aba3792ac2
This modifies the bootrom initialization code of the i2400m driver so it can more easily support upcoming hardware. Currently, the code detects two types of barkers (magic numbers) sent by the device to indicate the types of firmware it would take (signed vs non-signed). This schema is extended so that multiple reboot barkers are recognized; upcoming hw will expose more types barkers which will have to match a header in the firmware image before we can load it. For that, a barker database is introduced; the first time the device sends a barker, it is matched in the database. That gives the driver the information needed to decide how to upload the firmware and which types of firmware to use. The database can be populated from module parameters. The execution flow is not altered; a new function (i2400m_is_boot_barker) is introduced to determine in the RX path if the device has sent a boot barker. This function is becoming heavier, so it is put away from the hot reception path [this is why there is some reorganization in sdio-rx.c:i2400ms_rx and usb-notifc.c:i2400mu_notification_grok()]. The documentation on the process has also been updated. All these modifications are heavily based on previous work by Dirk Brandewie <dirk.brandewie@intel.com>. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
866 lines
29 KiB
C
866 lines
29 KiB
C
/*
|
|
* Intel Wireless WiMAX Connection 2400m
|
|
* Declarations for bus-generic internal APIs
|
|
*
|
|
*
|
|
* Copyright (C) 2007-2008 Intel Corporation. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* * Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*
|
|
* Intel Corporation <linux-wimax@intel.com>
|
|
* Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
|
|
* Yanir Lubetkin <yanirx.lubetkin@intel.com>
|
|
* - Initial implementation
|
|
*
|
|
*
|
|
* GENERAL DRIVER ARCHITECTURE
|
|
*
|
|
* The i2400m driver is split in the following two major parts:
|
|
*
|
|
* - bus specific driver
|
|
* - bus generic driver (this part)
|
|
*
|
|
* The bus specific driver sets up stuff specific to the bus the
|
|
* device is connected to (USB, SDIO, PCI, tam-tam...non-authoritative
|
|
* nor binding list) which is basically the device-model management
|
|
* (probe/disconnect, etc), moving data from device to kernel and
|
|
* back, doing the power saving details and reseting the device.
|
|
*
|
|
* For details on each bus-specific driver, see it's include file,
|
|
* i2400m-BUSNAME.h
|
|
*
|
|
* The bus-generic functionality break up is:
|
|
*
|
|
* - Firmware upload: fw.c - takes care of uploading firmware to the
|
|
* device. bus-specific driver just needs to provides a way to
|
|
* execute boot-mode commands and to reset the device.
|
|
*
|
|
* - RX handling: rx.c - receives data from the bus-specific code and
|
|
* feeds it to the network or WiMAX stack or uses it to modify
|
|
* the driver state. bus-specific driver only has to receive
|
|
* frames and pass them to this module.
|
|
*
|
|
* - TX handling: tx.c - manages the TX FIFO queue and provides means
|
|
* for the bus-specific TX code to pull data from the FIFO
|
|
* queue. bus-specific code just pulls frames from this module
|
|
* to sends them to the device.
|
|
*
|
|
* - netdev glue: netdev.c - interface with Linux networking
|
|
* stack. Pass around data frames, and configure when the
|
|
* device is up and running or shutdown (through ifconfig up /
|
|
* down). Bus-generic only.
|
|
*
|
|
* - control ops: control.c - implements various commmands for
|
|
* controlling the device. bus-generic only.
|
|
*
|
|
* - device model glue: driver.c - implements helpers for the
|
|
* device-model glue done by the bus-specific layer
|
|
* (setup/release the driver resources), turning the device on
|
|
* and off, handling the device reboots/resets and a few simple
|
|
* WiMAX stack ops.
|
|
*
|
|
* Code is also broken up in linux-glue / device-glue.
|
|
*
|
|
* Linux glue contains functions that deal mostly with gluing with the
|
|
* rest of the Linux kernel.
|
|
*
|
|
* Device-glue are functions that deal mostly with the way the device
|
|
* does things and talk the device's language.
|
|
*
|
|
* device-glue code is licensed BSD so other open source OSes can take
|
|
* it to implement their drivers.
|
|
*
|
|
*
|
|
* APIs AND HEADER FILES
|
|
*
|
|
* This bus generic code exports three APIs:
|
|
*
|
|
* - HDI (host-device interface) definitions common to all busses
|
|
* (include/linux/wimax/i2400m.h); these can be also used by user
|
|
* space code.
|
|
* - internal API for the bus-generic code
|
|
* - external API for the bus-specific drivers
|
|
*
|
|
*
|
|
* LIFE CYCLE:
|
|
*
|
|
* When the bus-specific driver probes, it allocates a network device
|
|
* with enough space for it's data structue, that must contain a
|
|
* &struct i2400m at the top.
|
|
*
|
|
* On probe, it needs to fill the i2400m members marked as [fill], as
|
|
* well as i2400m->wimax_dev.net_dev and call i2400m_setup(). The
|
|
* i2400m driver will only register with the WiMAX and network stacks;
|
|
* the only access done to the device is to read the MAC address so we
|
|
* can register a network device. This calls i2400m_dev_start() to
|
|
* load firmware, setup communication with the device and configure it
|
|
* for operation.
|
|
*
|
|
* At this point, control and data communications are possible.
|
|
*
|
|
* On disconnect/driver unload, the bus-specific disconnect function
|
|
* calls i2400m_release() to undo i2400m_setup(). i2400m_dev_stop()
|
|
* shuts the firmware down and releases resources uses to communicate
|
|
* with the device.
|
|
*
|
|
* While the device is up, it might reset. The bus-specific driver has
|
|
* to catch that situation and call i2400m_dev_reset_handle() to deal
|
|
* with it (reset the internal driver structures and go back to square
|
|
* one).
|
|
*/
|
|
|
|
#ifndef __I2400M_H__
|
|
#define __I2400M_H__
|
|
|
|
#include <linux/usb.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/rwsem.h>
|
|
#include <asm/atomic.h>
|
|
#include <net/wimax.h>
|
|
#include <linux/wimax/i2400m.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
/* Misc constants */
|
|
enum {
|
|
/* Size of the Boot Mode Command buffer */
|
|
I2400M_BM_CMD_BUF_SIZE = 16 * 1024,
|
|
I2400M_BM_ACK_BUF_SIZE = 256,
|
|
};
|
|
|
|
/**
|
|
* struct i2400m_poke_table - Hardware poke table for the Intel 2400m
|
|
*
|
|
* This structure will be used to create a device specific poke table
|
|
* to put the device in a consistant state at boot time.
|
|
*
|
|
* @address: The device address to poke
|
|
*
|
|
* @data: The data value to poke to the device address
|
|
*
|
|
*/
|
|
struct i2400m_poke_table{
|
|
__le32 address;
|
|
__le32 data;
|
|
};
|
|
|
|
#define I2400M_FW_POKE(a, d) { \
|
|
.address = cpu_to_le32(a), \
|
|
.data = cpu_to_le32(d) \
|
|
}
|
|
|
|
|
|
/**
|
|
* i2400m_reset_type - methods to reset a device
|
|
*
|
|
* @I2400M_RT_WARM: Reset without device disconnection, device handles
|
|
* are kept valid but state is back to power on, with firmware
|
|
* re-uploaded.
|
|
* @I2400M_RT_COLD: Tell the device to disconnect itself from the bus
|
|
* and reconnect. Renders all device handles invalid.
|
|
* @I2400M_RT_BUS: Tells the bus to reset the device; last measure
|
|
* used when both types above don't work.
|
|
*/
|
|
enum i2400m_reset_type {
|
|
I2400M_RT_WARM, /* first measure */
|
|
I2400M_RT_COLD, /* second measure */
|
|
I2400M_RT_BUS, /* call in artillery */
|
|
};
|
|
|
|
struct i2400m_reset_ctx;
|
|
struct i2400m_roq;
|
|
struct i2400m_barker_db;
|
|
|
|
/**
|
|
* struct i2400m - descriptor for an Intel 2400m
|
|
*
|
|
* Members marked with [fill] must be filled out/initialized before
|
|
* calling i2400m_setup().
|
|
*
|
|
* @bus_tx_block_size: [fill] SDIO imposes a 256 block size, USB 16,
|
|
* so we have a tx_blk_size variable that the bus layer sets to
|
|
* tell the engine how much of that we need.
|
|
*
|
|
* @bus_pl_size_max: [fill] Maximum payload size.
|
|
*
|
|
* @bus_dev_start: [fill] Function called by the bus-generic code
|
|
* [i2400m_dev_start()] to setup the bus-specific communications
|
|
* to the the device. See LIFE CYCLE above.
|
|
*
|
|
* NOTE: Doesn't need to upload the firmware, as that is taken
|
|
* care of by the bus-generic code.
|
|
*
|
|
* @bus_dev_stop: [fill] Function called by the bus-generic code
|
|
* [i2400m_dev_stop()] to shutdown the bus-specific communications
|
|
* to the the device. See LIFE CYCLE above.
|
|
*
|
|
* This function does not need to reset the device, just tear down
|
|
* all the host resources created to handle communication with
|
|
* the device.
|
|
*
|
|
* @bus_tx_kick: [fill] Function called by the bus-generic code to let
|
|
* the bus-specific code know that there is data available in the
|
|
* TX FIFO for transmission to the device.
|
|
*
|
|
* This function cannot sleep.
|
|
*
|
|
* @bus_reset: [fill] Function called by the bus-generic code to reset
|
|
* the device in in various ways. Doesn't need to wait for the
|
|
* reset to finish.
|
|
*
|
|
* If warm or cold reset fail, this function is expected to do a
|
|
* bus-specific reset (eg: USB reset) to get the device to a
|
|
* working state (even if it implies device disconecction).
|
|
*
|
|
* Note the warm reset is used by the firmware uploader to
|
|
* reinitialize the device.
|
|
*
|
|
* IMPORTANT: this is called very early in the device setup
|
|
* process, so it cannot rely on common infrastructure being laid
|
|
* out.
|
|
*
|
|
* @bus_bm_retries: [fill] How many times shall a firmware upload /
|
|
* device initialization be retried? Different models of the same
|
|
* device might need different values, hence it is set by the
|
|
* bus-specific driver. Note this value is used in two places,
|
|
* i2400m_fw_dnload() and __i2400m_dev_start(); they won't become
|
|
* multiplicative (__i2400m_dev_start() calling N times
|
|
* i2400m_fw_dnload() and this trying N times to download the
|
|
* firmware), as if __i2400m_dev_start() only retries if the
|
|
* firmware crashed while initializing the device (not in a
|
|
* general case).
|
|
*
|
|
* @bus_bm_cmd_send: [fill] Function called to send a boot-mode
|
|
* command. Flags are defined in 'enum i2400m_bm_cmd_flags'. This
|
|
* is synchronous and has to return 0 if ok or < 0 errno code in
|
|
* any error condition.
|
|
*
|
|
* @bus_bm_wait_for_ack: [fill] Function called to wait for a
|
|
* boot-mode notification (that can be a response to a previously
|
|
* issued command or an asynchronous one). Will read until all the
|
|
* indicated size is read or timeout. Reading more or less data
|
|
* than asked for is an error condition. Return 0 if ok, < 0 errno
|
|
* code on error.
|
|
*
|
|
* The caller to this function will check if the response is a
|
|
* barker that indicates the device going into reset mode.
|
|
*
|
|
* @bus_fw_names: [fill] a NULL-terminated array with the names of the
|
|
* firmware images to try loading. This is made a list so we can
|
|
* support backward compatibility of firmware releases (eg: if we
|
|
* can't find the default v1.4, we try v1.3). In general, the name
|
|
* should be i2400m-fw-X-VERSION.sbcf, where X is the bus name.
|
|
* The list is tried in order and the first one that loads is
|
|
* used. The fw loader will set i2400m->fw_name to point to the
|
|
* active firmware image.
|
|
*
|
|
* @bus_bm_mac_addr_impaired: [fill] Set to true if the device's MAC
|
|
* address provided in boot mode is kind of broken and needs to
|
|
* be re-read later on.
|
|
*
|
|
* @bus_bm_pokes_table: [fill/optional] A table of device addresses
|
|
* and values that will be poked at device init time to move the
|
|
* device to the correct state for the type of boot/firmware being
|
|
* used. This table MUST be terminated with (0x000000,
|
|
* 0x00000000) or bad things will happen.
|
|
*
|
|
*
|
|
* @wimax_dev: WiMAX generic device for linkage into the kernel WiMAX
|
|
* stack. Due to the way a net_device is allocated, we need to
|
|
* force this to be the first field so that we can get from
|
|
* netdev_priv() the right pointer.
|
|
*
|
|
* @rx_reorder: 1 if RX reordering is enabled; this can only be
|
|
* set at probe time.
|
|
*
|
|
* @state: device's state (as reported by it)
|
|
*
|
|
* @state_wq: waitqueue that is woken up whenever the state changes
|
|
*
|
|
* @tx_lock: spinlock to protect TX members
|
|
*
|
|
* @tx_buf: FIFO buffer for TX; we queue data here
|
|
*
|
|
* @tx_in: FIFO index for incoming data. Note this doesn't wrap around
|
|
* and it is always greater than @tx_out.
|
|
*
|
|
* @tx_out: FIFO index for outgoing data
|
|
*
|
|
* @tx_msg: current TX message that is active in the FIFO for
|
|
* appending payloads.
|
|
*
|
|
* @tx_sequence: current sequence number for TX messages from the
|
|
* device to the host.
|
|
*
|
|
* @tx_msg_size: size of the current message being transmitted by the
|
|
* bus-specific code.
|
|
*
|
|
* @tx_pl_num: total number of payloads sent
|
|
*
|
|
* @tx_pl_max: maximum number of payloads sent in a TX message
|
|
*
|
|
* @tx_pl_min: minimum number of payloads sent in a TX message
|
|
*
|
|
* @tx_num: number of TX messages sent
|
|
*
|
|
* @tx_size_acc: number of bytes in all TX messages sent
|
|
* (this is different to net_dev's statistics as it also counts
|
|
* control messages).
|
|
*
|
|
* @tx_size_min: smallest TX message sent.
|
|
*
|
|
* @tx_size_max: biggest TX message sent.
|
|
*
|
|
* @rx_lock: spinlock to protect RX members
|
|
*
|
|
* @rx_pl_num: total number of payloads received
|
|
*
|
|
* @rx_pl_max: maximum number of payloads received in a RX message
|
|
*
|
|
* @rx_pl_min: minimum number of payloads received in a RX message
|
|
*
|
|
* @rx_num: number of RX messages received
|
|
*
|
|
* @rx_size_acc: number of bytes in all RX messages received
|
|
* (this is different to net_dev's statistics as it also counts
|
|
* control messages).
|
|
*
|
|
* @rx_size_min: smallest RX message received.
|
|
*
|
|
* @rx_size_max: buggest RX message received.
|
|
*
|
|
* @rx_roq: RX ReOrder queues. (fw >= v1.4) When packets are received
|
|
* out of order, the device will ask the driver to hold certain
|
|
* packets until the ones that are received out of order can be
|
|
* delivered. Then the driver can release them to the host. See
|
|
* drivers/net/i2400m/rx.c for details.
|
|
*
|
|
* @src_mac_addr: MAC address used to make ethernet packets be coming
|
|
* from. This is generated at i2400m_setup() time and used during
|
|
* the life cycle of the instance. See i2400m_fake_eth_header().
|
|
*
|
|
* @init_mutex: Mutex used for serializing the device bringup
|
|
* sequence; this way if the device reboots in the middle, we
|
|
* don't try to do a bringup again while we are tearing down the
|
|
* one that failed.
|
|
*
|
|
* Can't reuse @msg_mutex because from within the bringup sequence
|
|
* we need to send messages to the device and thus use @msg_mutex.
|
|
*
|
|
* @msg_mutex: mutex used to send control commands to the device (we
|
|
* only allow one at a time, per host-device interface design).
|
|
*
|
|
* @msg_completion: used to wait for an ack to a control command sent
|
|
* to the device.
|
|
*
|
|
* @ack_skb: used to store the actual ack to a control command if the
|
|
* reception of the command was successful. Otherwise, a ERR_PTR()
|
|
* errno code that indicates what failed with the ack reception.
|
|
*
|
|
* Only valid after @msg_completion is woken up. Only updateable
|
|
* if @msg_completion is armed. Only touched by
|
|
* i2400m_msg_to_dev().
|
|
*
|
|
* Protected by @rx_lock. In theory the command execution flow is
|
|
* sequential, but in case the device sends an out-of-phase or
|
|
* very delayed response, we need to avoid it trampling current
|
|
* execution.
|
|
*
|
|
* @bm_cmd_buf: boot mode command buffer for composing firmware upload
|
|
* commands.
|
|
*
|
|
* USB can't r/w to stack, vmalloc, etc...as well, we end up
|
|
* having to alloc/free a lot to compose commands, so we use these
|
|
* for stagging and not having to realloc all the time.
|
|
*
|
|
* This assumes the code always runs serialized. Only one thread
|
|
* can call i2400m_bm_cmd() at the same time.
|
|
*
|
|
* @bm_ack_buf: boot mode acknoledge buffer for staging reception of
|
|
* responses to commands.
|
|
*
|
|
* See @bm_cmd_buf.
|
|
*
|
|
* @work_queue: work queue for processing device reports. This
|
|
* workqueue cannot be used for processing TX or RX to the device,
|
|
* as from it we'll process device reports, which might require
|
|
* further communication with the device.
|
|
*
|
|
* @debugfs_dentry: hookup for debugfs files.
|
|
* These have to be in a separate directory, a child of
|
|
* (wimax_dev->debugfs_dentry) so they can be removed when the
|
|
* module unloads, as we don't keep each dentry.
|
|
*
|
|
* @fw_name: name of the firmware image that is currently being used.
|
|
*
|
|
* @fw_version: version of the firmware interface, Major.minor,
|
|
* encoded in the high word and low word (major << 16 | minor).
|
|
*
|
|
* @barker: barker type that the device uses; this is initialized by
|
|
* i2400m_is_boot_barker() the first time it is called. Then it
|
|
* won't change during the life cycle of the device and everytime
|
|
* a boot barker is received, it is just verified for it being the
|
|
* same.
|
|
*/
|
|
struct i2400m {
|
|
struct wimax_dev wimax_dev; /* FIRST! See doc */
|
|
|
|
unsigned updown:1; /* Network device is up or down */
|
|
unsigned boot_mode:1; /* is the device in boot mode? */
|
|
unsigned sboot:1; /* signed or unsigned fw boot */
|
|
unsigned ready:1; /* all probing steps done */
|
|
unsigned rx_reorder:1; /* RX reorder is enabled */
|
|
u8 trace_msg_from_user; /* echo rx msgs to 'trace' pipe */
|
|
/* typed u8 so /sys/kernel/debug/u8 can tweak */
|
|
enum i2400m_system_state state;
|
|
wait_queue_head_t state_wq; /* Woken up when on state updates */
|
|
|
|
size_t bus_tx_block_size;
|
|
size_t bus_pl_size_max;
|
|
unsigned bus_bm_retries;
|
|
|
|
int (*bus_dev_start)(struct i2400m *);
|
|
void (*bus_dev_stop)(struct i2400m *);
|
|
void (*bus_tx_kick)(struct i2400m *);
|
|
int (*bus_reset)(struct i2400m *, enum i2400m_reset_type);
|
|
ssize_t (*bus_bm_cmd_send)(struct i2400m *,
|
|
const struct i2400m_bootrom_header *,
|
|
size_t, int flags);
|
|
ssize_t (*bus_bm_wait_for_ack)(struct i2400m *,
|
|
struct i2400m_bootrom_header *, size_t);
|
|
const char **bus_fw_names;
|
|
unsigned bus_bm_mac_addr_impaired:1;
|
|
const struct i2400m_poke_table *bus_bm_pokes_table;
|
|
|
|
spinlock_t tx_lock; /* protect TX state */
|
|
void *tx_buf;
|
|
size_t tx_in, tx_out;
|
|
struct i2400m_msg_hdr *tx_msg;
|
|
size_t tx_sequence, tx_msg_size;
|
|
/* TX stats */
|
|
unsigned tx_pl_num, tx_pl_max, tx_pl_min,
|
|
tx_num, tx_size_acc, tx_size_min, tx_size_max;
|
|
|
|
/* RX stuff */
|
|
spinlock_t rx_lock; /* protect RX state */
|
|
unsigned rx_pl_num, rx_pl_max, rx_pl_min,
|
|
rx_num, rx_size_acc, rx_size_min, rx_size_max;
|
|
struct i2400m_roq *rx_roq; /* not under rx_lock! */
|
|
u8 src_mac_addr[ETH_HLEN];
|
|
|
|
struct mutex msg_mutex; /* serialize command execution */
|
|
struct completion msg_completion;
|
|
struct sk_buff *ack_skb; /* protected by rx_lock */
|
|
|
|
void *bm_ack_buf; /* for receiving acks over USB */
|
|
void *bm_cmd_buf; /* for issuing commands over USB */
|
|
|
|
struct workqueue_struct *work_queue;
|
|
|
|
struct mutex init_mutex; /* protect bringup seq */
|
|
struct i2400m_reset_ctx *reset_ctx; /* protected by init_mutex */
|
|
|
|
struct work_struct wake_tx_ws;
|
|
struct sk_buff *wake_tx_skb;
|
|
|
|
struct dentry *debugfs_dentry;
|
|
const char *fw_name; /* name of the current firmware image */
|
|
unsigned long fw_version; /* version of the firmware interface */
|
|
struct i2400m_barker_db *barker;
|
|
};
|
|
|
|
|
|
/*
|
|
* Initialize a 'struct i2400m' from all zeroes
|
|
*
|
|
* This is a bus-generic API call.
|
|
*/
|
|
static inline
|
|
void i2400m_init(struct i2400m *i2400m)
|
|
{
|
|
wimax_dev_init(&i2400m->wimax_dev);
|
|
|
|
i2400m->boot_mode = 1;
|
|
i2400m->rx_reorder = 1;
|
|
init_waitqueue_head(&i2400m->state_wq);
|
|
|
|
spin_lock_init(&i2400m->tx_lock);
|
|
i2400m->tx_pl_min = UINT_MAX;
|
|
i2400m->tx_size_min = UINT_MAX;
|
|
|
|
spin_lock_init(&i2400m->rx_lock);
|
|
i2400m->rx_pl_min = UINT_MAX;
|
|
i2400m->rx_size_min = UINT_MAX;
|
|
|
|
mutex_init(&i2400m->msg_mutex);
|
|
init_completion(&i2400m->msg_completion);
|
|
|
|
mutex_init(&i2400m->init_mutex);
|
|
/* wake_tx_ws is initialized in i2400m_tx_setup() */
|
|
}
|
|
|
|
|
|
/*
|
|
* Bus-generic internal APIs
|
|
* -------------------------
|
|
*/
|
|
|
|
static inline
|
|
struct i2400m *wimax_dev_to_i2400m(struct wimax_dev *wimax_dev)
|
|
{
|
|
return container_of(wimax_dev, struct i2400m, wimax_dev);
|
|
}
|
|
|
|
static inline
|
|
struct i2400m *net_dev_to_i2400m(struct net_device *net_dev)
|
|
{
|
|
return wimax_dev_to_i2400m(netdev_priv(net_dev));
|
|
}
|
|
|
|
/*
|
|
* Boot mode support
|
|
*/
|
|
|
|
/**
|
|
* i2400m_bm_cmd_flags - flags to i2400m_bm_cmd()
|
|
*
|
|
* @I2400M_BM_CMD_RAW: send the command block as-is, without doing any
|
|
* extra processing for adding CRC.
|
|
*/
|
|
enum i2400m_bm_cmd_flags {
|
|
I2400M_BM_CMD_RAW = 1 << 2,
|
|
};
|
|
|
|
/**
|
|
* i2400m_bri - Boot-ROM indicators
|
|
*
|
|
* Flags for i2400m_bootrom_init() and i2400m_dev_bootstrap() [which
|
|
* are passed from things like i2400m_setup()]. Can be combined with
|
|
* |.
|
|
*
|
|
* @I2400M_BRI_SOFT: The device rebooted already and a reboot
|
|
* barker received, proceed directly to ack the boot sequence.
|
|
* @I2400M_BRI_NO_REBOOT: Do not reboot the device and proceed
|
|
* directly to wait for a reboot barker from the device.
|
|
* @I2400M_BRI_MAC_REINIT: We need to reinitialize the boot
|
|
* rom after reading the MAC adress. This is quite a dirty hack,
|
|
* if you ask me -- the device requires the bootrom to be
|
|
* intialized after reading the MAC address.
|
|
*/
|
|
enum i2400m_bri {
|
|
I2400M_BRI_SOFT = 1 << 1,
|
|
I2400M_BRI_NO_REBOOT = 1 << 2,
|
|
I2400M_BRI_MAC_REINIT = 1 << 3,
|
|
};
|
|
|
|
extern void i2400m_bm_cmd_prepare(struct i2400m_bootrom_header *);
|
|
extern int i2400m_dev_bootstrap(struct i2400m *, enum i2400m_bri);
|
|
extern int i2400m_read_mac_addr(struct i2400m *);
|
|
extern int i2400m_bootrom_init(struct i2400m *, enum i2400m_bri);
|
|
extern int i2400m_is_boot_barker(struct i2400m *, const void *, size_t);
|
|
static inline
|
|
int i2400m_is_d2h_barker(const void *buf)
|
|
{
|
|
const __le32 *barker = buf;
|
|
return le32_to_cpu(*barker) == I2400M_D2H_MSG_BARKER;
|
|
}
|
|
extern void i2400m_unknown_barker(struct i2400m *, const void *, size_t);
|
|
|
|
/* Make/grok boot-rom header commands */
|
|
|
|
static inline
|
|
__le32 i2400m_brh_command(enum i2400m_brh_opcode opcode, unsigned use_checksum,
|
|
unsigned direct_access)
|
|
{
|
|
return cpu_to_le32(
|
|
I2400M_BRH_SIGNATURE
|
|
| (direct_access ? I2400M_BRH_DIRECT_ACCESS : 0)
|
|
| I2400M_BRH_RESPONSE_REQUIRED /* response always required */
|
|
| (use_checksum ? I2400M_BRH_USE_CHECKSUM : 0)
|
|
| (opcode & I2400M_BRH_OPCODE_MASK));
|
|
}
|
|
|
|
static inline
|
|
void i2400m_brh_set_opcode(struct i2400m_bootrom_header *hdr,
|
|
enum i2400m_brh_opcode opcode)
|
|
{
|
|
hdr->command = cpu_to_le32(
|
|
(le32_to_cpu(hdr->command) & ~I2400M_BRH_OPCODE_MASK)
|
|
| (opcode & I2400M_BRH_OPCODE_MASK));
|
|
}
|
|
|
|
static inline
|
|
unsigned i2400m_brh_get_opcode(const struct i2400m_bootrom_header *hdr)
|
|
{
|
|
return le32_to_cpu(hdr->command) & I2400M_BRH_OPCODE_MASK;
|
|
}
|
|
|
|
static inline
|
|
unsigned i2400m_brh_get_response(const struct i2400m_bootrom_header *hdr)
|
|
{
|
|
return (le32_to_cpu(hdr->command) & I2400M_BRH_RESPONSE_MASK)
|
|
>> I2400M_BRH_RESPONSE_SHIFT;
|
|
}
|
|
|
|
static inline
|
|
unsigned i2400m_brh_get_use_checksum(const struct i2400m_bootrom_header *hdr)
|
|
{
|
|
return le32_to_cpu(hdr->command) & I2400M_BRH_USE_CHECKSUM;
|
|
}
|
|
|
|
static inline
|
|
unsigned i2400m_brh_get_response_required(
|
|
const struct i2400m_bootrom_header *hdr)
|
|
{
|
|
return le32_to_cpu(hdr->command) & I2400M_BRH_RESPONSE_REQUIRED;
|
|
}
|
|
|
|
static inline
|
|
unsigned i2400m_brh_get_direct_access(const struct i2400m_bootrom_header *hdr)
|
|
{
|
|
return le32_to_cpu(hdr->command) & I2400M_BRH_DIRECT_ACCESS;
|
|
}
|
|
|
|
static inline
|
|
unsigned i2400m_brh_get_signature(const struct i2400m_bootrom_header *hdr)
|
|
{
|
|
return (le32_to_cpu(hdr->command) & I2400M_BRH_SIGNATURE_MASK)
|
|
>> I2400M_BRH_SIGNATURE_SHIFT;
|
|
}
|
|
|
|
|
|
/*
|
|
* Driver / device setup and internal functions
|
|
*/
|
|
extern void i2400m_netdev_setup(struct net_device *net_dev);
|
|
extern int i2400m_sysfs_setup(struct device_driver *);
|
|
extern void i2400m_sysfs_release(struct device_driver *);
|
|
extern int i2400m_tx_setup(struct i2400m *);
|
|
extern void i2400m_wake_tx_work(struct work_struct *);
|
|
extern void i2400m_tx_release(struct i2400m *);
|
|
|
|
extern int i2400m_rx_setup(struct i2400m *);
|
|
extern void i2400m_rx_release(struct i2400m *);
|
|
|
|
extern void i2400m_net_rx(struct i2400m *, struct sk_buff *, unsigned,
|
|
const void *, int);
|
|
extern void i2400m_net_erx(struct i2400m *, struct sk_buff *,
|
|
enum i2400m_cs);
|
|
enum i2400m_pt;
|
|
extern int i2400m_tx(struct i2400m *, const void *, size_t, enum i2400m_pt);
|
|
|
|
#ifdef CONFIG_DEBUG_FS
|
|
extern int i2400m_debugfs_add(struct i2400m *);
|
|
extern void i2400m_debugfs_rm(struct i2400m *);
|
|
#else
|
|
static inline int i2400m_debugfs_add(struct i2400m *i2400m)
|
|
{
|
|
return 0;
|
|
}
|
|
static inline void i2400m_debugfs_rm(struct i2400m *i2400m) {}
|
|
#endif
|
|
|
|
/* Called by _dev_start()/_dev_stop() to initialize the device itself */
|
|
extern int i2400m_dev_initialize(struct i2400m *);
|
|
extern void i2400m_dev_shutdown(struct i2400m *);
|
|
|
|
extern struct attribute_group i2400m_dev_attr_group;
|
|
|
|
extern int i2400m_schedule_work(struct i2400m *,
|
|
void (*)(struct work_struct *), gfp_t);
|
|
|
|
/* HDI message's payload description handling */
|
|
|
|
static inline
|
|
size_t i2400m_pld_size(const struct i2400m_pld *pld)
|
|
{
|
|
return I2400M_PLD_SIZE_MASK & le32_to_cpu(pld->val);
|
|
}
|
|
|
|
static inline
|
|
enum i2400m_pt i2400m_pld_type(const struct i2400m_pld *pld)
|
|
{
|
|
return (I2400M_PLD_TYPE_MASK & le32_to_cpu(pld->val))
|
|
>> I2400M_PLD_TYPE_SHIFT;
|
|
}
|
|
|
|
static inline
|
|
void i2400m_pld_set(struct i2400m_pld *pld, size_t size,
|
|
enum i2400m_pt type)
|
|
{
|
|
pld->val = cpu_to_le32(
|
|
((type << I2400M_PLD_TYPE_SHIFT) & I2400M_PLD_TYPE_MASK)
|
|
| (size & I2400M_PLD_SIZE_MASK));
|
|
}
|
|
|
|
|
|
/*
|
|
* API for the bus-specific drivers
|
|
* --------------------------------
|
|
*/
|
|
|
|
static inline
|
|
struct i2400m *i2400m_get(struct i2400m *i2400m)
|
|
{
|
|
dev_hold(i2400m->wimax_dev.net_dev);
|
|
return i2400m;
|
|
}
|
|
|
|
static inline
|
|
void i2400m_put(struct i2400m *i2400m)
|
|
{
|
|
dev_put(i2400m->wimax_dev.net_dev);
|
|
}
|
|
|
|
extern int i2400m_dev_reset_handle(struct i2400m *);
|
|
extern int i2400m_bm_buf_alloc(struct i2400m *i2400m);
|
|
extern void i2400m_bm_buf_free(struct i2400m *i2400m);
|
|
|
|
/*
|
|
* _setup()/_release() are called by the probe/disconnect functions of
|
|
* the bus-specific drivers.
|
|
*/
|
|
extern int i2400m_setup(struct i2400m *, enum i2400m_bri bm_flags);
|
|
extern void i2400m_release(struct i2400m *);
|
|
|
|
extern int i2400m_rx(struct i2400m *, struct sk_buff *);
|
|
extern struct i2400m_msg_hdr *i2400m_tx_msg_get(struct i2400m *, size_t *);
|
|
extern void i2400m_tx_msg_sent(struct i2400m *);
|
|
|
|
extern int i2400m_power_save_disabled;
|
|
|
|
/*
|
|
* Utility functions
|
|
*/
|
|
|
|
static inline
|
|
struct device *i2400m_dev(struct i2400m *i2400m)
|
|
{
|
|
return i2400m->wimax_dev.net_dev->dev.parent;
|
|
}
|
|
|
|
/*
|
|
* Helper for scheduling simple work functions
|
|
*
|
|
* This struct can get any kind of payload attached (normally in the
|
|
* form of a struct where you pack the stuff you want to pass to the
|
|
* _work function).
|
|
*/
|
|
struct i2400m_work {
|
|
struct work_struct ws;
|
|
struct i2400m *i2400m;
|
|
u8 pl[0];
|
|
};
|
|
extern int i2400m_queue_work(struct i2400m *,
|
|
void (*)(struct work_struct *), gfp_t,
|
|
const void *, size_t);
|
|
|
|
extern int i2400m_msg_check_status(const struct i2400m_l3l4_hdr *,
|
|
char *, size_t);
|
|
extern int i2400m_msg_size_check(struct i2400m *,
|
|
const struct i2400m_l3l4_hdr *, size_t);
|
|
extern struct sk_buff *i2400m_msg_to_dev(struct i2400m *, const void *, size_t);
|
|
extern void i2400m_msg_to_dev_cancel_wait(struct i2400m *, int);
|
|
extern void i2400m_msg_ack_hook(struct i2400m *,
|
|
const struct i2400m_l3l4_hdr *, size_t);
|
|
extern void i2400m_report_hook(struct i2400m *,
|
|
const struct i2400m_l3l4_hdr *, size_t);
|
|
extern int i2400m_cmd_enter_powersave(struct i2400m *);
|
|
extern int i2400m_cmd_get_state(struct i2400m *);
|
|
extern int i2400m_cmd_exit_idle(struct i2400m *);
|
|
extern struct sk_buff *i2400m_get_device_info(struct i2400m *);
|
|
extern int i2400m_firmware_check(struct i2400m *);
|
|
extern int i2400m_set_init_config(struct i2400m *,
|
|
const struct i2400m_tlv_hdr **, size_t);
|
|
extern int i2400m_set_idle_timeout(struct i2400m *, unsigned);
|
|
|
|
static inline
|
|
struct usb_endpoint_descriptor *usb_get_epd(struct usb_interface *iface, int ep)
|
|
{
|
|
return &iface->cur_altsetting->endpoint[ep].desc;
|
|
}
|
|
|
|
extern int i2400m_op_rfkill_sw_toggle(struct wimax_dev *,
|
|
enum wimax_rf_state);
|
|
extern void i2400m_report_tlv_rf_switches_status(
|
|
struct i2400m *, const struct i2400m_tlv_rf_switches_status *);
|
|
|
|
/*
|
|
* Helpers for firmware backwards compability
|
|
*
|
|
* As we aim to support at least the firmware version that was
|
|
* released with the previous kernel/driver release, some code will be
|
|
* conditionally executed depending on the firmware version. On each
|
|
* release, the code to support fw releases past the last two ones
|
|
* will be purged.
|
|
*
|
|
* By making it depend on this macros, it is easier to keep it a tab
|
|
* on what has to go and what not.
|
|
*/
|
|
static inline
|
|
unsigned i2400m_le_v1_3(struct i2400m *i2400m)
|
|
{
|
|
/* running fw is lower or v1.3 */
|
|
return i2400m->fw_version <= 0x00090001;
|
|
}
|
|
|
|
static inline
|
|
unsigned i2400m_ge_v1_4(struct i2400m *i2400m)
|
|
{
|
|
/* running fw is higher or v1.4 */
|
|
return i2400m->fw_version >= 0x00090002;
|
|
}
|
|
|
|
|
|
/*
|
|
* Do a millisecond-sleep for allowing wireshark to dump all the data
|
|
* packets. Used only for debugging.
|
|
*/
|
|
static inline
|
|
void __i2400m_msleep(unsigned ms)
|
|
{
|
|
#if 1
|
|
#else
|
|
msleep(ms);
|
|
#endif
|
|
}
|
|
|
|
|
|
/* module initialization helpers */
|
|
extern int i2400m_barker_db_init(const char *);
|
|
extern void i2400m_barker_db_exit(void);
|
|
|
|
|
|
/* Module parameters */
|
|
|
|
extern int i2400m_idle_mode_disabled;
|
|
extern int i2400m_rx_reorder_disabled;
|
|
|
|
|
|
#endif /* #ifndef __I2400M_H__ */
|