struct slob_page *sp;
slob_t *prev, *next, *b = (slob_t *)block;
slobidx_t units;
unsigned long flags;
if (unlikely(ZERO_OR_NULL_PTR(block)))
return;
BUG_ON(!size);
sp = (struct slob_page *)virt_to_page(block);
units = SLOB_UNITS(size);
spin_lock_irqsave(&slob_lock, flags);
if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
/* Go directly to page allocator. Do not pass slob allocator */
if (slob_page_free(sp))
clear_slob_page_free(sp);
clear_slob_page(sp);
free_slob_page(sp);
free_page((unsigned long)b);
goto out;
}
if (!slob_page_free(sp)) {
/* This slob page is about to become partially free. Easy! */
sp->units = units;
sp->free = b;
set_slob(b, units,
(void *)((unsigned long)(b +
SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
set_slob_page_free(sp, &free_slob_small);
goto out;
}
/*
* Otherwise the page is already partially free, so find reinsertion
* point.
*/
sp->units += units;
if (b < sp->free) {
if (b + units == sp->free) {
units += slob_units(sp->free);
sp->free = slob_next(sp->free);
}
set_slob(b, units, sp->free);
sp->free = b;
} else {
prev = sp->free;
next = slob_next(prev);
while (b > next) {
prev = next;
next = slob_next(prev);
}
if (!slob_last(prev) && b + units == next) {
units += slob_units(next);
set_slob(b, units, slob_next(next));
} else
set_slob(b, units, next);
if (prev + slob_units(prev) == b) {
units = slob_units(b) + slob_units(prev);
set_slob(prev, units, slob_next(b));
} else
set_slob(prev, slob_units(prev), b);
}
out:
spin_unlock_irqrestore(&slob_lock, flags);
}
/*
* End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
*/
#ifndef ARCH_KMALLOC_MINALIGN
#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long)
#endif
#ifndef ARCH_SLAB_MINALIGN
#define ARCH_SLAB_MINALIGN __alignof__(unsigned long)
#endif
void *__kmalloc_node(size_t size, gfp_t gfp, int node)
{
unsigned int *m;
int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
lockdep_trace_alloc(flags);
if (size < PAGE_SIZE - align) {
if (!size)
return ZERO_SIZE_PTR;
m = slob_alloc(size + align, gfp, align, node);
if (!m)
return NULL;
*m = size;
return (void *)m + align;
} else {
void *ret;
ret = slob_new_page(gfp | __GFP_COMP, get_order(size), node);
if (ret) {
struct page *page;
page = virt_to_page(ret);
page->private = size;
}
return ret;
}
}
EXPORT_SYMBOL(__kmalloc_node);
void kfree(const void *block)
{
struct slob_page *sp;
if (unlikely(ZERO_OR_NULL_PTR(block)))
return;
sp = (struct slob_page *)virt_to_page(block);
if (slob_page(sp)) {
int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
unsigned int *m = (unsigned int *)(block - align);
slob_free(m, *m + align);
} else
put_page(&sp->page);
}
EXPORT_SYMBOL(kfree);
/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
size_t ksize(const void *block)
{
struct slob_page *sp;
BUG_ON(!block);
if (unlikely(block == ZERO_SIZE_PTR))
return 0;
sp = (struct slob_page *)virt_to_page(block);
if (slob_page(sp)) {
int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
unsigned int *m = (unsigned int *)(block - align);
return SLOB_UNITS(*m) * SLOB_UNIT;
} else
return sp->page.private;
}
struct kmem_cache {
unsigned int size, align;
unsigned long flags;
const char *name;
void (*ctor)(void *);
};
struct kmem_cache *kmem_cache_create(const char *name, size_t size,
size_t align, unsigned long flags, void (*ctor)(void *))
{
struct kmem_cache *c;
c = slob_alloc(sizeof(struct kmem_cache),
GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1);
if (c) {
c->name = name;
c->size = size;
if (flags & SLAB_DESTROY_BY_RCU) {
/* leave room for rcu footer at the end of object */
c->size += sizeof(struct slob_rcu);
}
c->flags = flags;
c->ctor = ctor;
/* ignore alignment unless it's forced */
c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0;
if (c->align < ARCH_SLAB_MINALIGN)
c->align = ARCH_SLAB_MINALIGN;
if (c->align < align)
c->align = align;
} else if (flags & SLAB_PANIC)
panic("Cannot create slab cache %s\n", name);
return c;
}
EXPORT_SYMBOL(kmem_cache_create);
void kmem_cache_destroy(struct kmem_cache *c)
{
slob_free(c, sizeof(struct kmem_cache));
}
EXPORT_SYMBOL(kmem_cache_destroy);
void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
{
void *b;
if (c->size < PAGE_SIZE)
b = slob_alloc(c->size, flags, c->align, node);
else
b = slob_new_page(flags, get_order(c->size), node);
if (c->ctor)
c->ctor(b);
return b;
}
EXPORT_SYMBOL(kmem_cache_alloc_node);
static void __kmem_cache_free(void *b, int size)
{
if (size < PAGE_SIZE)
slob_free(b, size);
else
free_pages((unsigned long)b, get_order(size));
}
static void kmem_rcu_free(struct rcu_head *head)
{
struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
__kmem_cache_free(b, slob_rcu->size);
}
void kmem_cache_free(struct kmem_cache *c, void *b)
{
if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) {
struct slob_rcu *slob_rcu;
slob_rcu = b + (c->size - sizeof(struct slob_rcu));
INIT_RCU_HEAD(&slob_rcu->head);
slob_rcu->size = c->size;
call_rcu(&slob_rcu->head, kmem_rcu_free);
} else {
__kmem_cache_free(b, c->size);
}
}
EXPORT_SYMBOL(kmem_cache_free);
unsigned int kmem_cache_size(struct kmem_cache *c)
{
return c->size;
}
EXPORT_SYMBOL(kmem_cache_size);
const char *kmem_cache_name(struct kmem_cache *c)
{
return c->name;
}
EXPORT_SYMBOL(kmem_cache_name);
int kmem_cache_shrink(struct kmem_cache *d)
{
return 0;
}
EXPORT_SYMBOL(kmem_cache_shrink);
int kmem_ptr_validate(struct kmem_cache *a, const void *b)
{
return 0;
}
static unsigned int slob_ready __read_mostly;
int slab_is_available(void)
{
return slob_ready;
}
void __init kmem_cache_init(void)
{
slob_ready = 1;
}