1
Commit Graph

69 Commits

Author SHA1 Message Date
Dapeng Mi
f287bef6dd KVM: x86/pmu: Introduce distinct macros for GP/fixed counter max number
Refine the macros which define maximum General Purpose (GP) and fixed
counter numbers.

Currently the macro KVM_INTEL_PMC_MAX_GENERIC is used to represent the
maximum supported General Purpose (GP) counter number ambiguously across
Intel and AMD platforms. This would cause issues if AMD begins to support
more GP counters than Intel.

Thus a bunch of new macros including vendor specific and vendor
independent are introduced to replace the old macros. The vendor
independent macros are used in x86 common code to hide vendor difference
and eliminate the ambiguity.

No logic changes are introduced in this patch.

Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240627021756.144815-1-dapeng1.mi@linux.intel.com
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-06-28 09:12:16 -07:00
Dapeng Mi
75430c412a KVM: x86/pmu: Manipulate FIXED_CTR_CTRL MSR with macros
Magic numbers are used to manipulate the bit fields of
FIXED_CTR_CTRL MSR. This makes reading code become difficult, so use
pre-defined macros to replace these magic numbers.

Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240430005239.13527-3-dapeng1.mi@linux.intel.com
[sean: drop unnecessary curly braces]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-06-03 14:25:22 -07:00
Dapeng Mi
0e102ce3d4 KVM: x86/pmu: Change ambiguous _mask suffix to _rsvd in kvm_pmu
Several '_mask' suffixed variables such as, global_ctrl_mask, are
defined in kvm_pmu structure. However the _mask suffix is ambiguous and
misleading since it's not a real mask with positive logic. On the contrary
it represents the reserved bits of corresponding MSRs and these bits
should not be accessed.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240430005239.13527-2-dapeng1.mi@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-06-03 14:23:14 -07:00
Sean Christopherson
f19063b1ca KVM: x86/pmu: Snapshot event selectors that KVM emulates in software
Snapshot the event selectors for the events that KVM emulates in software,
which is currently instructions retired and branch instructions retired.
The event selectors a tied to the underlying CPU, i.e. are constant for a
given platform even though perf doesn't manage the mappings as such.

Getting the event selectors from perf isn't exactly cheap, especially if
mitigations are enabled, as at least one indirect call is involved.

Snapshot the values in KVM instead of optimizing perf as working with the
raw event selectors will be required if KVM ever wants to emulate events
that aren't part of perf's uABI, i.e. that don't have an "enum perf_hw_id"
entry.

Link: https://lore.kernel.org/r/20231110022857.1273836-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-01 09:35:48 -08:00
Sean Christopherson
e5a65d4f72 KVM: x86/pmu: Add macros to iterate over all PMCs given a bitmap
Add and use kvm_for_each_pmc() to dedup a variety of open coded for-loops
that iterate over valid PMCs given a bitmap (and because seeing checkpatch
whine about bad macro style is always amusing).

No functional change intended.

Link: https://lore.kernel.org/r/20231110022857.1273836-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-01 09:35:48 -08:00
Sean Christopherson
b31880ca2f KVM: x86/pmu: Move pmc_idx => pmc translation helper to common code
Add a common helper for *internal* PMC lookups, and delete the ops hook
and Intel's implementation.  Keep AMD's implementation, but rename it to
amd_pmu_get_pmc() to make it somewhat more obvious that it's suited for
both KVM-internal and guest-initiated lookups.

Because KVM tracks all counters in a single bitmap, getting a counter
when iterating over a bitmap, e.g. of all valid PMCs, requires a small
amount of math, that while simple, isn't super obvious and doesn't use the
same semantics as PMC lookups from RDPMC!  Although AMD doesn't support
fixed counters, the common PMU code still behaves as if there a split, the
high half of which just happens to always be empty.

Opportunstically add a comment to explain both what is going on, and why
KVM uses a single bitmap, e.g. the boilerplate for iterating over separate
bitmaps could be done via macros, so it's not (just) about deduplicating
code.

Link: https://lore.kernel.org/r/20231110022857.1273836-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-01 09:35:47 -08:00
Sean Christopherson
be6b067dae KVM: x86/pmu: Add common define to capture fixed counters offset
Add a common define to "officially" solidify KVM's split of counters,
i.e. to commit to using bits 31:0 to track general purpose counters and
bits 63:32 to track fixed counters (which only Intel supports).  KVM
already bleeds this behavior all over common PMU code, and adding a KVM-
defined macro allows clarifying that the value is a _base_, as oppposed to
the _flag_ that is used to access fixed PMCs via RDPMC (which perf
confusingly calls INTEL_PMC_FIXED_RDPMC_BASE).

No functional change intended.

Link: https://lore.kernel.org/r/20231110022857.1273836-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-01 09:34:31 -08:00
Sean Christopherson
7bb7fce136 KVM: x86/pmu: Prioritize VMX interception over #GP on RDPMC due to bad index
Apply the pre-intercepts RDPMC validity check only to AMD, and rename all
relevant functions to make it as clear as possible that the check is not a
standard PMC index check.  On Intel, the basic rule is that only invalid
opcodes and privilege/permission/mode checks have priority over VM-Exit,
i.e. RDPMC with an invalid index should VM-Exit, not #GP.  While the SDM
doesn't explicitly call out RDPMC, it _does_ explicitly use RDMSR of a
non-existent MSR as an example where VM-Exit has priority over #GP, and
RDPMC is effectively just a variation of RDMSR.

Manually testing on various Intel CPUs confirms this behavior, and the
inverted priority was introduced for SVM compatibility, i.e. was not an
intentional change for Intel PMUs.  On AMD, *all* exceptions on RDPMC have
priority over VM-Exit.

Check for a NULL kvm_pmu_ops.check_rdpmc_early instead of using a RET0
static call so as to provide a convenient location to document the
difference between Intel and AMD, and to again try to make it as obvious
as possible that the early check is a one-off thing, not a generic "is
this PMC valid?" helper.

Fixes: 8061252ee0 ("KVM: SVM: Add intercept checks for remaining twobyte instructions")
Cc: Jim Mattson <jmattson@google.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-01-30 15:28:02 -08:00
Sean Christopherson
cbbd1aa891 KVM: x86/pmu: Allow programming events that match unsupported arch events
Remove KVM's bogus restriction that the guest can't program an event whose
encoding matches an unsupported architectural event.  The enumeration of
an architectural event only says that if a CPU supports an architectural
event, then the event can be programmed using the architectural encoding.
The enumeration does NOT say anything about the encoding when the CPU
doesn't report support the architectural event.

Preventing the guest from counting events whose encoding happens to match
an architectural event breaks existing functionality whenever Intel adds
an architectural encoding that was *ever* used for a CPU that doesn't
enumerate support for the architectural event, even if the encoding is for
the exact same event!

E.g. the architectural encoding for Top-Down Slots is 0x01a4.  Broadwell
CPUs, which do not support the Top-Down Slots architectural event, 0x01a4
is a valid, model-specific event.  Denying guest usage of 0x01a4 if/when
KVM adds support for Top-Down slots would break any Broadwell-based guest.

Reported-by: Kan Liang <kan.liang@linux.intel.com>
Closes: https://lore.kernel.org/all/2004baa6-b494-462c-a11f-8104ea152c6a@linux.intel.com
Fixes: a21864486f ("KVM: x86/pmu: Fix available_event_types check for REF_CPU_CYCLES event")
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-01-30 15:28:02 -08:00
Sean Christopherson
fd89499a51 KVM: x86/pmu: Track emulated counter events instead of previous counter
Explicitly track emulated counter events instead of using the common
counter value that's shared with the hardware counter owned by perf.
Bumping the common counter requires snapshotting the pre-increment value
in order to detect overflow from emulation, and the snapshot approach is
inherently flawed.

Snapshotting the previous counter at every increment assumes that there is
at most one emulated counter event per emulated instruction (or rather,
between checks for KVM_REQ_PMU).  That's mostly holds true today because
KVM only emulates (branch) instructions retired, but the approach will
fall apart if KVM ever supports event types that don't have a 1:1
relationship with instructions.

And KVM already has a relevant bug, as handle_invalid_guest_state()
emulates multiple instructions without checking KVM_REQ_PMU, i.e. could
miss an overflow event due to clobbering pmc->prev_counter.  Not checking
KVM_REQ_PMU is problematic in both cases, but at least with the emulated
counter approach, the resulting behavior is delayed overflow detection,
as opposed to completely lost detection.

Tracking the emulated count fixes another bug where the snapshot approach
can signal spurious overflow due to incorporating both the emulated count
and perf's count in the check, i.e. if overflow is detected by perf, then
KVM's emulation will also incorrectly signal overflow.  Add a comment in
the related code to call out the need to process emulated events *after*
pausing the perf event (big kudos to Mingwei for figuring out that
particular wrinkle).

Cc: Mingwei Zhang <mizhang@google.com>
Cc: Roman Kagan <rkagan@amazon.de>
Cc: Jim Mattson <jmattson@google.com>
Cc: Dapeng Mi <dapeng1.mi@linux.intel.com>
Cc: Like Xu <like.xu.linux@gmail.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Link: https://lore.kernel.org/r/20231103230541.352265-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-11-30 12:52:55 -08:00
Sean Christopherson
89acf1237b KVM: x86/pmu: Update sample period in pmc_write_counter()
Update a PMC's sample period in pmc_write_counter() to deduplicate code
across all callers of pmc_write_counter().  Opportunistically move
pmc_write_counter() into pmc.c now that it's doing more work.  WRMSR isn't
such a hot path that an extra CALL+RET pair will be problematic, and the
order of function definitions needs to be changed anyways, i.e. now is a
convenient time to eat the churn.

Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20231103230541.352265-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-11-30 12:52:55 -08:00
Sean Christopherson
f2f63f7ec6 KVM: x86/pmu: Stop calling kvm_pmu_reset() at RESET (it's redundant)
Drop kvm_vcpu_reset()'s call to kvm_pmu_reset(), the call is performed
only for RESET, which is really just the same thing as vCPU creation,
and kvm_arch_vcpu_create() *just* called kvm_pmu_init(), i.e. there can't
possibly be any work to do.

Unlike Intel, AMD's amd_pmu_refresh() does fill all_valid_pmc_idx even if
guest CPUID is empty, but everything that is at all dynamic is guaranteed
to be '0'/NULL, e.g. it should be impossible for KVM to have already
created a perf event.

Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20231103230541.352265-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-11-30 12:52:54 -08:00
Sean Christopherson
cbb359d81a KVM: x86/pmu: Move PMU reset logic to common x86 code
Move the common (or at least "ignored") aspects of resetting the vPMU to
common x86 code, along with the stop/release helpers that are no used only
by the common pmu.c.

There is no need to manually handle fixed counters as all_valid_pmc_idx
tracks both fixed and general purpose counters, and resetting the vPMU is
far from a hot path, i.e. the extra bit of overhead to the PMC from the
index is a non-issue.

Zero fixed_ctr_ctrl in common code even though it's Intel specific.
Ensuring it's zero doesn't harm AMD/SVM in any way, and stopping the fixed
counters via all_valid_pmc_idx, but not clearing the associated control
bits, would be odd/confusing.

Make the .reset() hook optional as SVM no longer needs vendor specific
handling.

Cc: stable@vger.kernel.org
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20231103230541.352265-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-11-30 12:52:54 -08:00
Roman Kagan
b29a2acd36 KVM: x86/pmu: Truncate counter value to allowed width on write
Performance counters are defined to have width less than 64 bits.  The
vPMU code maintains the counters in u64 variables but assumes the value
to fit within the defined width.  However, for Intel non-full-width
counters (MSR_IA32_PERFCTRx) the value receieved from the guest is
truncated to 32 bits and then sign-extended to full 64 bits.  If a
negative value is set, it's sign-extended to 64 bits, but then in
kvm_pmu_incr_counter() it's incremented, truncated, and compared to the
previous value for overflow detection.

That previous value is not truncated, so it always evaluates bigger than
the truncated new one, and a PMI is injected.  If the PMI handler writes
a negative counter value itself, the vCPU never quits the PMI loop.

Turns out that Linux PMI handler actually does write the counter with
the value just read with RDPMC, so when no full-width support is exposed
via MSR_IA32_PERF_CAPABILITIES, and the guest initializes the counter to
a negative value, it locks up.

This has been observed in the field, for example, when the guest configures
atop to use perfevents and runs two instances of it simultaneously.

To address the problem, maintain the invariant that the counter value
always fits in the defined bit width, by truncating the received value
in the respective set_msr methods.  For better readability, factor the
out into a helper function, pmc_write_counter(), shared by vmx and svm
parts.

Fixes: 9cd803d496 ("KVM: x86: Update vPMCs when retiring instructions")
Cc: stable@vger.kernel.org
Signed-off-by: Roman Kagan <rkagan@amazon.de>
Link: https://lore.kernel.org/all/20230504120042.785651-1-rkagan@amazon.de
Tested-by: Like Xu <likexu@tencent.com>
[sean: tweak changelog, s/set/write in the helper]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-09-25 14:30:44 -07:00
Like Xu
6a08083f29 KVM: x86/pmu: Disable vPMU if the minimum num of counters isn't met
Disable PMU support when running on AMD and perf reports fewer than four
general purpose counters. All AMD PMUs must define at least four counters
due to AMD's legacy architecture hardcoding the number of counters
without providing a way to enumerate the number of counters to software,
e.g. from AMD's APM:

 The legacy architecture defines four performance counters (PerfCtrn)
 and corresponding event-select registers (PerfEvtSeln).

Virtualizing fewer than four counters can lead to guest instability as
software expects four counters to be available. Rather than bleed AMD
details into the common code, just define a const unsigned int and
provide a convenient location to document why Intel and AMD have different
mins (in particular, AMD's lack of any way to enumerate less than four
counters to the guest).

Keep the minimum number of counters at Intel at one, even though old P6
and Core Solo/Duo processor effectively require a minimum of two counters.
KVM can, and more importantly has up until this point, supported a vPMU so
long as the CPU has at least one counter.  Perf's support for P6/Core CPUs
does require two counters, but perf will happily chug along with a single
counter when running on a modern CPU.

Cc: Jim Mattson <jmattson@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: set Intel min to '1', not '2']
Link: https://lore.kernel.org/r/20230603011058.1038821-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-06-06 17:31:44 -07:00
Like Xu
13afa29ae4 KVM: x86/pmu: Provide Intel PMU's pmc_is_enabled() as generic x86 code
Move the Intel PMU implementation of pmc_is_enabled() to common x86 code
as pmc_is_globally_enabled(), and drop AMD's implementation.  AMD PMU
currently supports only v1, and thus not PERF_GLOBAL_CONTROL, thus the
semantics for AMD are unchanged.  And when support for AMD PMU v2 comes
along, the common behavior will also Just Work.

Signed-off-by: Like Xu <likexu@tencent.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-06-06 17:31:44 -07:00
Like Xu
c85cdc1cc1 KVM: x86/pmu: Move handling PERF_GLOBAL_CTRL and friends to common x86
Move the handling of GLOBAL_CTRL, GLOBAL_STATUS, and GLOBAL_OVF_CTRL,
a.k.a. GLOBAL_STATUS_RESET, from Intel PMU code to generic x86 PMU code.
AMD PerfMonV2 defines three registers that have the same semantics as
Intel's variants, just with different names and indices.  Conveniently,
since KVM virtualizes GLOBAL_CTRL on Intel only for PMU v2 and above, and
AMD's version shows up in v2, KVM can use common code for the existence
check as well.

Signed-off-by: Like Xu <likexu@tencent.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-06-06 17:31:44 -07:00
Like Xu
8de18543df KVM: x86/pmu: Move reprogram_counters() to pmu.h
Move reprogram_counters() out of Intel specific PMU code and into pmu.h so
that it can be used to implement AMD PMU v2 support.

No functional change intended.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: rewrite changelog]
Link: https://lore.kernel.org/r/20230603011058.1038821-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-06-06 17:31:44 -07:00
Like Xu
4fa5843d81 KVM: x86/pmu: Fix a typo in kvm_pmu_request_counter_reprogam()
Fix a "reprogam" => "reprogram" typo in kvm_pmu_request_counter_reprogam().

Fixes: 68fb4757e8 ("KVM: x86/pmu: Defer reprogram_counter() to kvm_pmu_handle_event()")
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230310113349.31799-1-likexu@tencent.com
[sean: trim the changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-04-07 09:07:41 -07:00
Linus Torvalds
49d5759268 ARM:
- Provide a virtual cache topology to the guest to avoid
   inconsistencies with migration on heterogenous systems. Non secure
   software has no practical need to traverse the caches by set/way in
   the first place.
 
 - Add support for taking stage-2 access faults in parallel. This was an
   accidental omission in the original parallel faults implementation,
   but should provide a marginal improvement to machines w/o FEAT_HAFDBS
   (such as hardware from the fruit company).
 
 - A preamble to adding support for nested virtualization to KVM,
   including vEL2 register state, rudimentary nested exception handling
   and masking unsupported features for nested guests.
 
 - Fixes to the PSCI relay that avoid an unexpected host SVE trap when
   resuming a CPU when running pKVM.
 
 - VGIC maintenance interrupt support for the AIC
 
 - Improvements to the arch timer emulation, primarily aimed at reducing
   the trap overhead of running nested.
 
 - Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
   interest of CI systems.
 
 - Avoid VM-wide stop-the-world operations when a vCPU accesses its own
   redistributor.
 
 - Serialize when toggling CPACR_EL1.SMEN to avoid unexpected exceptions
   in the host.
 
 - Aesthetic and comment/kerneldoc fixes
 
 - Drop the vestiges of the old Columbia mailing list and add [Oliver]
   as co-maintainer
 
 This also drags in arm64's 'for-next/sme2' branch, because both it and
 the PSCI relay changes touch the EL2 initialization code.
 
 RISC-V:
 
 - Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE
 
 - Correctly place the guest in S-mode after redirecting a trap to the guest
 
 - Redirect illegal instruction traps to guest
 
 - SBI PMU support for guest
 
 s390:
 
 - Two patches sorting out confusion between virtual and physical
   addresses, which currently are the same on s390.
 
 - A new ioctl that performs cmpxchg on guest memory
 
 - A few fixes
 
 x86:
 
 - Change tdp_mmu to a read-only parameter
 
 - Separate TDP and shadow MMU page fault paths
 
 - Enable Hyper-V invariant TSC control
 
 - Fix a variety of APICv and AVIC bugs, some of them real-world,
   some of them affecting architecurally legal but unlikely to
   happen in practice
 
 - Mark APIC timer as expired if its in one-shot mode and the count
   underflows while the vCPU task was being migrated
 
 - Advertise support for Intel's new fast REP string features
 
 - Fix a double-shootdown issue in the emergency reboot code
 
 - Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give SVM
   similar treatment to VMX
 
 - Update Xen's TSC info CPUID sub-leaves as appropriate
 
 - Add support for Hyper-V's extended hypercalls, where "support" at this
   point is just forwarding the hypercalls to userspace
 
 - Clean up the kvm->lock vs. kvm->srcu sequences when updating the PMU and
   MSR filters
 
 - One-off fixes and cleanups
 
 - Fix and cleanup the range-based TLB flushing code, used when KVM is
   running on Hyper-V
 
 - Add support for filtering PMU events using a mask.  If userspace
   wants to restrict heavily what events the guest can use, it can now
   do so without needing an absurd number of filter entries
 
 - Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
   support is disabled
 
 - Add PEBS support for Intel Sapphire Rapids
 
 - Fix a mostly benign overflow bug in SEV's send|receive_update_data()
 
 - Move several SVM-specific flags into vcpu_svm
 
 x86 Intel:
 
 - Handle NMI VM-Exits before leaving the noinstr region
 
 - A few trivial cleanups in the VM-Enter flows
 
 - Stop enabling VMFUNC for L1 purely to document that KVM doesn't support
   EPTP switching (or any other VM function) for L1
 
 - Fix a crash when using eVMCS's enlighted MSR bitmaps
 
 Generic:
 
 - Clean up the hardware enable and initialization flow, which was
   scattered around multiple arch-specific hooks.  Instead, just
   let the arch code call into generic code.  Both x86 and ARM should
   benefit from not having to fight common KVM code's notion of how
   to do initialization.
 
 - Account allocations in generic kvm_arch_alloc_vm()
 
 - Fix a memory leak if coalesced MMIO unregistration fails
 
 selftests:
 
 - On x86, cache the CPU vendor (AMD vs. Intel) and use the info to emit
   the correct hypercall instruction instead of relying on KVM to patch
   in VMMCALL
 
 - Use TAP interface for kvm_binary_stats_test and tsc_msrs_test
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmP2YA0UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroPg/Qf+J6nT+TkIa+8Ei+fN1oMTDp4YuIOx
 mXvJ9mRK9sQ+tAUVwvDz3qN/fK5mjsYbRHIDlVc5p2Q3bCrVGDDqXPFfCcLx1u+O
 9U9xjkO4JxD2LS9pc70FYOyzVNeJ8VMGOBbC2b0lkdYZ4KnUc6e/WWFKJs96bK+H
 duo+RIVyaMthnvbTwSv1K3qQb61n6lSJXplywS8KWFK6NZAmBiEFDAWGRYQE9lLs
 VcVcG0iDJNL/BQJ5InKCcvXVGskcCm9erDszPo7w4Bypa4S9AMS42DHUaRZrBJwV
 /WqdH7ckIz7+OSV0W1j+bKTHAFVTCjXYOM7wQykgjawjICzMSnnG9Gpskw==
 =goe1
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "ARM:

   - Provide a virtual cache topology to the guest to avoid
     inconsistencies with migration on heterogenous systems. Non secure
     software has no practical need to traverse the caches by set/way in
     the first place

   - Add support for taking stage-2 access faults in parallel. This was
     an accidental omission in the original parallel faults
     implementation, but should provide a marginal improvement to
     machines w/o FEAT_HAFDBS (such as hardware from the fruit company)

   - A preamble to adding support for nested virtualization to KVM,
     including vEL2 register state, rudimentary nested exception
     handling and masking unsupported features for nested guests

   - Fixes to the PSCI relay that avoid an unexpected host SVE trap when
     resuming a CPU when running pKVM

   - VGIC maintenance interrupt support for the AIC

   - Improvements to the arch timer emulation, primarily aimed at
     reducing the trap overhead of running nested

   - Add CONFIG_USERFAULTFD to the KVM selftests config fragment in the
     interest of CI systems

   - Avoid VM-wide stop-the-world operations when a vCPU accesses its
     own redistributor

   - Serialize when toggling CPACR_EL1.SMEN to avoid unexpected
     exceptions in the host

   - Aesthetic and comment/kerneldoc fixes

   - Drop the vestiges of the old Columbia mailing list and add [Oliver]
     as co-maintainer

  RISC-V:

   - Fix wrong usage of PGDIR_SIZE instead of PUD_SIZE

   - Correctly place the guest in S-mode after redirecting a trap to the
     guest

   - Redirect illegal instruction traps to guest

   - SBI PMU support for guest

  s390:

   - Sort out confusion between virtual and physical addresses, which
     currently are the same on s390

   - A new ioctl that performs cmpxchg on guest memory

   - A few fixes

  x86:

   - Change tdp_mmu to a read-only parameter

   - Separate TDP and shadow MMU page fault paths

   - Enable Hyper-V invariant TSC control

   - Fix a variety of APICv and AVIC bugs, some of them real-world, some
     of them affecting architecurally legal but unlikely to happen in
     practice

   - Mark APIC timer as expired if its in one-shot mode and the count
     underflows while the vCPU task was being migrated

   - Advertise support for Intel's new fast REP string features

   - Fix a double-shootdown issue in the emergency reboot code

   - Ensure GIF=1 and disable SVM during an emergency reboot, i.e. give
     SVM similar treatment to VMX

   - Update Xen's TSC info CPUID sub-leaves as appropriate

   - Add support for Hyper-V's extended hypercalls, where "support" at
     this point is just forwarding the hypercalls to userspace

   - Clean up the kvm->lock vs. kvm->srcu sequences when updating the
     PMU and MSR filters

   - One-off fixes and cleanups

   - Fix and cleanup the range-based TLB flushing code, used when KVM is
     running on Hyper-V

   - Add support for filtering PMU events using a mask. If userspace
     wants to restrict heavily what events the guest can use, it can now
     do so without needing an absurd number of filter entries

   - Clean up KVM's handling of "PMU MSRs to save", especially when vPMU
     support is disabled

   - Add PEBS support for Intel Sapphire Rapids

   - Fix a mostly benign overflow bug in SEV's
     send|receive_update_data()

   - Move several SVM-specific flags into vcpu_svm

  x86 Intel:

   - Handle NMI VM-Exits before leaving the noinstr region

   - A few trivial cleanups in the VM-Enter flows

   - Stop enabling VMFUNC for L1 purely to document that KVM doesn't
     support EPTP switching (or any other VM function) for L1

   - Fix a crash when using eVMCS's enlighted MSR bitmaps

  Generic:

   - Clean up the hardware enable and initialization flow, which was
     scattered around multiple arch-specific hooks. Instead, just let
     the arch code call into generic code. Both x86 and ARM should
     benefit from not having to fight common KVM code's notion of how to
     do initialization

   - Account allocations in generic kvm_arch_alloc_vm()

   - Fix a memory leak if coalesced MMIO unregistration fails

  selftests:

   - On x86, cache the CPU vendor (AMD vs. Intel) and use the info to
     emit the correct hypercall instruction instead of relying on KVM to
     patch in VMMCALL

   - Use TAP interface for kvm_binary_stats_test and tsc_msrs_test"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (325 commits)
  KVM: SVM: hyper-v: placate modpost section mismatch error
  KVM: x86/mmu: Make tdp_mmu_allowed static
  KVM: arm64: nv: Use reg_to_encoding() to get sysreg ID
  KVM: arm64: nv: Only toggle cache for virtual EL2 when SCTLR_EL2 changes
  KVM: arm64: nv: Filter out unsupported features from ID regs
  KVM: arm64: nv: Emulate EL12 register accesses from the virtual EL2
  KVM: arm64: nv: Allow a sysreg to be hidden from userspace only
  KVM: arm64: nv: Emulate PSTATE.M for a guest hypervisor
  KVM: arm64: nv: Add accessors for SPSR_EL1, ELR_EL1 and VBAR_EL1 from virtual EL2
  KVM: arm64: nv: Handle SMCs taken from virtual EL2
  KVM: arm64: nv: Handle trapped ERET from virtual EL2
  KVM: arm64: nv: Inject HVC exceptions to the virtual EL2
  KVM: arm64: nv: Support virtual EL2 exceptions
  KVM: arm64: nv: Handle HCR_EL2.NV system register traps
  KVM: arm64: nv: Add nested virt VCPU primitives for vEL2 VCPU state
  KVM: arm64: nv: Add EL2 system registers to vcpu context
  KVM: arm64: nv: Allow userspace to set PSR_MODE_EL2x
  KVM: arm64: nv: Reset VCPU to EL2 registers if VCPU nested virt is set
  KVM: arm64: nv: Introduce nested virtualization VCPU feature
  KVM: arm64: Use the S2 MMU context to iterate over S2 table
  ...
2023-02-25 11:30:21 -08:00
Sean Christopherson
4d7404e5ee KVM: x86/pmu: Disable vPMU support on hybrid CPUs (host PMUs)
Disable KVM support for virtualizing PMUs on hosts with hybrid PMUs until
KVM gains a sane way to enumeration the hybrid vPMU to userspace and/or
gains a mechanism to let userspace opt-in to the dangers of exposing a
hybrid vPMU to KVM guests.  Virtualizing a hybrid PMU, or at least part of
a hybrid PMU, is possible, but it requires careful, deliberate
configuration from userspace.

E.g. to expose full functionality, vCPUs need to be pinned to pCPUs to
prevent migrating a vCPU between a big core and a little core, userspace
must enumerate a reasonable topology to the guest, and guest CPUID must be
curated per vCPU to enumerate accurate vPMU capabilities.

The last point is especially problematic, as KVM doesn't control which
pCPU it runs on when enumerating KVM's vPMU capabilities to userspace,
i.e. userspace can't rely on KVM_GET_SUPPORTED_CPUID in it's current form.

Alternatively, userspace could enable vPMU support by enumerating the
set of features that are common and coherent across all cores, e.g. by
filtering PMU events and restricting guest capabilities.  But again, that
requires userspace to take action far beyond reflecting KVM's supported
feature set into the guest.

For now, simply disable vPMU support on hybrid CPUs to avoid inducing
seemingly random #GPs in guests, and punt support for hybrid CPUs to a
future enabling effort.

Reported-by: Jianfeng Gao <jianfeng.gao@intel.com>
Cc: stable@vger.kernel.org
Cc: Andrew Cooper <Andrew.Cooper3@citrix.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Link: https://lore.kernel.org/all/20220818181530.2355034-1-kan.liang@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230208204230.1360502-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2023-02-15 08:25:43 -05:00
Sean Christopherson
8911ce6669 KVM: x86/pmu: Cap kvm_pmu_cap.num_counters_gp at KVM's internal max
Limit kvm_pmu_cap.num_counters_gp during kvm_init_pmu_capability() based
on the vendor PMU capabilities so that consuming num_counters_gp naturally
does the right thing.  This fixes a mostly theoretical bug where KVM could
over-report its PMU support in KVM_GET_SUPPORTED_CPUID for leaf 0xA, e.g.
if the number of counters reported by perf is greater than KVM's
hardcoded internal limit.  Incorporating input from the AMD PMU also
avoids over-reporting MSRs to save when running on AMD.

Link: https://lore.kernel.org/r/20230124234905.3774678-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-26 18:03:42 -08:00
Like Xu
2a3003e950 KVM: x86/pmu: Drop event_type and rename "struct kvm_event_hw_type_mapping"
After commit ("02791a5c362b KVM: x86/pmu: Use PERF_TYPE_RAW
to merge reprogram_{gp,fixed}counter()"), vPMU starts to directly
use the hardware event eventsel and unit_mask to reprogram perf_event,
and the event_type field in the "struct kvm_event_hw_type_mapping"
is simply no longer being used.

Convert the struct into an anonymous struct as the current name is
obsolete as the structure no longer has any mapping semantics, and
placing the struct definition directly above its sole user makes its
easier to understand what the array is filling in.

Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20221205122048.16023-1-likexu@tencent.com
[sean: drop new comment, use anonymous struct]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-26 14:13:44 -08:00
Aaron Lewis
6a5cba7bed KVM: x86/pmu: Correct the mask used in a pmu event filter lookup
When checking if a pmu event the guest is attempting to program should
be filtered, only consider the event select + unit mask in that
decision. Use an architecture specific mask to mask out all other bits,
including bits 35:32 on Intel.  Those bits are not part of the event
select and should not be considered in that decision.

Fixes: 66bb8a065f ("KVM: x86: PMU Event Filter")
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Link: https://lore.kernel.org/r/20221220161236.555143-2-aaronlewis@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2023-01-24 10:06:10 -08:00
Like Xu
55c590adfe KVM: x86/pmu: Prevent zero period event from being repeatedly released
The current vPMU can reuse the same pmc->perf_event for the same
hardware event via pmc_pause/resume_counter(), but this optimization
does not apply to a portion of the TSX events (e.g., "event=0x3c,in_tx=1,
in_tx_cp=1"), where event->attr.sample_period is legally zero at creation,
thus making the perf call to perf_event_period() meaningless (no need to
adjust sample period in this case), and instead causing such reusable
perf_events to be repeatedly released and created.

Avoid releasing zero sample_period events by checking is_sampling_event()
to follow the previously enable/disable optimization.

Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20221207071506.15733-2-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-12-23 12:06:45 -05:00
Like Xu
68fb4757e8 KVM: x86/pmu: Defer reprogram_counter() to kvm_pmu_handle_event()
Batch reprogramming PMU counters by setting KVM_REQ_PMU and thus
deferring reprogramming kvm_pmu_handle_event() to avoid reprogramming
a counter multiple times during a single VM-Exit.

Deferring programming will also allow KVM to fix a bug where immediately
reprogramming a counter can result in sleeping (taking a mutex) while
interrupts are disabled in the VM-Exit fastpath.

Introduce kvm_pmu_request_counter_reprogam() to make it obvious that
KVM is _requesting_ a reprogram and not actually doing the reprogram.

Opportunistically refine related comments to avoid misunderstandings.

Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20220831085328.45489-5-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220923001355.3741194-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-11-09 12:31:36 -05:00
Sean Christopherson
545feb96c0 Revert "KVM: x86: always allow host-initiated writes to PMU MSRs"
Revert the hack to allow host-initiated accesses to all "PMU" MSRs,
as intel_is_valid_msr() returns true for _all_ MSRs, regardless of whether
or not it has a snowball's chance in hell of actually being a PMU MSR.

That mostly gets papered over by the actual get/set helpers only handling
MSRs that they knows about, except there's the minor detail that
kvm_pmu_{g,s}et_msr() eat reads and writes when the PMU is disabled.
I.e. KVM will happy allow reads and writes to _any_ MSR if the PMU is
disabled, either via module param or capability.

This reverts commit d1c88a4020.

Fixes: d1c88a4020 ("KVM: x86: always allow host-initiated writes to PMU MSRs")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220611005755.753273-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-20 11:49:46 -04:00
Like Xu
6ef25aa0a9 KVM: x86/pmu: Restrict advanced features based on module enable_pmu
Once vPMU is disabled, the KVM would not expose features like:
PEBS (via clear kvm_pmu_cap.pebs_ept), legacy LBR and ARCH_LBR,
CPUID 0xA leaf, PDCM bit and MSR_IA32_PERF_CAPABILITIES, plus
PT_MODE_HOST_GUEST mode.

What this group of features has in common is that their use
relies on the underlying PMU counter and the host perf_event as a
back-end resource requester or sharing part of the irq delivery path.

Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220601031925.59693-2-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 13:06:17 -04:00
Like Xu
b9181c8ef3 KVM: x86/pmu: Avoid exposing Intel BTS feature
The BTS feature (including the ability to set the BTS and BTINT
bits in the DEBUGCTL MSR) is currently unsupported on KVM.

But we may try using the BTS facility on a PEBS enabled guest like this:
    perf record -e branches:u -c 1 -d ls
and then we would encounter the following call trace:

 [] unchecked MSR access error: WRMSR to 0x1d9 (tried to write 0x00000000000003c0)
        at rIP: 0xffffffff810745e4 (native_write_msr+0x4/0x20)
 [] Call Trace:
 []  intel_pmu_enable_bts+0x5d/0x70
 []  bts_event_add+0x54/0x70
 []  event_sched_in+0xee/0x290

As it lacks any CPUID indicator or perf_capabilities valid bit
fields to prompt for this information, the platform would hint
the Intel BTS feature unavailable to guest by setting the
BTS_UNAVAIL bit in the IA32_MISC_ENABLE.

Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220601031925.59693-3-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 13:06:16 -04:00
Like Xu
d7808f7391 KVM: x86/pmu: Update global enable_pmu when PMU is undetected
On some virt platforms (L1 guest w/o PMU), the value of module parameter
'enable_pmu' for nested L2 guests should be updated at initialisation.

Considering that there is no concept of "architecture pmu" in AMD or Hygon
and that the versions (prior to Zen 4) are all 0, but that the theoretical
available counters are at least AMD64_NUM_COUNTERS, the utility
check_hw_exists() is reused in the initialisation call path.

Opportunistically update Intel specific comments.

Fixes: 8eeac7e999e8 ("KVM: x86/pmu: Add kvm_pmu_cap to optimize perf_get_x86_pmu_capability")
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518170118.66263-3-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 13:06:15 -04:00
Like Xu
7aadaa988c KVM: x86/pmu: Drop amd_event_mapping[] in the KVM context
All gp or fixed counters have been reprogrammed using PERF_TYPE_RAW,
which means that the table that maps perf_hw_id to event select values is
no longer useful, at least for AMD.

For Intel, the logic to check if the pmu event reported by Intel cpuid is
not available is still required, in which case pmc_perf_hw_id() could be
renamed to hw_event_is_unavail() and a bool value is returned to replace
the semantics of "PERF_COUNT_HW_MAX+1".

Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518132512.37864-12-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:49:06 -04:00
Paolo Bonzini
e99fae6ede KVM: x86/pmu: Use only the uniform interface reprogram_counter()
Since reprogram_counter(), reprogram_{gp, fixed}_counter() currently have
the same incoming parameter "struct kvm_pmc *pmc", the callers can simplify
the conetxt by using uniformly exported interface, which makes reprogram_
{gp, fixed}_counter() static and eliminates EXPORT_SYMBOL_GPL.

Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518132512.37864-8-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:55 -04:00
Like Xu
76d287b234 KVM: x86/pmu: Drop "u8 ctrl, int idx" for reprogram_fixed_counter()
Since afrer reprogram_fixed_counter() is called, it's bound to assign
the requested fixed_ctr_ctrl to pmu->fixed_ctr_ctrl, this assignment step
can be moved forward (the stale value for diff is saved extra early),
thus simplifying the passing of parameters.

No functional change intended.

Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518132512.37864-7-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:53 -04:00
Like Xu
fb121aaf19 KVM: x86/pmu: Drop "u64 eventsel" for reprogram_gp_counter()
Because inside reprogram_gp_counter() it is bound to assign the requested
eventel to pmc->eventsel, this assignment step can be moved forward, thus
simplifying the passing of parameters to "struct kvm_pmc *pmc" only.

No functional change intended.

Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518132512.37864-6-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:50 -04:00
Like Xu
a40239b4cf KVM: x86/pmu: Pass only "struct kvm_pmc *pmc" to reprogram_counter()
Passing the reference "struct kvm_pmc *pmc" when creating
pmc->perf_event is sufficient. This change helps to simplify the
calling convention by replacing reprogram_{gp, fixed}_counter()
with reprogram_counter() seamlessly.

No functional change intended.

Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518132512.37864-5-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:48 -04:00
Paolo Bonzini
d1c88a4020 KVM: x86: always allow host-initiated writes to PMU MSRs
Whenever an MSR is part of KVM_GET_MSR_INDEX_LIST, it has to be always
retrievable and settable with KVM_GET_MSR and KVM_SET_MSR.  Accept
the PMU MSRs unconditionally in intel_is_valid_msr, if the access was
host-initiated.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:40 -04:00
Paolo Bonzini
ec4036edf9 KVM: x86/pmu: remove useless prototype
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:29 -04:00
Like Xu
43d62d108a KVM: x86/pmu: Move the vmx_icl_pebs_cpu[] definition out of the header file
Defining a static const array in a header file would introduce redundant
definitions to the point of confusing semantics, and such a use case would
only bring complaints from the compiler:

arch/x86/kvm/pmu.h:20:32: warning: ‘vmx_icl_pebs_cpu’ defined but not used [-Wunused-const-variable=]
   20 | static const struct x86_cpu_id vmx_icl_pebs_cpu[] = {
      |                                ^~~~~~~~~~~~~~~~

Fixes: a095df2c5f48 ("KVM: x86/pmu: Adjust precise_ip to emulate Ice Lake guest PDIR counter")
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518170118.66263-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:27 -04:00
Like Xu
968635abd5 KVM: x86/pmu: Add kvm_pmu_cap to optimize perf_get_x86_pmu_capability
The information obtained from the interface perf_get_x86_pmu_capability()
doesn't change, so an exported "struct x86_pmu_capability" is introduced
for all guests in the KVM, and it's initialized before hardware_setup().

Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-16-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:16 -04:00
Like Xu
63f21f326f KVM: x86/pmu: Move pmc_speculative_in_use() to arch/x86/kvm/pmu.h
It allows this inline function to be reused by more callers in
more files, such as pmu_intel.c.

Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-14-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:11 -04:00
Like Xu
6ebe44366b KVM: x86/pmu: Adjust precise_ip to emulate Ice Lake guest PDIR counter
The PEBS-PDIR facility on Ice Lake server is supported on IA31_FIXED0 only.
If the guest configures counter 32 and PEBS is enabled, the PEBS-PDIR
facility is supposed to be used, in which case KVM adjusts attr.precise_ip
to 3 and request host perf to assign the exactly requested counter or fail.

The CPU model check is also required since some platforms may place the
PEBS-PDIR facility in another counter index.

Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-10-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:00 -04:00
Paolo Bonzini
47e8eec832 KVM/arm64 updates for 5.19
- Add support for the ARMv8.6 WFxT extension
 
 - Guard pages for the EL2 stacks
 
 - Trap and emulate AArch32 ID registers to hide unsupported features
 
 - Ability to select and save/restore the set of hypercalls exposed
   to the guest
 
 - Support for PSCI-initiated suspend in collaboration with userspace
 
 - GICv3 register-based LPI invalidation support
 
 - Move host PMU event merging into the vcpu data structure
 
 - GICv3 ITS save/restore fixes
 
 - The usual set of small-scale cleanups and fixes
 -----BEGIN PGP SIGNATURE-----
 
 iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmKGAGsPHG1hekBrZXJu
 ZWwub3JnAAoJECPQ0LrRPXpDB/gQAMhyZ+wCG0OMEZhwFF6iDfxVEX2Kw8L41NtD
 a/e6LDWuIOGihItpRkYROc5myG74D7XckF2Bz3G7HJoU4vhwHOV/XulE26GFizoC
 O1GVRekeSUY81wgS1yfo0jojLupBkTjiq3SjTHoDP7GmCM0qDPBtA0QlMRzd2bMs
 Kx0+UUXZUHFSTXc7Lp4vqNH+tMp7se+yRx7hxm6PCM5zG+XYJjLxnsZ0qpchObgU
 7f6YFojsLUs1SexgiUqJ1RChVQ+FkgICh5HyzORvGtHNNzK6D2sIbsW6nqMGAMql
 Kr3A5O/VOkCztSYnLxaa76/HqD21mvUrXvr3grhabNc7rOmuzWV0dDgr6c6wHKHb
 uNCtH4d7Ra06gUrEOrfsgLOLn0Zqik89y6aIlMsnTudMg9gMNgFHy1jz4LM7vMkY
 FS5AVj059heg2uJcfgTvzzcqneyuBLBmF3dS4coowO6oaj8SycpaEmP5e89zkPMI
 1kk8d0e6RmXuCh/2AJ8GxxnKvBPgqp2mMKXOCJ8j4AmHEDX/CKpEBBqIWLKkplUU
 8DGiOWJUtRZJg398dUeIpiVLoXJthMODjAnkKkuhiFcQbXomlwgg7YSnNAz6TRED
 Z7KR2leC247kapHnnagf02q2wED8pBeyrxbQPNdrHtSJ9Usm4nTkY443HgVTJW3s
 aTwPZAQ7
 =mh7W
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm64 updates for 5.19

- Add support for the ARMv8.6 WFxT extension

- Guard pages for the EL2 stacks

- Trap and emulate AArch32 ID registers to hide unsupported features

- Ability to select and save/restore the set of hypercalls exposed
  to the guest

- Support for PSCI-initiated suspend in collaboration with userspace

- GICv3 register-based LPI invalidation support

- Move host PMU event merging into the vcpu data structure

- GICv3 ITS save/restore fixes

- The usual set of small-scale cleanups and fixes

[Due to the conflict, KVM_SYSTEM_EVENT_SEV_TERM is relocated
 from 4 to 6. - Paolo]
2022-05-25 05:09:23 -04:00
Like Xu
75189d1de1 KVM: x86/pmu: Update AMD PMC sample period to fix guest NMI-watchdog
NMI-watchdog is one of the favorite features of kernel developers,
but it does not work in AMD guest even with vPMU enabled and worse,
the system misrepresents this capability via /proc.

This is a PMC emulation error. KVM does not pass the latest valid
value to perf_event in time when guest NMI-watchdog is running, thus
the perf_event corresponding to the watchdog counter will enter the
old state at some point after the first guest NMI injection, forcing
the hardware register PMC0 to be constantly written to 0x800000000001.

Meanwhile, the running counter should accurately reflect its new value
based on the latest coordinated pmc->counter (from vPMC's point of view)
rather than the value written directly by the guest.

Fixes: 168d918f26 ("KVM: x86: Adjust counter sample period after a wrmsr")
Reported-by: Dongli Cao <caodongli@kingsoft.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Yanan Wang <wangyanan55@huawei.com>
Tested-by: Yanan Wang <wangyanan55@huawei.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220409015226.38619-1-likexu@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-21 13:16:14 -04:00
Like Xu
8f969c0c34 KVM: x86: Copy kvm_pmu_ops by value to eliminate layer of indirection
Replace the kvm_pmu_ops pointer in common x86 with an instance of the
struct to save one pointer dereference when invoking functions. Copy the
struct by value to set the ops during kvm_init().

Signed-off-by: Like Xu <likexu@tencent.com>
[sean: Move pmc_is_enabled(), make kvm_pmu_ops static]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220329235054.3534728-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13 13:37:44 -04:00
Wei Wang
0144ba0c5b KVM: x86: use the KVM side max supported fixed counter
KVM vPMU doesn't support to emulate all the fixed counters that the
host PMU driver has supported, e.g. the fixed counter 3 used by
Topdown metrics hasn't been supported by KVM so far.

Rename MAX_FIXED_COUNTERS to KVM_PMC_MAX_FIXED to have a more
straightforward naming convention as INTEL_PMC_MAX_FIXED used by the
host PMU driver, and fix vPMU to use the KVM side KVM_PMC_MAX_FIXED
for the virtual fixed counter emulation, instead of the host side
INTEL_PMC_MAX_FIXED.

Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/1643750603-100733-2-git-send-email-kan.liang@linux.intel.com
2022-02-02 13:11:44 +01:00
Eric Hankland
9cd803d496 KVM: x86: Update vPMCs when retiring instructions
When KVM retires a guest instruction through emulation, increment any
vPMCs that are configured to monitor "instructions retired," and
update the sample period of those counters so that they will overflow
at the right time.

Signed-off-by: Eric Hankland <ehankland@google.com>
[jmattson:
  - Split the code to increment "branch instructions retired" into a
    separate commit.
  - Added 'static' to kvm_pmu_incr_counter() definition.
  - Modified kvm_pmu_incr_counter() to check pmc->perf_event->state ==
    PERF_EVENT_STATE_ACTIVE.
]
Fixes: f5132b0138 ("KVM: Expose a version 2 architectural PMU to a guests")
Signed-off-by: Jim Mattson <jmattson@google.com>
[likexu:
  - Drop checks for pmc->perf_event or event state or event type
  - Increase a counter once its umask bits and the first 8 select bits are matched
  - Rewrite kvm_pmu_incr_counter() with a less invasive approach to the host perf;
  - Rename kvm_pmu_record_event to kvm_pmu_trigger_event;
  - Add counter enable and CPL check for kvm_pmu_trigger_event();
]
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211130074221.93635-6-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-07 10:44:42 -05:00
Like Xu
6ed1298eb0 KVM: x86/pmu: Reuse pmc_perf_hw_id() and drop find_fixed_event()
Since we set the same semantic event value for the fixed counter in
pmc->eventsel, returning the perf_hw_id for the fixed counter via
find_fixed_event() can be painlessly replaced by pmc_perf_hw_id()
with the help of pmc_is_fixed() check.

Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211130074221.93635-4-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-07 10:44:42 -05:00
Like Xu
7c174f305c KVM: x86/pmu: Refactoring find_arch_event() to pmc_perf_hw_id()
The find_arch_event() returns a "unsigned int" value,
which is used by the pmc_reprogram_counter() to
program a PERF_TYPE_HARDWARE type perf_event.

The returned value is actually the kernel defined generic
perf_hw_id, let's rename it to pmc_perf_hw_id() with simpler
incoming parameters for better self-explanation.

Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211130074221.93635-3-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-01-07 10:44:41 -05:00
Jim Mattson
e6cd31f1a8 kvm: x86: Convert return type of *is_valid_rdpmc_ecx() to bool
These function names sound like predicates, and they have siblings,
*is_valid_msr(), which _are_ predicates. Moreover, there are comments
that essentially warn that these functions behave unexpectedly.

Flip the polarity of the return values, so that they become
predicates, and convert the boolean result to a success/failure code
at the outer call site.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211105202058.1048757-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:19 -05:00
Like Xu
e79f49c37c KVM: x86/pmu: Introduce pmc->is_paused to reduce the call time of perf interfaces
Based on our observations, after any vm-exit associated with vPMU, there
are at least two or more perf interfaces to be called for guest counter
emulation, such as perf_event_{pause, read_value, period}(), and each one
will {lock, unlock} the same perf_event_ctx. The frequency of calls becomes
more severe when guest use counters in a multiplexed manner.

Holding a lock once and completing the KVM request operations in the perf
context would introduce a set of impractical new interfaces. So we can
further optimize the vPMU implementation by avoiding repeated calls to
these interfaces in the KVM context for at least one pattern:

After we call perf_event_pause() once, the event will be disabled and its
internal count will be reset to 0. So there is no need to pause it again
or read its value. Once the event is paused, event period will not be
updated until the next time it's resumed or reprogrammed. And there is
also no need to call perf_event_period twice for a non-running counter,
considering the perf_event for a running counter is never paused.

Based on this implementation, for the following common usage of
sampling 4 events using perf on a 4u8g guest:

  echo 0 > /proc/sys/kernel/watchdog
  echo 25 > /proc/sys/kernel/perf_cpu_time_max_percent
  echo 10000 > /proc/sys/kernel/perf_event_max_sample_rate
  echo 0 > /proc/sys/kernel/perf_cpu_time_max_percent
  for i in `seq 1 1 10`
  do
  taskset -c 0 perf record \
  -e cpu-cycles -e instructions -e branch-instructions -e cache-misses \
  /root/br_instr a
  done

the average latency of the guest NMI handler is reduced from
37646.7 ns to 32929.3 ns (~1.14x speed up) on the Intel ICX server.
Also, in addition to collecting more samples, no loss of sampling
accuracy was observed compared to before the optimization.

Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20210728120705.6855-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
2021-08-04 05:55:56 -04:00