1
linux/mm/vma.c
Lorenzo Stoakes c4d91e225f mm/vma: add expand-only VMA merge mode and optimise do_brk_flags()
Patch series "introduce VMA merge mode to improve brk() performance".

A ~5% performance regression was discovered on the
aim9.brk_test.ops_per_sec by the linux kernel test bot [0].

In the past to satisfy brk() performance we duplicated VMA expansion code
and special-cased do_brk_flags().  This is however horrid and undoes work
to abstract this logic, so in resolving the issue I have endeavoured to
avoid this.

Investigating further I was able to observe that the use of a
vma_iter_next_range() and vma_prev() pair, causing an unnecessary maple
tree walk.  In addition there is work that we do that is simply
unnecessary for brk().

Therefore, add a special VMA merge mode VMG_FLAG_JUST_EXPAND to avoid
doing any of this - it assumes the VMA iterator is pointing at the
previous VMA and which skips logic that brk() does not require.

This mostly eliminates the performance regression reducing it to ~2% which
is in the realm of noise.  In addition, the will-it-scale test brk2,
written to be more representative of real-world brk() usage, shows a
modest performance improvement - which gives me confidence that we are not
meaningfully regressing real workloads here.

This series includes a test asserting that the 'just expand' mode works as
expected.

With many thanks to Oliver Sang for helping with performance testing of
candidate patch sets!

[0]:https://lore.kernel.org/linux-mm/202409301043.629bea78-oliver.sang@intel.com


This patch (of 2):

We know in advance that do_brk_flags() wants only to perform a VMA
expansion (if the prior VMA is compatible), and that we assume no
mergeable VMA follows it.

These are the semantics of this function prior to the recent rewrite of
the VMA merging logic, however we are now doing more work than necessary -
positioning the VMA iterator at the prior VMA and performing tasks that
are not required.

Add a new field to the vmg struct to permit merge flags and add a new
merge flag VMG_FLAG_JUST_EXPAND which implies this behaviour, and have
do_brk_flags() use this.

This fixes a reported performance regression in a brk() benchmarking suite.

Link: https://lkml.kernel.org/r/cover.1729174352.git.lorenzo.stoakes@oracle.com
Link: https://lkml.kernel.org/r/4e65d4395e5841c5acf8470dbcb714016364fd39.1729174352.git.lorenzo.stoakes@oracle.com
Fixes: cacded5e42 ("mm: avoid using vma_merge() for new VMAs")
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/linux-mm/202409301043.629bea78-oliver.sang@intel.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Jann Horn <jannh@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-10-28 21:40:40 -07:00

2076 lines
57 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* VMA-specific functions.
*/
#include "vma_internal.h"
#include "vma.h"
static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
{
struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
if (!mpol_equal(vmg->policy, vma_policy(vma)))
return false;
/*
* VM_SOFTDIRTY should not prevent from VMA merging, if we
* match the flags but dirty bit -- the caller should mark
* merged VMA as dirty. If dirty bit won't be excluded from
* comparison, we increase pressure on the memory system forcing
* the kernel to generate new VMAs when old one could be
* extended instead.
*/
if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY)
return false;
if (vma->vm_file != vmg->file)
return false;
if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
return false;
if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
return false;
return true;
}
static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
struct anon_vma *anon_vma2, struct vm_area_struct *vma)
{
/*
* The list_is_singular() test is to avoid merging VMA cloned from
* parents. This can improve scalability caused by anon_vma lock.
*/
if ((!anon_vma1 || !anon_vma2) && (!vma ||
list_is_singular(&vma->anon_vma_chain)))
return true;
return anon_vma1 == anon_vma2;
}
/* Are the anon_vma's belonging to each VMA compatible with one another? */
static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1,
struct vm_area_struct *vma2)
{
return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL);
}
/*
* init_multi_vma_prep() - Initializer for struct vma_prepare
* @vp: The vma_prepare struct
* @vma: The vma that will be altered once locked
* @next: The next vma if it is to be adjusted
* @remove: The first vma to be removed
* @remove2: The second vma to be removed
*/
static void init_multi_vma_prep(struct vma_prepare *vp,
struct vm_area_struct *vma,
struct vm_area_struct *next,
struct vm_area_struct *remove,
struct vm_area_struct *remove2)
{
memset(vp, 0, sizeof(struct vma_prepare));
vp->vma = vma;
vp->anon_vma = vma->anon_vma;
vp->remove = remove;
vp->remove2 = remove2;
vp->adj_next = next;
if (!vp->anon_vma && next)
vp->anon_vma = next->anon_vma;
vp->file = vma->vm_file;
if (vp->file)
vp->mapping = vma->vm_file->f_mapping;
}
/*
* Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
* in front of (at a lower virtual address and file offset than) the vma.
*
* We cannot merge two vmas if they have differently assigned (non-NULL)
* anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
*
* We don't check here for the merged mmap wrapping around the end of pagecache
* indices (16TB on ia32) because do_mmap() does not permit mmap's which
* wrap, nor mmaps which cover the final page at index -1UL.
*
* We assume the vma may be removed as part of the merge.
*/
static bool can_vma_merge_before(struct vma_merge_struct *vmg)
{
pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) {
if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
return true;
}
return false;
}
/*
* Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
* beyond (at a higher virtual address and file offset than) the vma.
*
* We cannot merge two vmas if they have differently assigned (non-NULL)
* anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
*
* We assume that vma is not removed as part of the merge.
*/
static bool can_vma_merge_after(struct vma_merge_struct *vmg)
{
if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) {
if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
return true;
}
return false;
}
static void __vma_link_file(struct vm_area_struct *vma,
struct address_space *mapping)
{
if (vma_is_shared_maywrite(vma))
mapping_allow_writable(mapping);
flush_dcache_mmap_lock(mapping);
vma_interval_tree_insert(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
}
/*
* Requires inode->i_mapping->i_mmap_rwsem
*/
static void __remove_shared_vm_struct(struct vm_area_struct *vma,
struct address_space *mapping)
{
if (vma_is_shared_maywrite(vma))
mapping_unmap_writable(mapping);
flush_dcache_mmap_lock(mapping);
vma_interval_tree_remove(vma, &mapping->i_mmap);
flush_dcache_mmap_unlock(mapping);
}
/*
* vma_prepare() - Helper function for handling locking VMAs prior to altering
* @vp: The initialized vma_prepare struct
*/
static void vma_prepare(struct vma_prepare *vp)
{
if (vp->file) {
uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
if (vp->adj_next)
uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
vp->adj_next->vm_end);
i_mmap_lock_write(vp->mapping);
if (vp->insert && vp->insert->vm_file) {
/*
* Put into interval tree now, so instantiated pages
* are visible to arm/parisc __flush_dcache_page
* throughout; but we cannot insert into address
* space until vma start or end is updated.
*/
__vma_link_file(vp->insert,
vp->insert->vm_file->f_mapping);
}
}
if (vp->anon_vma) {
anon_vma_lock_write(vp->anon_vma);
anon_vma_interval_tree_pre_update_vma(vp->vma);
if (vp->adj_next)
anon_vma_interval_tree_pre_update_vma(vp->adj_next);
}
if (vp->file) {
flush_dcache_mmap_lock(vp->mapping);
vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
if (vp->adj_next)
vma_interval_tree_remove(vp->adj_next,
&vp->mapping->i_mmap);
}
}
/*
* vma_complete- Helper function for handling the unlocking after altering VMAs,
* or for inserting a VMA.
*
* @vp: The vma_prepare struct
* @vmi: The vma iterator
* @mm: The mm_struct
*/
static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
struct mm_struct *mm)
{
if (vp->file) {
if (vp->adj_next)
vma_interval_tree_insert(vp->adj_next,
&vp->mapping->i_mmap);
vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
flush_dcache_mmap_unlock(vp->mapping);
}
if (vp->remove && vp->file) {
__remove_shared_vm_struct(vp->remove, vp->mapping);
if (vp->remove2)
__remove_shared_vm_struct(vp->remove2, vp->mapping);
} else if (vp->insert) {
/*
* split_vma has split insert from vma, and needs
* us to insert it before dropping the locks
* (it may either follow vma or precede it).
*/
vma_iter_store(vmi, vp->insert);
mm->map_count++;
}
if (vp->anon_vma) {
anon_vma_interval_tree_post_update_vma(vp->vma);
if (vp->adj_next)
anon_vma_interval_tree_post_update_vma(vp->adj_next);
anon_vma_unlock_write(vp->anon_vma);
}
if (vp->file) {
i_mmap_unlock_write(vp->mapping);
uprobe_mmap(vp->vma);
if (vp->adj_next)
uprobe_mmap(vp->adj_next);
}
if (vp->remove) {
again:
vma_mark_detached(vp->remove, true);
if (vp->file) {
uprobe_munmap(vp->remove, vp->remove->vm_start,
vp->remove->vm_end);
fput(vp->file);
}
if (vp->remove->anon_vma)
anon_vma_merge(vp->vma, vp->remove);
mm->map_count--;
mpol_put(vma_policy(vp->remove));
if (!vp->remove2)
WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
vm_area_free(vp->remove);
/*
* In mprotect's case 6 (see comments on vma_merge),
* we are removing both mid and next vmas
*/
if (vp->remove2) {
vp->remove = vp->remove2;
vp->remove2 = NULL;
goto again;
}
}
if (vp->insert && vp->file)
uprobe_mmap(vp->insert);
}
/*
* init_vma_prep() - Initializer wrapper for vma_prepare struct
* @vp: The vma_prepare struct
* @vma: The vma that will be altered once locked
*/
static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
{
init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
}
/*
* Can the proposed VMA be merged with the left (previous) VMA taking into
* account the start position of the proposed range.
*/
static bool can_vma_merge_left(struct vma_merge_struct *vmg)
{
return vmg->prev && vmg->prev->vm_end == vmg->start &&
can_vma_merge_after(vmg);
}
/*
* Can the proposed VMA be merged with the right (next) VMA taking into
* account the end position of the proposed range.
*
* In addition, if we can merge with the left VMA, ensure that left and right
* anon_vma's are also compatible.
*/
static bool can_vma_merge_right(struct vma_merge_struct *vmg,
bool can_merge_left)
{
if (!vmg->next || vmg->end != vmg->next->vm_start ||
!can_vma_merge_before(vmg))
return false;
if (!can_merge_left)
return true;
/*
* If we can merge with prev (left) and next (right), indicating that
* each VMA's anon_vma is compatible with the proposed anon_vma, this
* does not mean prev and next are compatible with EACH OTHER.
*
* We therefore check this in addition to mergeability to either side.
*/
return are_anon_vmas_compatible(vmg->prev, vmg->next);
}
/*
* Close a vm structure and free it.
*/
void remove_vma(struct vm_area_struct *vma, bool unreachable, bool closed)
{
might_sleep();
if (!closed && vma->vm_ops && vma->vm_ops->close)
vma->vm_ops->close(vma);
if (vma->vm_file)
fput(vma->vm_file);
mpol_put(vma_policy(vma));
if (unreachable)
__vm_area_free(vma);
else
vm_area_free(vma);
}
/*
* Get rid of page table information in the indicated region.
*
* Called with the mm semaphore held.
*/
void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
struct vm_area_struct *prev, struct vm_area_struct *next)
{
struct mm_struct *mm = vma->vm_mm;
struct mmu_gather tlb;
lru_add_drain();
tlb_gather_mmu(&tlb, mm);
update_hiwater_rss(mm);
unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end,
/* mm_wr_locked = */ true);
mas_set(mas, vma->vm_end);
free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
next ? next->vm_start : USER_PGTABLES_CEILING,
/* mm_wr_locked = */ true);
tlb_finish_mmu(&tlb);
}
/*
* __split_vma() bypasses sysctl_max_map_count checking. We use this where it
* has already been checked or doesn't make sense to fail.
* VMA Iterator will point to the original VMA.
*/
static int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
unsigned long addr, int new_below)
{
struct vma_prepare vp;
struct vm_area_struct *new;
int err;
WARN_ON(vma->vm_start >= addr);
WARN_ON(vma->vm_end <= addr);
if (vma->vm_ops && vma->vm_ops->may_split) {
err = vma->vm_ops->may_split(vma, addr);
if (err)
return err;
}
new = vm_area_dup(vma);
if (!new)
return -ENOMEM;
if (new_below) {
new->vm_end = addr;
} else {
new->vm_start = addr;
new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
}
err = -ENOMEM;
vma_iter_config(vmi, new->vm_start, new->vm_end);
if (vma_iter_prealloc(vmi, new))
goto out_free_vma;
err = vma_dup_policy(vma, new);
if (err)
goto out_free_vmi;
err = anon_vma_clone(new, vma);
if (err)
goto out_free_mpol;
if (new->vm_file)
get_file(new->vm_file);
if (new->vm_ops && new->vm_ops->open)
new->vm_ops->open(new);
vma_start_write(vma);
vma_start_write(new);
init_vma_prep(&vp, vma);
vp.insert = new;
vma_prepare(&vp);
vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
if (new_below) {
vma->vm_start = addr;
vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
} else {
vma->vm_end = addr;
}
/* vma_complete stores the new vma */
vma_complete(&vp, vmi, vma->vm_mm);
validate_mm(vma->vm_mm);
/* Success. */
if (new_below)
vma_next(vmi);
else
vma_prev(vmi);
return 0;
out_free_mpol:
mpol_put(vma_policy(new));
out_free_vmi:
vma_iter_free(vmi);
out_free_vma:
vm_area_free(new);
return err;
}
/*
* Split a vma into two pieces at address 'addr', a new vma is allocated
* either for the first part or the tail.
*/
static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
unsigned long addr, int new_below)
{
if (vma->vm_mm->map_count >= sysctl_max_map_count)
return -ENOMEM;
return __split_vma(vmi, vma, addr, new_below);
}
/*
* vma has some anon_vma assigned, and is already inserted on that
* anon_vma's interval trees.
*
* Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
* vma must be removed from the anon_vma's interval trees using
* anon_vma_interval_tree_pre_update_vma().
*
* After the update, the vma will be reinserted using
* anon_vma_interval_tree_post_update_vma().
*
* The entire update must be protected by exclusive mmap_lock and by
* the root anon_vma's mutex.
*/
void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
{
struct anon_vma_chain *avc;
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
}
void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
{
struct anon_vma_chain *avc;
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
}
/*
* dup_anon_vma() - Helper function to duplicate anon_vma
* @dst: The destination VMA
* @src: The source VMA
* @dup: Pointer to the destination VMA when successful.
*
* Returns: 0 on success.
*/
static int dup_anon_vma(struct vm_area_struct *dst,
struct vm_area_struct *src, struct vm_area_struct **dup)
{
/*
* Easily overlooked: when mprotect shifts the boundary, make sure the
* expanding vma has anon_vma set if the shrinking vma had, to cover any
* anon pages imported.
*/
if (src->anon_vma && !dst->anon_vma) {
int ret;
vma_assert_write_locked(dst);
dst->anon_vma = src->anon_vma;
ret = anon_vma_clone(dst, src);
if (ret)
return ret;
*dup = dst;
}
return 0;
}
#ifdef CONFIG_DEBUG_VM_MAPLE_TREE
void validate_mm(struct mm_struct *mm)
{
int bug = 0;
int i = 0;
struct vm_area_struct *vma;
VMA_ITERATOR(vmi, mm, 0);
mt_validate(&mm->mm_mt);
for_each_vma(vmi, vma) {
#ifdef CONFIG_DEBUG_VM_RB
struct anon_vma *anon_vma = vma->anon_vma;
struct anon_vma_chain *avc;
#endif
unsigned long vmi_start, vmi_end;
bool warn = 0;
vmi_start = vma_iter_addr(&vmi);
vmi_end = vma_iter_end(&vmi);
if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
warn = 1;
if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
warn = 1;
if (warn) {
pr_emerg("issue in %s\n", current->comm);
dump_stack();
dump_vma(vma);
pr_emerg("tree range: %px start %lx end %lx\n", vma,
vmi_start, vmi_end - 1);
vma_iter_dump_tree(&vmi);
}
#ifdef CONFIG_DEBUG_VM_RB
if (anon_vma) {
anon_vma_lock_read(anon_vma);
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
anon_vma_interval_tree_verify(avc);
anon_vma_unlock_read(anon_vma);
}
#endif
i++;
}
if (i != mm->map_count) {
pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
bug = 1;
}
VM_BUG_ON_MM(bug, mm);
}
#endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
/* Actually perform the VMA merge operation. */
static int commit_merge(struct vma_merge_struct *vmg,
struct vm_area_struct *adjust,
struct vm_area_struct *remove,
struct vm_area_struct *remove2,
long adj_start,
bool expanded)
{
struct vma_prepare vp;
init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2);
VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
vp.anon_vma != adjust->anon_vma);
if (expanded) {
/* Note: vma iterator must be pointing to 'start'. */
vma_iter_config(vmg->vmi, vmg->start, vmg->end);
} else {
vma_iter_config(vmg->vmi, adjust->vm_start + adj_start,
adjust->vm_end);
}
if (vma_iter_prealloc(vmg->vmi, vmg->vma))
return -ENOMEM;
vma_prepare(&vp);
vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start);
vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff);
if (expanded)
vma_iter_store(vmg->vmi, vmg->vma);
if (adj_start) {
adjust->vm_start += adj_start;
adjust->vm_pgoff += PHYS_PFN(adj_start);
if (adj_start < 0) {
WARN_ON(expanded);
vma_iter_store(vmg->vmi, adjust);
}
}
vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm);
return 0;
}
/* We can only remove VMAs when merging if they do not have a close hook. */
static bool can_merge_remove_vma(struct vm_area_struct *vma)
{
return !vma->vm_ops || !vma->vm_ops->close;
}
/*
* vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
* attributes modified.
*
* @vmg: Describes the modifications being made to a VMA and associated
* metadata.
*
* When the attributes of a range within a VMA change, then it might be possible
* for immediately adjacent VMAs to be merged into that VMA due to having
* identical properties.
*
* This function checks for the existence of any such mergeable VMAs and updates
* the maple tree describing the @vmg->vma->vm_mm address space to account for
* this, as well as any VMAs shrunk/expanded/deleted as a result of this merge.
*
* As part of this operation, if a merge occurs, the @vmg object will have its
* vma, start, end, and pgoff fields modified to execute the merge. Subsequent
* calls to this function should reset these fields.
*
* Returns: The merged VMA if merge succeeds, or NULL otherwise.
*
* ASSUMPTIONS:
* - The caller must assign the VMA to be modifed to @vmg->vma.
* - The caller must have set @vmg->prev to the previous VMA, if there is one.
* - The caller must not set @vmg->next, as we determine this.
* - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
* - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end).
*/
static struct vm_area_struct *vma_merge_existing_range(struct vma_merge_struct *vmg)
{
struct vm_area_struct *vma = vmg->vma;
struct vm_area_struct *prev = vmg->prev;
struct vm_area_struct *next, *res;
struct vm_area_struct *anon_dup = NULL;
struct vm_area_struct *adjust = NULL;
unsigned long start = vmg->start;
unsigned long end = vmg->end;
bool left_side = vma && start == vma->vm_start;
bool right_side = vma && end == vma->vm_end;
int err = 0;
long adj_start = 0;
bool merge_will_delete_vma, merge_will_delete_next;
bool merge_left, merge_right, merge_both;
bool expanded;
mmap_assert_write_locked(vmg->mm);
VM_WARN_ON(!vma); /* We are modifying a VMA, so caller must specify. */
VM_WARN_ON(vmg->next); /* We set this. */
VM_WARN_ON(prev && start <= prev->vm_start);
VM_WARN_ON(start >= end);
/*
* If vma == prev, then we are offset into a VMA. Otherwise, if we are
* not, we must span a portion of the VMA.
*/
VM_WARN_ON(vma && ((vma != prev && vmg->start != vma->vm_start) ||
vmg->end > vma->vm_end));
/* The vmi must be positioned within vmg->vma. */
VM_WARN_ON(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start &&
vma_iter_addr(vmg->vmi) < vma->vm_end));
vmg->state = VMA_MERGE_NOMERGE;
/*
* If a special mapping or if the range being modified is neither at the
* furthermost left or right side of the VMA, then we have no chance of
* merging and should abort.
*/
if (vmg->flags & VM_SPECIAL || (!left_side && !right_side))
return NULL;
if (left_side)
merge_left = can_vma_merge_left(vmg);
else
merge_left = false;
if (right_side) {
next = vmg->next = vma_iter_next_range(vmg->vmi);
vma_iter_prev_range(vmg->vmi);
merge_right = can_vma_merge_right(vmg, merge_left);
} else {
merge_right = false;
next = NULL;
}
if (merge_left) /* If merging prev, position iterator there. */
vma_prev(vmg->vmi);
else if (!merge_right) /* If we have nothing to merge, abort. */
return NULL;
merge_both = merge_left && merge_right;
/* If we span the entire VMA, a merge implies it will be deleted. */
merge_will_delete_vma = left_side && right_side;
/*
* If we need to remove vma in its entirety but are unable to do so,
* we have no sensible recourse but to abort the merge.
*/
if (merge_will_delete_vma && !can_merge_remove_vma(vma))
return NULL;
/*
* If we merge both VMAs, then next is also deleted. This implies
* merge_will_delete_vma also.
*/
merge_will_delete_next = merge_both;
/*
* If we cannot delete next, then we can reduce the operation to merging
* prev and vma (thereby deleting vma).
*/
if (merge_will_delete_next && !can_merge_remove_vma(next)) {
merge_will_delete_next = false;
merge_right = false;
merge_both = false;
}
/* No matter what happens, we will be adjusting vma. */
vma_start_write(vma);
if (merge_left)
vma_start_write(prev);
if (merge_right)
vma_start_write(next);
if (merge_both) {
/*
* |<----->|
* |-------*********-------|
* prev vma next
* extend delete delete
*/
vmg->vma = prev;
vmg->start = prev->vm_start;
vmg->end = next->vm_end;
vmg->pgoff = prev->vm_pgoff;
/*
* We already ensured anon_vma compatibility above, so now it's
* simply a case of, if prev has no anon_vma object, which of
* next or vma contains the anon_vma we must duplicate.
*/
err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup);
} else if (merge_left) {
/*
* |<----->| OR
* |<--------->|
* |-------*************
* prev vma
* extend shrink/delete
*/
vmg->vma = prev;
vmg->start = prev->vm_start;
vmg->pgoff = prev->vm_pgoff;
if (!merge_will_delete_vma) {
adjust = vma;
adj_start = vmg->end - vma->vm_start;
}
err = dup_anon_vma(prev, vma, &anon_dup);
} else { /* merge_right */
/*
* |<----->| OR
* |<--------->|
* *************-------|
* vma next
* shrink/delete extend
*/
pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
VM_WARN_ON(!merge_right);
/* If we are offset into a VMA, then prev must be vma. */
VM_WARN_ON(vmg->start > vma->vm_start && prev && vma != prev);
if (merge_will_delete_vma) {
vmg->vma = next;
vmg->end = next->vm_end;
vmg->pgoff = next->vm_pgoff - pglen;
} else {
/*
* We shrink vma and expand next.
*
* IMPORTANT: This is the ONLY case where the final
* merged VMA is NOT vmg->vma, but rather vmg->next.
*/
vmg->start = vma->vm_start;
vmg->end = start;
vmg->pgoff = vma->vm_pgoff;
adjust = next;
adj_start = -(vma->vm_end - start);
}
err = dup_anon_vma(next, vma, &anon_dup);
}
if (err)
goto abort;
/*
* In nearly all cases, we expand vmg->vma. There is one exception -
* merge_right where we partially span the VMA. In this case we shrink
* the end of vmg->vma and adjust the start of vmg->next accordingly.
*/
expanded = !merge_right || merge_will_delete_vma;
if (commit_merge(vmg, adjust,
merge_will_delete_vma ? vma : NULL,
merge_will_delete_next ? next : NULL,
adj_start, expanded)) {
if (anon_dup)
unlink_anon_vmas(anon_dup);
vmg->state = VMA_MERGE_ERROR_NOMEM;
return NULL;
}
res = merge_left ? prev : next;
khugepaged_enter_vma(res, vmg->flags);
vmg->state = VMA_MERGE_SUCCESS;
return res;
abort:
vma_iter_set(vmg->vmi, start);
vma_iter_load(vmg->vmi);
vmg->state = VMA_MERGE_ERROR_NOMEM;
return NULL;
}
/*
* vma_merge_new_range - Attempt to merge a new VMA into address space
*
* @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
* (exclusive), which we try to merge with any adjacent VMAs if possible.
*
* We are about to add a VMA to the address space starting at @vmg->start and
* ending at @vmg->end. There are three different possible scenarios:
*
* 1. There is a VMA with identical properties immediately adjacent to the
* proposed new VMA [@vmg->start, @vmg->end) either before or after it -
* EXPAND that VMA:
*
* Proposed: |-----| or |-----|
* Existing: |----| |----|
*
* 2. There are VMAs with identical properties immediately adjacent to the
* proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
* EXPAND the former and REMOVE the latter:
*
* Proposed: |-----|
* Existing: |----| |----|
*
* 3. There are no VMAs immediately adjacent to the proposed new VMA or those
* VMAs do not have identical attributes - NO MERGE POSSIBLE.
*
* In instances where we can merge, this function returns the expanded VMA which
* will have its range adjusted accordingly and the underlying maple tree also
* adjusted.
*
* Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
* to the VMA we expanded.
*
* This function adjusts @vmg to provide @vmg->next if not already specified,
* and adjusts [@vmg->start, @vmg->end) to span the expanded range.
*
* ASSUMPTIONS:
* - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
* - The caller must have determined that [@vmg->start, @vmg->end) is empty,
other than VMAs that will be unmapped should the operation succeed.
* - The caller must have specified the previous vma in @vmg->prev.
* - The caller must have specified the next vma in @vmg->next.
* - The caller must have positioned the vmi at or before the gap.
*/
struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
{
struct vm_area_struct *prev = vmg->prev;
struct vm_area_struct *next = vmg->next;
unsigned long start = vmg->start;
unsigned long end = vmg->end;
pgoff_t pgoff = vmg->pgoff;
pgoff_t pglen = PHYS_PFN(end - start);
bool can_merge_left, can_merge_right;
bool just_expand = vmg->merge_flags & VMG_FLAG_JUST_EXPAND;
mmap_assert_write_locked(vmg->mm);
VM_WARN_ON(vmg->vma);
/* vmi must point at or before the gap. */
VM_WARN_ON(vma_iter_addr(vmg->vmi) > end);
vmg->state = VMA_MERGE_NOMERGE;
/* Special VMAs are unmergeable, also if no prev/next. */
if ((vmg->flags & VM_SPECIAL) || (!prev && !next))
return NULL;
can_merge_left = can_vma_merge_left(vmg);
can_merge_right = !just_expand && can_vma_merge_right(vmg, can_merge_left);
/* If we can merge with the next VMA, adjust vmg accordingly. */
if (can_merge_right) {
vmg->end = next->vm_end;
vmg->vma = next;
vmg->pgoff = next->vm_pgoff - pglen;
}
/* If we can merge with the previous VMA, adjust vmg accordingly. */
if (can_merge_left) {
vmg->start = prev->vm_start;
vmg->vma = prev;
vmg->pgoff = prev->vm_pgoff;
/*
* If this merge would result in removal of the next VMA but we
* are not permitted to do so, reduce the operation to merging
* prev and vma.
*/
if (can_merge_right && !can_merge_remove_vma(next))
vmg->end = end;
/* In expand-only case we are already positioned at prev. */
if (!just_expand) {
/* Equivalent to going to the previous range. */
vma_prev(vmg->vmi);
}
}
/*
* Now try to expand adjacent VMA(s). This takes care of removing the
* following VMA if we have VMAs on both sides.
*/
if (vmg->vma && !vma_expand(vmg)) {
khugepaged_enter_vma(vmg->vma, vmg->flags);
vmg->state = VMA_MERGE_SUCCESS;
return vmg->vma;
}
/* If expansion failed, reset state. Allows us to retry merge later. */
if (!just_expand) {
vmg->vma = NULL;
vmg->start = start;
vmg->end = end;
vmg->pgoff = pgoff;
if (vmg->vma == prev)
vma_iter_set(vmg->vmi, start);
}
return NULL;
}
/*
* vma_expand - Expand an existing VMA
*
* @vmg: Describes a VMA expansion operation.
*
* Expand @vma to vmg->start and vmg->end. Can expand off the start and end.
* Will expand over vmg->next if it's different from vmg->vma and vmg->end ==
* vmg->next->vm_end. Checking if the vmg->vma can expand and merge with
* vmg->next needs to be handled by the caller.
*
* Returns: 0 on success.
*
* ASSUMPTIONS:
* - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock.
* - The caller must have set @vmg->vma and @vmg->next.
*/
int vma_expand(struct vma_merge_struct *vmg)
{
struct vm_area_struct *anon_dup = NULL;
bool remove_next = false;
struct vm_area_struct *vma = vmg->vma;
struct vm_area_struct *next = vmg->next;
mmap_assert_write_locked(vmg->mm);
vma_start_write(vma);
if (next && (vma != next) && (vmg->end == next->vm_end)) {
int ret;
remove_next = true;
/* This should already have been checked by this point. */
VM_WARN_ON(!can_merge_remove_vma(next));
vma_start_write(next);
ret = dup_anon_vma(vma, next, &anon_dup);
if (ret)
return ret;
}
/* Not merging but overwriting any part of next is not handled. */
VM_WARN_ON(next && !remove_next &&
next != vma && vmg->end > next->vm_start);
/* Only handles expanding */
VM_WARN_ON(vma->vm_start < vmg->start || vma->vm_end > vmg->end);
if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true))
goto nomem;
return 0;
nomem:
vmg->state = VMA_MERGE_ERROR_NOMEM;
if (anon_dup)
unlink_anon_vmas(anon_dup);
return -ENOMEM;
}
/*
* vma_shrink() - Reduce an existing VMAs memory area
* @vmi: The vma iterator
* @vma: The VMA to modify
* @start: The new start
* @end: The new end
*
* Returns: 0 on success, -ENOMEM otherwise
*/
int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
unsigned long start, unsigned long end, pgoff_t pgoff)
{
struct vma_prepare vp;
WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
if (vma->vm_start < start)
vma_iter_config(vmi, vma->vm_start, start);
else
vma_iter_config(vmi, end, vma->vm_end);
if (vma_iter_prealloc(vmi, NULL))
return -ENOMEM;
vma_start_write(vma);
init_vma_prep(&vp, vma);
vma_prepare(&vp);
vma_adjust_trans_huge(vma, start, end, 0);
vma_iter_clear(vmi);
vma_set_range(vma, start, end, pgoff);
vma_complete(&vp, vmi, vma->vm_mm);
validate_mm(vma->vm_mm);
return 0;
}
static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
struct ma_state *mas_detach, bool mm_wr_locked)
{
struct mmu_gather tlb;
if (!vms->clear_ptes) /* Nothing to do */
return;
/*
* We can free page tables without write-locking mmap_lock because VMAs
* were isolated before we downgraded mmap_lock.
*/
mas_set(mas_detach, 1);
lru_add_drain();
tlb_gather_mmu(&tlb, vms->vma->vm_mm);
update_hiwater_rss(vms->vma->vm_mm);
unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
vms->vma_count, mm_wr_locked);
mas_set(mas_detach, 1);
/* start and end may be different if there is no prev or next vma. */
free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
vms->unmap_end, mm_wr_locked);
tlb_finish_mmu(&tlb);
vms->clear_ptes = false;
}
void vms_clean_up_area(struct vma_munmap_struct *vms,
struct ma_state *mas_detach)
{
struct vm_area_struct *vma;
if (!vms->nr_pages)
return;
vms_clear_ptes(vms, mas_detach, true);
mas_set(mas_detach, 0);
mas_for_each(mas_detach, vma, ULONG_MAX)
if (vma->vm_ops && vma->vm_ops->close)
vma->vm_ops->close(vma);
vms->closed_vm_ops = true;
}
/*
* vms_complete_munmap_vmas() - Finish the munmap() operation
* @vms: The vma munmap struct
* @mas_detach: The maple state of the detached vmas
*
* This updates the mm_struct, unmaps the region, frees the resources
* used for the munmap() and may downgrade the lock - if requested. Everything
* needed to be done once the vma maple tree is updated.
*/
void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
struct ma_state *mas_detach)
{
struct vm_area_struct *vma;
struct mm_struct *mm;
mm = current->mm;
mm->map_count -= vms->vma_count;
mm->locked_vm -= vms->locked_vm;
if (vms->unlock)
mmap_write_downgrade(mm);
if (!vms->nr_pages)
return;
vms_clear_ptes(vms, mas_detach, !vms->unlock);
/* Update high watermark before we lower total_vm */
update_hiwater_vm(mm);
/* Stat accounting */
WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
/* Paranoid bookkeeping */
VM_WARN_ON(vms->exec_vm > mm->exec_vm);
VM_WARN_ON(vms->stack_vm > mm->stack_vm);
VM_WARN_ON(vms->data_vm > mm->data_vm);
mm->exec_vm -= vms->exec_vm;
mm->stack_vm -= vms->stack_vm;
mm->data_vm -= vms->data_vm;
/* Remove and clean up vmas */
mas_set(mas_detach, 0);
mas_for_each(mas_detach, vma, ULONG_MAX)
remove_vma(vma, /* = */ false, vms->closed_vm_ops);
vm_unacct_memory(vms->nr_accounted);
validate_mm(mm);
if (vms->unlock)
mmap_read_unlock(mm);
__mt_destroy(mas_detach->tree);
}
/*
* vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
* for removal at a later date. Handles splitting first and last if necessary
* and marking the vmas as isolated.
*
* @vms: The vma munmap struct
* @mas_detach: The maple state tracking the detached tree
*
* Return: 0 on success, error otherwise
*/
int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
struct ma_state *mas_detach)
{
struct vm_area_struct *next = NULL;
int error;
/*
* If we need to split any vma, do it now to save pain later.
* Does it split the first one?
*/
if (vms->start > vms->vma->vm_start) {
/*
* Make sure that map_count on return from munmap() will
* not exceed its limit; but let map_count go just above
* its limit temporarily, to help free resources as expected.
*/
if (vms->end < vms->vma->vm_end &&
vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
error = -ENOMEM;
goto map_count_exceeded;
}
/* Don't bother splitting the VMA if we can't unmap it anyway */
if (!can_modify_vma(vms->vma)) {
error = -EPERM;
goto start_split_failed;
}
error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
if (error)
goto start_split_failed;
}
vms->prev = vma_prev(vms->vmi);
if (vms->prev)
vms->unmap_start = vms->prev->vm_end;
/*
* Detach a range of VMAs from the mm. Using next as a temp variable as
* it is always overwritten.
*/
for_each_vma_range(*(vms->vmi), next, vms->end) {
long nrpages;
if (!can_modify_vma(next)) {
error = -EPERM;
goto modify_vma_failed;
}
/* Does it split the end? */
if (next->vm_end > vms->end) {
error = __split_vma(vms->vmi, next, vms->end, 0);
if (error)
goto end_split_failed;
}
vma_start_write(next);
mas_set(mas_detach, vms->vma_count++);
error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
if (error)
goto munmap_gather_failed;
vma_mark_detached(next, true);
nrpages = vma_pages(next);
vms->nr_pages += nrpages;
if (next->vm_flags & VM_LOCKED)
vms->locked_vm += nrpages;
if (next->vm_flags & VM_ACCOUNT)
vms->nr_accounted += nrpages;
if (is_exec_mapping(next->vm_flags))
vms->exec_vm += nrpages;
else if (is_stack_mapping(next->vm_flags))
vms->stack_vm += nrpages;
else if (is_data_mapping(next->vm_flags))
vms->data_vm += nrpages;
if (unlikely(vms->uf)) {
/*
* If userfaultfd_unmap_prep returns an error the vmas
* will remain split, but userland will get a
* highly unexpected error anyway. This is no
* different than the case where the first of the two
* __split_vma fails, but we don't undo the first
* split, despite we could. This is unlikely enough
* failure that it's not worth optimizing it for.
*/
error = userfaultfd_unmap_prep(next, vms->start,
vms->end, vms->uf);
if (error)
goto userfaultfd_error;
}
#ifdef CONFIG_DEBUG_VM_MAPLE_TREE
BUG_ON(next->vm_start < vms->start);
BUG_ON(next->vm_start > vms->end);
#endif
}
vms->next = vma_next(vms->vmi);
if (vms->next)
vms->unmap_end = vms->next->vm_start;
#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
/* Make sure no VMAs are about to be lost. */
{
MA_STATE(test, mas_detach->tree, 0, 0);
struct vm_area_struct *vma_mas, *vma_test;
int test_count = 0;
vma_iter_set(vms->vmi, vms->start);
rcu_read_lock();
vma_test = mas_find(&test, vms->vma_count - 1);
for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
BUG_ON(vma_mas != vma_test);
test_count++;
vma_test = mas_next(&test, vms->vma_count - 1);
}
rcu_read_unlock();
BUG_ON(vms->vma_count != test_count);
}
#endif
while (vma_iter_addr(vms->vmi) > vms->start)
vma_iter_prev_range(vms->vmi);
vms->clear_ptes = true;
return 0;
userfaultfd_error:
munmap_gather_failed:
end_split_failed:
modify_vma_failed:
reattach_vmas(mas_detach);
start_split_failed:
map_count_exceeded:
return error;
}
/*
* do_vmi_align_munmap() - munmap the aligned region from @start to @end.
* @vmi: The vma iterator
* @vma: The starting vm_area_struct
* @mm: The mm_struct
* @start: The aligned start address to munmap.
* @end: The aligned end address to munmap.
* @uf: The userfaultfd list_head
* @unlock: Set to true to drop the mmap_lock. unlocking only happens on
* success.
*
* Return: 0 on success and drops the lock if so directed, error and leaves the
* lock held otherwise.
*/
int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
struct mm_struct *mm, unsigned long start, unsigned long end,
struct list_head *uf, bool unlock)
{
struct maple_tree mt_detach;
MA_STATE(mas_detach, &mt_detach, 0, 0);
mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
mt_on_stack(mt_detach);
struct vma_munmap_struct vms;
int error;
init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
error = vms_gather_munmap_vmas(&vms, &mas_detach);
if (error)
goto gather_failed;
error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
if (error)
goto clear_tree_failed;
/* Point of no return */
vms_complete_munmap_vmas(&vms, &mas_detach);
return 0;
clear_tree_failed:
reattach_vmas(&mas_detach);
gather_failed:
validate_mm(mm);
return error;
}
/*
* do_vmi_munmap() - munmap a given range.
* @vmi: The vma iterator
* @mm: The mm_struct
* @start: The start address to munmap
* @len: The length of the range to munmap
* @uf: The userfaultfd list_head
* @unlock: set to true if the user wants to drop the mmap_lock on success
*
* This function takes a @mas that is either pointing to the previous VMA or set
* to MA_START and sets it up to remove the mapping(s). The @len will be
* aligned.
*
* Return: 0 on success and drops the lock if so directed, error and leaves the
* lock held otherwise.
*/
int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
unsigned long start, size_t len, struct list_head *uf,
bool unlock)
{
unsigned long end;
struct vm_area_struct *vma;
if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
return -EINVAL;
end = start + PAGE_ALIGN(len);
if (end == start)
return -EINVAL;
/* Find the first overlapping VMA */
vma = vma_find(vmi, end);
if (!vma) {
if (unlock)
mmap_write_unlock(mm);
return 0;
}
return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
}
/*
* We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
* context and anonymous VMA name within the range [start, end).
*
* As a result, we might be able to merge the newly modified VMA range with an
* adjacent VMA with identical properties.
*
* If no merge is possible and the range does not span the entirety of the VMA,
* we then need to split the VMA to accommodate the change.
*
* The function returns either the merged VMA, the original VMA if a split was
* required instead, or an error if the split failed.
*/
static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
{
struct vm_area_struct *vma = vmg->vma;
struct vm_area_struct *merged;
/* First, try to merge. */
merged = vma_merge_existing_range(vmg);
if (merged)
return merged;
/* Split any preceding portion of the VMA. */
if (vma->vm_start < vmg->start) {
int err = split_vma(vmg->vmi, vma, vmg->start, 1);
if (err)
return ERR_PTR(err);
}
/* Split any trailing portion of the VMA. */
if (vma->vm_end > vmg->end) {
int err = split_vma(vmg->vmi, vma, vmg->end, 0);
if (err)
return ERR_PTR(err);
}
return vma;
}
struct vm_area_struct *vma_modify_flags(
struct vma_iterator *vmi, struct vm_area_struct *prev,
struct vm_area_struct *vma, unsigned long start, unsigned long end,
unsigned long new_flags)
{
VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
vmg.flags = new_flags;
return vma_modify(&vmg);
}
struct vm_area_struct
*vma_modify_flags_name(struct vma_iterator *vmi,
struct vm_area_struct *prev,
struct vm_area_struct *vma,
unsigned long start,
unsigned long end,
unsigned long new_flags,
struct anon_vma_name *new_name)
{
VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
vmg.flags = new_flags;
vmg.anon_name = new_name;
return vma_modify(&vmg);
}
struct vm_area_struct
*vma_modify_policy(struct vma_iterator *vmi,
struct vm_area_struct *prev,
struct vm_area_struct *vma,
unsigned long start, unsigned long end,
struct mempolicy *new_pol)
{
VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
vmg.policy = new_pol;
return vma_modify(&vmg);
}
struct vm_area_struct
*vma_modify_flags_uffd(struct vma_iterator *vmi,
struct vm_area_struct *prev,
struct vm_area_struct *vma,
unsigned long start, unsigned long end,
unsigned long new_flags,
struct vm_userfaultfd_ctx new_ctx)
{
VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
vmg.flags = new_flags;
vmg.uffd_ctx = new_ctx;
return vma_modify(&vmg);
}
/*
* Expand vma by delta bytes, potentially merging with an immediately adjacent
* VMA with identical properties.
*/
struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
struct vm_area_struct *vma,
unsigned long delta)
{
VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
vmg.next = vma_iter_next_rewind(vmi, NULL);
vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */
return vma_merge_new_range(&vmg);
}
void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
{
vb->count = 0;
}
static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
{
struct address_space *mapping;
int i;
mapping = vb->vmas[0]->vm_file->f_mapping;
i_mmap_lock_write(mapping);
for (i = 0; i < vb->count; i++) {
VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
__remove_shared_vm_struct(vb->vmas[i], mapping);
}
i_mmap_unlock_write(mapping);
unlink_file_vma_batch_init(vb);
}
void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
struct vm_area_struct *vma)
{
if (vma->vm_file == NULL)
return;
if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
vb->count == ARRAY_SIZE(vb->vmas))
unlink_file_vma_batch_process(vb);
vb->vmas[vb->count] = vma;
vb->count++;
}
void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
{
if (vb->count > 0)
unlink_file_vma_batch_process(vb);
}
/*
* Unlink a file-based vm structure from its interval tree, to hide
* vma from rmap and vmtruncate before freeing its page tables.
*/
void unlink_file_vma(struct vm_area_struct *vma)
{
struct file *file = vma->vm_file;
if (file) {
struct address_space *mapping = file->f_mapping;
i_mmap_lock_write(mapping);
__remove_shared_vm_struct(vma, mapping);
i_mmap_unlock_write(mapping);
}
}
void vma_link_file(struct vm_area_struct *vma)
{
struct file *file = vma->vm_file;
struct address_space *mapping;
if (file) {
mapping = file->f_mapping;
i_mmap_lock_write(mapping);
__vma_link_file(vma, mapping);
i_mmap_unlock_write(mapping);
}
}
int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
{
VMA_ITERATOR(vmi, mm, 0);
vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
if (vma_iter_prealloc(&vmi, vma))
return -ENOMEM;
vma_start_write(vma);
vma_iter_store(&vmi, vma);
vma_link_file(vma);
mm->map_count++;
validate_mm(mm);
return 0;
}
/*
* Copy the vma structure to a new location in the same mm,
* prior to moving page table entries, to effect an mremap move.
*/
struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
unsigned long addr, unsigned long len, pgoff_t pgoff,
bool *need_rmap_locks)
{
struct vm_area_struct *vma = *vmap;
unsigned long vma_start = vma->vm_start;
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *new_vma;
bool faulted_in_anon_vma = true;
VMA_ITERATOR(vmi, mm, addr);
VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
/*
* If anonymous vma has not yet been faulted, update new pgoff
* to match new location, to increase its chance of merging.
*/
if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
pgoff = addr >> PAGE_SHIFT;
faulted_in_anon_vma = false;
}
new_vma = find_vma_prev(mm, addr, &vmg.prev);
if (new_vma && new_vma->vm_start < addr + len)
return NULL; /* should never get here */
vmg.vma = NULL; /* New VMA range. */
vmg.pgoff = pgoff;
vmg.next = vma_iter_next_rewind(&vmi, NULL);
new_vma = vma_merge_new_range(&vmg);
if (new_vma) {
/*
* Source vma may have been merged into new_vma
*/
if (unlikely(vma_start >= new_vma->vm_start &&
vma_start < new_vma->vm_end)) {
/*
* The only way we can get a vma_merge with
* self during an mremap is if the vma hasn't
* been faulted in yet and we were allowed to
* reset the dst vma->vm_pgoff to the
* destination address of the mremap to allow
* the merge to happen. mremap must change the
* vm_pgoff linearity between src and dst vmas
* (in turn preventing a vma_merge) to be
* safe. It is only safe to keep the vm_pgoff
* linear if there are no pages mapped yet.
*/
VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
*vmap = vma = new_vma;
}
*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
} else {
new_vma = vm_area_dup(vma);
if (!new_vma)
goto out;
vma_set_range(new_vma, addr, addr + len, pgoff);
if (vma_dup_policy(vma, new_vma))
goto out_free_vma;
if (anon_vma_clone(new_vma, vma))
goto out_free_mempol;
if (new_vma->vm_file)
get_file(new_vma->vm_file);
if (new_vma->vm_ops && new_vma->vm_ops->open)
new_vma->vm_ops->open(new_vma);
if (vma_link(mm, new_vma))
goto out_vma_link;
*need_rmap_locks = false;
}
return new_vma;
out_vma_link:
if (new_vma->vm_ops && new_vma->vm_ops->close)
new_vma->vm_ops->close(new_vma);
if (new_vma->vm_file)
fput(new_vma->vm_file);
unlink_anon_vmas(new_vma);
out_free_mempol:
mpol_put(vma_policy(new_vma));
out_free_vma:
vm_area_free(new_vma);
out:
return NULL;
}
/*
* Rough compatibility check to quickly see if it's even worth looking
* at sharing an anon_vma.
*
* They need to have the same vm_file, and the flags can only differ
* in things that mprotect may change.
*
* NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
* we can merge the two vma's. For example, we refuse to merge a vma if
* there is a vm_ops->close() function, because that indicates that the
* driver is doing some kind of reference counting. But that doesn't
* really matter for the anon_vma sharing case.
*/
static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
{
return a->vm_end == b->vm_start &&
mpol_equal(vma_policy(a), vma_policy(b)) &&
a->vm_file == b->vm_file &&
!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
}
/*
* Do some basic sanity checking to see if we can re-use the anon_vma
* from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
* the same as 'old', the other will be the new one that is trying
* to share the anon_vma.
*
* NOTE! This runs with mmap_lock held for reading, so it is possible that
* the anon_vma of 'old' is concurrently in the process of being set up
* by another page fault trying to merge _that_. But that's ok: if it
* is being set up, that automatically means that it will be a singleton
* acceptable for merging, so we can do all of this optimistically. But
* we do that READ_ONCE() to make sure that we never re-load the pointer.
*
* IOW: that the "list_is_singular()" test on the anon_vma_chain only
* matters for the 'stable anon_vma' case (ie the thing we want to avoid
* is to return an anon_vma that is "complex" due to having gone through
* a fork).
*
* We also make sure that the two vma's are compatible (adjacent,
* and with the same memory policies). That's all stable, even with just
* a read lock on the mmap_lock.
*/
static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
struct vm_area_struct *a,
struct vm_area_struct *b)
{
if (anon_vma_compatible(a, b)) {
struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
if (anon_vma && list_is_singular(&old->anon_vma_chain))
return anon_vma;
}
return NULL;
}
/*
* find_mergeable_anon_vma is used by anon_vma_prepare, to check
* neighbouring vmas for a suitable anon_vma, before it goes off
* to allocate a new anon_vma. It checks because a repetitive
* sequence of mprotects and faults may otherwise lead to distinct
* anon_vmas being allocated, preventing vma merge in subsequent
* mprotect.
*/
struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
{
struct anon_vma *anon_vma = NULL;
struct vm_area_struct *prev, *next;
VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
/* Try next first. */
next = vma_iter_load(&vmi);
if (next) {
anon_vma = reusable_anon_vma(next, vma, next);
if (anon_vma)
return anon_vma;
}
prev = vma_prev(&vmi);
VM_BUG_ON_VMA(prev != vma, vma);
prev = vma_prev(&vmi);
/* Try prev next. */
if (prev)
anon_vma = reusable_anon_vma(prev, prev, vma);
/*
* We might reach here with anon_vma == NULL if we can't find
* any reusable anon_vma.
* There's no absolute need to look only at touching neighbours:
* we could search further afield for "compatible" anon_vmas.
* But it would probably just be a waste of time searching,
* or lead to too many vmas hanging off the same anon_vma.
* We're trying to allow mprotect remerging later on,
* not trying to minimize memory used for anon_vmas.
*/
return anon_vma;
}
static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
{
return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
}
static bool vma_is_shared_writable(struct vm_area_struct *vma)
{
return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
(VM_WRITE | VM_SHARED);
}
static bool vma_fs_can_writeback(struct vm_area_struct *vma)
{
/* No managed pages to writeback. */
if (vma->vm_flags & VM_PFNMAP)
return false;
return vma->vm_file && vma->vm_file->f_mapping &&
mapping_can_writeback(vma->vm_file->f_mapping);
}
/*
* Does this VMA require the underlying folios to have their dirty state
* tracked?
*/
bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
{
/* Only shared, writable VMAs require dirty tracking. */
if (!vma_is_shared_writable(vma))
return false;
/* Does the filesystem need to be notified? */
if (vm_ops_needs_writenotify(vma->vm_ops))
return true;
/*
* Even if the filesystem doesn't indicate a need for writenotify, if it
* can writeback, dirty tracking is still required.
*/
return vma_fs_can_writeback(vma);
}
/*
* Some shared mappings will want the pages marked read-only
* to track write events. If so, we'll downgrade vm_page_prot
* to the private version (using protection_map[] without the
* VM_SHARED bit).
*/
bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
{
/* If it was private or non-writable, the write bit is already clear */
if (!vma_is_shared_writable(vma))
return false;
/* The backer wishes to know when pages are first written to? */
if (vm_ops_needs_writenotify(vma->vm_ops))
return true;
/* The open routine did something to the protections that pgprot_modify
* won't preserve? */
if (pgprot_val(vm_page_prot) !=
pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
return false;
/*
* Do we need to track softdirty? hugetlb does not support softdirty
* tracking yet.
*/
if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
return true;
/* Do we need write faults for uffd-wp tracking? */
if (userfaultfd_wp(vma))
return true;
/* Can the mapping track the dirty pages? */
return vma_fs_can_writeback(vma);
}
static DEFINE_MUTEX(mm_all_locks_mutex);
static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
{
if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
/*
* The LSB of head.next can't change from under us
* because we hold the mm_all_locks_mutex.
*/
down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
/*
* We can safely modify head.next after taking the
* anon_vma->root->rwsem. If some other vma in this mm shares
* the same anon_vma we won't take it again.
*
* No need of atomic instructions here, head.next
* can't change from under us thanks to the
* anon_vma->root->rwsem.
*/
if (__test_and_set_bit(0, (unsigned long *)
&anon_vma->root->rb_root.rb_root.rb_node))
BUG();
}
}
static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
{
if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
/*
* AS_MM_ALL_LOCKS can't change from under us because
* we hold the mm_all_locks_mutex.
*
* Operations on ->flags have to be atomic because
* even if AS_MM_ALL_LOCKS is stable thanks to the
* mm_all_locks_mutex, there may be other cpus
* changing other bitflags in parallel to us.
*/
if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
BUG();
down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
}
}
/*
* This operation locks against the VM for all pte/vma/mm related
* operations that could ever happen on a certain mm. This includes
* vmtruncate, try_to_unmap, and all page faults.
*
* The caller must take the mmap_lock in write mode before calling
* mm_take_all_locks(). The caller isn't allowed to release the
* mmap_lock until mm_drop_all_locks() returns.
*
* mmap_lock in write mode is required in order to block all operations
* that could modify pagetables and free pages without need of
* altering the vma layout. It's also needed in write mode to avoid new
* anon_vmas to be associated with existing vmas.
*
* A single task can't take more than one mm_take_all_locks() in a row
* or it would deadlock.
*
* The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
* mapping->flags avoid to take the same lock twice, if more than one
* vma in this mm is backed by the same anon_vma or address_space.
*
* We take locks in following order, accordingly to comment at beginning
* of mm/rmap.c:
* - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
* hugetlb mapping);
* - all vmas marked locked
* - all i_mmap_rwsem locks;
* - all anon_vma->rwseml
*
* We can take all locks within these types randomly because the VM code
* doesn't nest them and we protected from parallel mm_take_all_locks() by
* mm_all_locks_mutex.
*
* mm_take_all_locks() and mm_drop_all_locks are expensive operations
* that may have to take thousand of locks.
*
* mm_take_all_locks() can fail if it's interrupted by signals.
*/
int mm_take_all_locks(struct mm_struct *mm)
{
struct vm_area_struct *vma;
struct anon_vma_chain *avc;
VMA_ITERATOR(vmi, mm, 0);
mmap_assert_write_locked(mm);
mutex_lock(&mm_all_locks_mutex);
/*
* vma_start_write() does not have a complement in mm_drop_all_locks()
* because vma_start_write() is always asymmetrical; it marks a VMA as
* being written to until mmap_write_unlock() or mmap_write_downgrade()
* is reached.
*/
for_each_vma(vmi, vma) {
if (signal_pending(current))
goto out_unlock;
vma_start_write(vma);
}
vma_iter_init(&vmi, mm, 0);
for_each_vma(vmi, vma) {
if (signal_pending(current))
goto out_unlock;
if (vma->vm_file && vma->vm_file->f_mapping &&
is_vm_hugetlb_page(vma))
vm_lock_mapping(mm, vma->vm_file->f_mapping);
}
vma_iter_init(&vmi, mm, 0);
for_each_vma(vmi, vma) {
if (signal_pending(current))
goto out_unlock;
if (vma->vm_file && vma->vm_file->f_mapping &&
!is_vm_hugetlb_page(vma))
vm_lock_mapping(mm, vma->vm_file->f_mapping);
}
vma_iter_init(&vmi, mm, 0);
for_each_vma(vmi, vma) {
if (signal_pending(current))
goto out_unlock;
if (vma->anon_vma)
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
vm_lock_anon_vma(mm, avc->anon_vma);
}
return 0;
out_unlock:
mm_drop_all_locks(mm);
return -EINTR;
}
static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
{
if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
/*
* The LSB of head.next can't change to 0 from under
* us because we hold the mm_all_locks_mutex.
*
* We must however clear the bitflag before unlocking
* the vma so the users using the anon_vma->rb_root will
* never see our bitflag.
*
* No need of atomic instructions here, head.next
* can't change from under us until we release the
* anon_vma->root->rwsem.
*/
if (!__test_and_clear_bit(0, (unsigned long *)
&anon_vma->root->rb_root.rb_root.rb_node))
BUG();
anon_vma_unlock_write(anon_vma);
}
}
static void vm_unlock_mapping(struct address_space *mapping)
{
if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
/*
* AS_MM_ALL_LOCKS can't change to 0 from under us
* because we hold the mm_all_locks_mutex.
*/
i_mmap_unlock_write(mapping);
if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
&mapping->flags))
BUG();
}
}
/*
* The mmap_lock cannot be released by the caller until
* mm_drop_all_locks() returns.
*/
void mm_drop_all_locks(struct mm_struct *mm)
{
struct vm_area_struct *vma;
struct anon_vma_chain *avc;
VMA_ITERATOR(vmi, mm, 0);
mmap_assert_write_locked(mm);
BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
for_each_vma(vmi, vma) {
if (vma->anon_vma)
list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
vm_unlock_anon_vma(avc->anon_vma);
if (vma->vm_file && vma->vm_file->f_mapping)
vm_unlock_mapping(vma->vm_file->f_mapping);
}
mutex_unlock(&mm_all_locks_mutex);
}