c95e269773
Signed-off-by: Helge Deller <deller@gmx.de>
1210 lines
33 KiB
C
1210 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* BPF JIT compiler for PA-RISC (64-bit)
|
|
*
|
|
* Copyright(c) 2023 Helge Deller <deller@gmx.de>
|
|
*
|
|
* The code is based on the BPF JIT compiler for RV64 by Björn Töpel.
|
|
*
|
|
* TODO:
|
|
* - check if bpf_jit_needs_zext() is needed (currently enabled)
|
|
* - implement arch_prepare_bpf_trampoline(), poke(), ...
|
|
*/
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/libgcc.h>
|
|
#include "bpf_jit.h"
|
|
|
|
static const int regmap[] = {
|
|
[BPF_REG_0] = HPPA_REG_RET0,
|
|
[BPF_REG_1] = HPPA_R(5),
|
|
[BPF_REG_2] = HPPA_R(6),
|
|
[BPF_REG_3] = HPPA_R(7),
|
|
[BPF_REG_4] = HPPA_R(8),
|
|
[BPF_REG_5] = HPPA_R(9),
|
|
[BPF_REG_6] = HPPA_R(10),
|
|
[BPF_REG_7] = HPPA_R(11),
|
|
[BPF_REG_8] = HPPA_R(12),
|
|
[BPF_REG_9] = HPPA_R(13),
|
|
[BPF_REG_FP] = HPPA_R(14),
|
|
[BPF_REG_AX] = HPPA_R(15),
|
|
};
|
|
|
|
/*
|
|
* Stack layout during BPF program execution (note: stack grows up):
|
|
*
|
|
* high
|
|
* HPPA64 sp => +----------+ <= HPPA64 fp
|
|
* | saved sp |
|
|
* | saved rp |
|
|
* | ... | HPPA64 callee-saved registers
|
|
* | curr args|
|
|
* | local var|
|
|
* +----------+ <= (BPF FP)
|
|
* | |
|
|
* | ... | BPF program stack
|
|
* | |
|
|
* | ... | Function call stack
|
|
* | |
|
|
* +----------+
|
|
* low
|
|
*/
|
|
|
|
/* Offset from fp for BPF registers stored on stack. */
|
|
#define STACK_ALIGN FRAME_SIZE
|
|
|
|
#define EXIT_PTR_LOAD(reg) hppa64_ldd_im16(-FRAME_SIZE, HPPA_REG_SP, reg)
|
|
#define EXIT_PTR_STORE(reg) hppa64_std_im16(reg, -FRAME_SIZE, HPPA_REG_SP)
|
|
#define EXIT_PTR_JUMP(reg, nop) hppa_bv(HPPA_REG_ZERO, reg, nop)
|
|
|
|
static u8 bpf_to_hppa_reg(int bpf_reg, struct hppa_jit_context *ctx)
|
|
{
|
|
u8 reg = regmap[bpf_reg];
|
|
|
|
REG_SET_SEEN(ctx, reg);
|
|
return reg;
|
|
};
|
|
|
|
static void emit_hppa_copy(const s8 rs, const s8 rd, struct hppa_jit_context *ctx)
|
|
{
|
|
REG_SET_SEEN(ctx, rd);
|
|
if (OPTIMIZE_HPPA && (rs == rd))
|
|
return;
|
|
REG_SET_SEEN(ctx, rs);
|
|
emit(hppa_copy(rs, rd), ctx);
|
|
}
|
|
|
|
static void emit_hppa64_depd(u8 src, u8 pos, u8 len, u8 target, bool no_zero, struct hppa_jit_context *ctx)
|
|
{
|
|
int c;
|
|
|
|
pos &= (BITS_PER_LONG - 1);
|
|
pos = 63 - pos;
|
|
len = 64 - len;
|
|
c = (len < 32) ? 0x4 : 0;
|
|
c |= (pos >= 32) ? 0x2 : 0;
|
|
c |= (no_zero) ? 0x1 : 0;
|
|
emit(hppa_t10_insn(0x3c, target, src, 0, c, pos & 0x1f, len & 0x1f), ctx);
|
|
}
|
|
|
|
static void emit_hppa64_shld(u8 src, int num, u8 target, struct hppa_jit_context *ctx)
|
|
{
|
|
emit_hppa64_depd(src, 63-num, 64-num, target, 0, ctx);
|
|
}
|
|
|
|
static void emit_hppa64_extrd(u8 src, u8 pos, u8 len, u8 target, bool signed_op, struct hppa_jit_context *ctx)
|
|
{
|
|
int c;
|
|
|
|
pos &= (BITS_PER_LONG - 1);
|
|
len = 64 - len;
|
|
c = (len < 32) ? 0x4 : 0;
|
|
c |= (pos >= 32) ? 0x2 : 0;
|
|
c |= signed_op ? 0x1 : 0;
|
|
emit(hppa_t10_insn(0x36, src, target, 0, c, pos & 0x1f, len & 0x1f), ctx);
|
|
}
|
|
|
|
static void emit_hppa64_extrw(u8 src, u8 pos, u8 len, u8 target, bool signed_op, struct hppa_jit_context *ctx)
|
|
{
|
|
int c;
|
|
|
|
pos &= (32 - 1);
|
|
len = 32 - len;
|
|
c = 0x06 | (signed_op ? 1 : 0);
|
|
emit(hppa_t10_insn(0x34, src, target, 0, c, pos, len), ctx);
|
|
}
|
|
|
|
#define emit_hppa64_zext32(r, target, ctx) \
|
|
emit_hppa64_extrd(r, 63, 32, target, false, ctx)
|
|
#define emit_hppa64_sext32(r, target, ctx) \
|
|
emit_hppa64_extrd(r, 63, 32, target, true, ctx)
|
|
|
|
static void emit_hppa64_shrd(u8 src, int num, u8 target, bool signed_op, struct hppa_jit_context *ctx)
|
|
{
|
|
emit_hppa64_extrd(src, 63-num, 64-num, target, signed_op, ctx);
|
|
}
|
|
|
|
static void emit_hppa64_shrw(u8 src, int num, u8 target, bool signed_op, struct hppa_jit_context *ctx)
|
|
{
|
|
emit_hppa64_extrw(src, 31-num, 32-num, target, signed_op, ctx);
|
|
}
|
|
|
|
/* Emit variable-length instructions for 32-bit imm */
|
|
static void emit_imm32(u8 rd, s32 imm, struct hppa_jit_context *ctx)
|
|
{
|
|
u32 lower = im11(imm);
|
|
|
|
REG_SET_SEEN(ctx, rd);
|
|
if (OPTIMIZE_HPPA && relative_bits_ok(imm, 14)) {
|
|
emit(hppa_ldi(imm, rd), ctx);
|
|
return;
|
|
}
|
|
if (OPTIMIZE_HPPA && lower == imm) {
|
|
emit(hppa_ldo(lower, HPPA_REG_ZERO, rd), ctx);
|
|
return;
|
|
}
|
|
emit(hppa_ldil(imm, rd), ctx);
|
|
if (OPTIMIZE_HPPA && (lower == 0))
|
|
return;
|
|
emit(hppa_ldo(lower, rd, rd), ctx);
|
|
}
|
|
|
|
static bool is_32b_int(s64 val)
|
|
{
|
|
return val == (s32) val;
|
|
}
|
|
|
|
/* Emit variable-length instructions for 64-bit imm */
|
|
static void emit_imm(u8 rd, s64 imm, u8 tmpreg, struct hppa_jit_context *ctx)
|
|
{
|
|
u32 upper32;
|
|
|
|
/* get lower 32-bits into rd, sign extended */
|
|
emit_imm32(rd, imm, ctx);
|
|
|
|
/* do we have upper 32-bits too ? */
|
|
if (OPTIMIZE_HPPA && is_32b_int(imm))
|
|
return;
|
|
|
|
/* load upper 32-bits into lower tmpreg and deposit into rd */
|
|
upper32 = imm >> 32;
|
|
if (upper32 || !OPTIMIZE_HPPA) {
|
|
emit_imm32(tmpreg, upper32, ctx);
|
|
emit_hppa64_depd(tmpreg, 31, 32, rd, 1, ctx);
|
|
} else
|
|
emit_hppa64_depd(HPPA_REG_ZERO, 31, 32, rd, 1, ctx);
|
|
|
|
}
|
|
|
|
static int emit_jump(signed long paoff, bool force_far,
|
|
struct hppa_jit_context *ctx)
|
|
{
|
|
unsigned long pc, addr;
|
|
|
|
/* Note: Use 2 instructions for jumps if force_far is set. */
|
|
if (relative_bits_ok(paoff - HPPA_BRANCH_DISPLACEMENT, 22)) {
|
|
/* use BL,long branch followed by nop() */
|
|
emit(hppa64_bl_long(paoff - HPPA_BRANCH_DISPLACEMENT), ctx);
|
|
if (force_far)
|
|
emit(hppa_nop(), ctx);
|
|
return 0;
|
|
}
|
|
|
|
pc = (uintptr_t) &ctx->insns[ctx->ninsns];
|
|
addr = pc + (paoff * HPPA_INSN_SIZE);
|
|
/* even the 64-bit kernel runs in memory below 4GB */
|
|
if (WARN_ON_ONCE(addr >> 32))
|
|
return -E2BIG;
|
|
emit(hppa_ldil(addr, HPPA_REG_R31), ctx);
|
|
emit(hppa_be_l(im11(addr) >> 2, HPPA_REG_R31, NOP_NEXT_INSTR), ctx);
|
|
return 0;
|
|
}
|
|
|
|
static void __build_epilogue(bool is_tail_call, struct hppa_jit_context *ctx)
|
|
{
|
|
int i;
|
|
|
|
if (is_tail_call) {
|
|
/*
|
|
* goto *(t0 + 4);
|
|
* Skips first instruction of prologue which initializes tail
|
|
* call counter. Assumes t0 contains address of target program,
|
|
* see emit_bpf_tail_call.
|
|
*/
|
|
emit(hppa_ldo(1 * HPPA_INSN_SIZE, HPPA_REG_T0, HPPA_REG_T0), ctx);
|
|
emit(hppa_bv(HPPA_REG_ZERO, HPPA_REG_T0, EXEC_NEXT_INSTR), ctx);
|
|
/* in delay slot: */
|
|
emit(hppa_copy(HPPA_REG_TCC, HPPA_REG_TCC_IN_INIT), ctx);
|
|
|
|
return;
|
|
}
|
|
|
|
/* load epilogue function pointer and jump to it. */
|
|
/* exit point is either at next instruction, or the outest TCC exit function */
|
|
emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx);
|
|
emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx);
|
|
|
|
/* NOTE: we are 64-bit and big-endian, so return lower sign-extended 32-bit value */
|
|
emit_hppa64_sext32(regmap[BPF_REG_0], HPPA_REG_RET0, ctx);
|
|
|
|
/* Restore callee-saved registers. */
|
|
for (i = 3; i <= 15; i++) {
|
|
if (OPTIMIZE_HPPA && !REG_WAS_SEEN(ctx, HPPA_R(i)))
|
|
continue;
|
|
emit(hppa64_ldd_im16(-REG_SIZE * i, HPPA_REG_SP, HPPA_R(i)), ctx);
|
|
}
|
|
|
|
/* load original return pointer (stored by outest TCC function) */
|
|
emit(hppa64_ldd_im16(-2*REG_SIZE, HPPA_REG_SP, HPPA_REG_RP), ctx);
|
|
emit(hppa_bv(HPPA_REG_ZERO, HPPA_REG_RP, EXEC_NEXT_INSTR), ctx);
|
|
/* in delay slot: */
|
|
emit(hppa64_ldd_im5(-REG_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx);
|
|
|
|
emit(hppa_nop(), ctx); // XXX WARUM einer zu wenig ??
|
|
}
|
|
|
|
static int emit_branch(u8 op, u8 rd, u8 rs, signed long paoff,
|
|
struct hppa_jit_context *ctx)
|
|
{
|
|
int e, s;
|
|
bool far = false;
|
|
int off;
|
|
|
|
if (op == BPF_JSET) {
|
|
/*
|
|
* BPF_JSET is a special case: it has no inverse so translate
|
|
* to and() function and compare against zero
|
|
*/
|
|
emit(hppa_and(rd, rs, HPPA_REG_T0), ctx);
|
|
paoff -= 1; /* reduce offset due to hppa_and() above */
|
|
rd = HPPA_REG_T0;
|
|
rs = HPPA_REG_ZERO;
|
|
op = BPF_JNE;
|
|
}
|
|
|
|
/* set start after BPF_JSET */
|
|
s = ctx->ninsns;
|
|
|
|
if (!relative_branch_ok(paoff - HPPA_BRANCH_DISPLACEMENT + 1, 12)) {
|
|
op = invert_bpf_cond(op);
|
|
far = true;
|
|
}
|
|
|
|
/*
|
|
* For a far branch, the condition is negated and we jump over the
|
|
* branch itself, and the two instructions from emit_jump.
|
|
* For a near branch, just use paoff.
|
|
*/
|
|
off = far ? (2 - HPPA_BRANCH_DISPLACEMENT) : paoff - HPPA_BRANCH_DISPLACEMENT;
|
|
|
|
switch (op) {
|
|
/* IF (dst COND src) JUMP off */
|
|
case BPF_JEQ:
|
|
emit(hppa_beq(rd, rs, off), ctx);
|
|
break;
|
|
case BPF_JGT:
|
|
emit(hppa_bgtu(rd, rs, off), ctx);
|
|
break;
|
|
case BPF_JLT:
|
|
emit(hppa_bltu(rd, rs, off), ctx);
|
|
break;
|
|
case BPF_JGE:
|
|
emit(hppa_bgeu(rd, rs, off), ctx);
|
|
break;
|
|
case BPF_JLE:
|
|
emit(hppa_bleu(rd, rs, off), ctx);
|
|
break;
|
|
case BPF_JNE:
|
|
emit(hppa_bne(rd, rs, off), ctx);
|
|
break;
|
|
case BPF_JSGT:
|
|
emit(hppa_bgt(rd, rs, off), ctx);
|
|
break;
|
|
case BPF_JSLT:
|
|
emit(hppa_blt(rd, rs, off), ctx);
|
|
break;
|
|
case BPF_JSGE:
|
|
emit(hppa_bge(rd, rs, off), ctx);
|
|
break;
|
|
case BPF_JSLE:
|
|
emit(hppa_ble(rd, rs, off), ctx);
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
|
|
if (far) {
|
|
int ret;
|
|
e = ctx->ninsns;
|
|
/* Adjust for extra insns. */
|
|
paoff -= (e - s);
|
|
ret = emit_jump(paoff, true, ctx);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
/*
|
|
* always allocate 2 nops instead of the far branch to
|
|
* reduce translation loops
|
|
*/
|
|
emit(hppa_nop(), ctx);
|
|
emit(hppa_nop(), ctx);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void emit_zext_32(u8 reg, struct hppa_jit_context *ctx)
|
|
{
|
|
emit_hppa64_zext32(reg, reg, ctx);
|
|
}
|
|
|
|
static void emit_bpf_tail_call(int insn, struct hppa_jit_context *ctx)
|
|
{
|
|
/*
|
|
* R1 -> &ctx
|
|
* R2 -> &array
|
|
* R3 -> index
|
|
*/
|
|
int off;
|
|
const s8 arr_reg = regmap[BPF_REG_2];
|
|
const s8 idx_reg = regmap[BPF_REG_3];
|
|
struct bpf_array bpfa;
|
|
struct bpf_prog bpfp;
|
|
|
|
/* if there is any tail call, we need to save & restore all registers */
|
|
REG_SET_SEEN_ALL(ctx);
|
|
|
|
/* get address of TCC main exit function for error case into rp */
|
|
emit(EXIT_PTR_LOAD(HPPA_REG_RP), ctx);
|
|
|
|
/* max_entries = array->map.max_entries; */
|
|
off = offsetof(struct bpf_array, map.max_entries);
|
|
BUILD_BUG_ON(sizeof(bpfa.map.max_entries) != 4);
|
|
emit(hppa_ldw(off, arr_reg, HPPA_REG_T1), ctx);
|
|
|
|
/*
|
|
* if (index >= max_entries)
|
|
* goto out;
|
|
*/
|
|
emit(hppa_bltu(idx_reg, HPPA_REG_T1, 2 - HPPA_BRANCH_DISPLACEMENT), ctx);
|
|
emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx);
|
|
|
|
/*
|
|
* if (--tcc < 0)
|
|
* goto out;
|
|
*/
|
|
REG_FORCE_SEEN(ctx, HPPA_REG_TCC);
|
|
emit(hppa_ldo(-1, HPPA_REG_TCC, HPPA_REG_TCC), ctx);
|
|
emit(hppa_bge(HPPA_REG_TCC, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx);
|
|
emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx);
|
|
|
|
/*
|
|
* prog = array->ptrs[index];
|
|
* if (!prog)
|
|
* goto out;
|
|
*/
|
|
BUILD_BUG_ON(sizeof(bpfa.ptrs[0]) != 8);
|
|
emit(hppa64_shladd(idx_reg, 3, arr_reg, HPPA_REG_T0), ctx);
|
|
off = offsetof(struct bpf_array, ptrs);
|
|
BUILD_BUG_ON(off < 16);
|
|
emit(hppa64_ldd_im16(off, HPPA_REG_T0, HPPA_REG_T0), ctx);
|
|
emit(hppa_bne(HPPA_REG_T0, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx);
|
|
emit(EXIT_PTR_JUMP(HPPA_REG_RP, NOP_NEXT_INSTR), ctx);
|
|
|
|
/*
|
|
* tcc = temp_tcc;
|
|
* goto *(prog->bpf_func + 4);
|
|
*/
|
|
off = offsetof(struct bpf_prog, bpf_func);
|
|
BUILD_BUG_ON(off < 16);
|
|
BUILD_BUG_ON(sizeof(bpfp.bpf_func) != 8);
|
|
emit(hppa64_ldd_im16(off, HPPA_REG_T0, HPPA_REG_T0), ctx);
|
|
/* Epilogue jumps to *(t0 + 4). */
|
|
__build_epilogue(true, ctx);
|
|
}
|
|
|
|
static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
|
|
struct hppa_jit_context *ctx)
|
|
{
|
|
u8 code = insn->code;
|
|
|
|
switch (code) {
|
|
case BPF_JMP | BPF_JA:
|
|
case BPF_JMP | BPF_CALL:
|
|
case BPF_JMP | BPF_EXIT:
|
|
case BPF_JMP | BPF_TAIL_CALL:
|
|
break;
|
|
default:
|
|
*rd = bpf_to_hppa_reg(insn->dst_reg, ctx);
|
|
}
|
|
|
|
if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
|
|
code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
|
|
code & BPF_LDX || code & BPF_STX)
|
|
*rs = bpf_to_hppa_reg(insn->src_reg, ctx);
|
|
}
|
|
|
|
static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct hppa_jit_context *ctx)
|
|
{
|
|
emit_hppa64_zext32(*rd, HPPA_REG_T2, ctx);
|
|
*rd = HPPA_REG_T2;
|
|
emit_hppa64_zext32(*rs, HPPA_REG_T1, ctx);
|
|
*rs = HPPA_REG_T1;
|
|
}
|
|
|
|
static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct hppa_jit_context *ctx)
|
|
{
|
|
emit_hppa64_sext32(*rd, HPPA_REG_T2, ctx);
|
|
*rd = HPPA_REG_T2;
|
|
emit_hppa64_sext32(*rs, HPPA_REG_T1, ctx);
|
|
*rs = HPPA_REG_T1;
|
|
}
|
|
|
|
static void emit_zext_32_rd_t1(u8 *rd, struct hppa_jit_context *ctx)
|
|
{
|
|
emit_hppa64_zext32(*rd, HPPA_REG_T2, ctx);
|
|
*rd = HPPA_REG_T2;
|
|
emit_zext_32(HPPA_REG_T1, ctx);
|
|
}
|
|
|
|
static void emit_sext_32_rd(u8 *rd, struct hppa_jit_context *ctx)
|
|
{
|
|
emit_hppa64_sext32(*rd, HPPA_REG_T2, ctx);
|
|
*rd = HPPA_REG_T2;
|
|
}
|
|
|
|
static bool is_signed_bpf_cond(u8 cond)
|
|
{
|
|
return cond == BPF_JSGT || cond == BPF_JSLT ||
|
|
cond == BPF_JSGE || cond == BPF_JSLE;
|
|
}
|
|
|
|
static void emit_call(u64 addr, bool fixed, struct hppa_jit_context *ctx)
|
|
{
|
|
const int offset_sp = 2*FRAME_SIZE;
|
|
|
|
emit(hppa_ldo(offset_sp, HPPA_REG_SP, HPPA_REG_SP), ctx);
|
|
|
|
emit_hppa_copy(regmap[BPF_REG_1], HPPA_REG_ARG0, ctx);
|
|
emit_hppa_copy(regmap[BPF_REG_2], HPPA_REG_ARG1, ctx);
|
|
emit_hppa_copy(regmap[BPF_REG_3], HPPA_REG_ARG2, ctx);
|
|
emit_hppa_copy(regmap[BPF_REG_4], HPPA_REG_ARG3, ctx);
|
|
emit_hppa_copy(regmap[BPF_REG_5], HPPA_REG_ARG4, ctx);
|
|
|
|
/* Backup TCC. */
|
|
REG_FORCE_SEEN(ctx, HPPA_REG_TCC_SAVED);
|
|
if (REG_WAS_SEEN(ctx, HPPA_REG_TCC))
|
|
emit(hppa_copy(HPPA_REG_TCC, HPPA_REG_TCC_SAVED), ctx);
|
|
|
|
/*
|
|
* Use ldil() to load absolute address. Don't use emit_imm as the
|
|
* number of emitted instructions should not depend on the value of
|
|
* addr.
|
|
*/
|
|
WARN_ON(addr >> 32);
|
|
/* load function address and gp from Elf64_Fdesc descriptor */
|
|
emit(hppa_ldil(addr, HPPA_REG_R31), ctx);
|
|
emit(hppa_ldo(im11(addr), HPPA_REG_R31, HPPA_REG_R31), ctx);
|
|
emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, addr),
|
|
HPPA_REG_R31, HPPA_REG_RP), ctx);
|
|
emit(hppa64_bve_l_rp(HPPA_REG_RP), ctx);
|
|
emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, gp),
|
|
HPPA_REG_R31, HPPA_REG_GP), ctx);
|
|
|
|
/* Restore TCC. */
|
|
if (REG_WAS_SEEN(ctx, HPPA_REG_TCC))
|
|
emit(hppa_copy(HPPA_REG_TCC_SAVED, HPPA_REG_TCC), ctx);
|
|
|
|
emit(hppa_ldo(-offset_sp, HPPA_REG_SP, HPPA_REG_SP), ctx);
|
|
|
|
/* Set return value. */
|
|
emit_hppa_copy(HPPA_REG_RET0, regmap[BPF_REG_0], ctx);
|
|
}
|
|
|
|
static void emit_call_libgcc_ll(void *func, const s8 arg0,
|
|
const s8 arg1, u8 opcode, struct hppa_jit_context *ctx)
|
|
{
|
|
u64 func_addr;
|
|
|
|
if (BPF_CLASS(opcode) == BPF_ALU) {
|
|
emit_hppa64_zext32(arg0, HPPA_REG_ARG0, ctx);
|
|
emit_hppa64_zext32(arg1, HPPA_REG_ARG1, ctx);
|
|
} else {
|
|
emit_hppa_copy(arg0, HPPA_REG_ARG0, ctx);
|
|
emit_hppa_copy(arg1, HPPA_REG_ARG1, ctx);
|
|
}
|
|
|
|
/* libcgcc overwrites HPPA_REG_RET0, so keep copy in HPPA_REG_TCC_SAVED */
|
|
if (arg0 != HPPA_REG_RET0) {
|
|
REG_SET_SEEN(ctx, HPPA_REG_TCC_SAVED);
|
|
emit(hppa_copy(HPPA_REG_RET0, HPPA_REG_TCC_SAVED), ctx);
|
|
}
|
|
|
|
/* set up stack */
|
|
emit(hppa_ldo(FRAME_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx);
|
|
|
|
func_addr = (uintptr_t) func;
|
|
/* load function func_address and gp from Elf64_Fdesc descriptor */
|
|
emit_imm(HPPA_REG_R31, func_addr, arg0, ctx);
|
|
emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, addr),
|
|
HPPA_REG_R31, HPPA_REG_RP), ctx);
|
|
/* skip the following bve_l instruction if divisor is 0. */
|
|
if (BPF_OP(opcode) == BPF_DIV || BPF_OP(opcode) == BPF_MOD) {
|
|
if (BPF_OP(opcode) == BPF_DIV)
|
|
emit_hppa_copy(HPPA_REG_ZERO, HPPA_REG_RET0, ctx);
|
|
else {
|
|
emit_hppa_copy(HPPA_REG_ARG0, HPPA_REG_RET0, ctx);
|
|
}
|
|
emit(hppa_beq(HPPA_REG_ARG1, HPPA_REG_ZERO, 2 - HPPA_BRANCH_DISPLACEMENT), ctx);
|
|
}
|
|
emit(hppa64_bve_l_rp(HPPA_REG_RP), ctx);
|
|
emit(hppa64_ldd_im16(offsetof(struct elf64_fdesc, gp),
|
|
HPPA_REG_R31, HPPA_REG_GP), ctx);
|
|
|
|
emit(hppa_ldo(-FRAME_SIZE, HPPA_REG_SP, HPPA_REG_SP), ctx);
|
|
|
|
emit_hppa_copy(HPPA_REG_RET0, arg0, ctx);
|
|
|
|
/* restore HPPA_REG_RET0 */
|
|
if (arg0 != HPPA_REG_RET0)
|
|
emit(hppa_copy(HPPA_REG_TCC_SAVED, HPPA_REG_RET0), ctx);
|
|
}
|
|
|
|
static void emit_store(const s8 rd, const s8 rs, s16 off,
|
|
struct hppa_jit_context *ctx, const u8 size,
|
|
const u8 mode)
|
|
{
|
|
s8 dstreg;
|
|
|
|
/* need to calculate address since offset does not fit in 14 bits? */
|
|
if (relative_bits_ok(off, 14))
|
|
dstreg = rd;
|
|
else {
|
|
/* need to use R1 here, since addil puts result into R1 */
|
|
dstreg = HPPA_REG_R1;
|
|
emit(hppa_addil(off, rd), ctx);
|
|
off = im11(off);
|
|
}
|
|
|
|
switch (size) {
|
|
case BPF_B:
|
|
emit(hppa_stb(rs, off, dstreg), ctx);
|
|
break;
|
|
case BPF_H:
|
|
emit(hppa_sth(rs, off, dstreg), ctx);
|
|
break;
|
|
case BPF_W:
|
|
emit(hppa_stw(rs, off, dstreg), ctx);
|
|
break;
|
|
case BPF_DW:
|
|
if (off & 7) {
|
|
emit(hppa_ldo(off, dstreg, HPPA_REG_R1), ctx);
|
|
emit(hppa64_std_im5(rs, 0, HPPA_REG_R1), ctx);
|
|
} else if (off >= -16 && off <= 15)
|
|
emit(hppa64_std_im5(rs, off, dstreg), ctx);
|
|
else
|
|
emit(hppa64_std_im16(rs, off, dstreg), ctx);
|
|
break;
|
|
}
|
|
}
|
|
|
|
int bpf_jit_emit_insn(const struct bpf_insn *insn, struct hppa_jit_context *ctx,
|
|
bool extra_pass)
|
|
{
|
|
bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
|
|
BPF_CLASS(insn->code) == BPF_JMP;
|
|
int s, e, ret, i = insn - ctx->prog->insnsi;
|
|
s64 paoff;
|
|
struct bpf_prog_aux *aux = ctx->prog->aux;
|
|
u8 rd = -1, rs = -1, code = insn->code;
|
|
s16 off = insn->off;
|
|
s32 imm = insn->imm;
|
|
|
|
init_regs(&rd, &rs, insn, ctx);
|
|
|
|
switch (code) {
|
|
/* dst = src */
|
|
case BPF_ALU | BPF_MOV | BPF_X:
|
|
case BPF_ALU64 | BPF_MOV | BPF_X:
|
|
if (imm == 1) {
|
|
/* Special mov32 for zext */
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
}
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_hppa64_zext32(rs, rd, ctx);
|
|
else
|
|
emit_hppa_copy(rs, rd, ctx);
|
|
break;
|
|
|
|
/* dst = dst OP src */
|
|
case BPF_ALU | BPF_ADD | BPF_X:
|
|
case BPF_ALU64 | BPF_ADD | BPF_X:
|
|
emit(hppa_add(rd, rs, rd), ctx);
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_SUB | BPF_X:
|
|
case BPF_ALU64 | BPF_SUB | BPF_X:
|
|
emit(hppa_sub(rd, rs, rd), ctx);
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_AND | BPF_X:
|
|
case BPF_ALU64 | BPF_AND | BPF_X:
|
|
emit(hppa_and(rd, rs, rd), ctx);
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_OR | BPF_X:
|
|
case BPF_ALU64 | BPF_OR | BPF_X:
|
|
emit(hppa_or(rd, rs, rd), ctx);
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_XOR | BPF_X:
|
|
case BPF_ALU64 | BPF_XOR | BPF_X:
|
|
emit(hppa_xor(rd, rs, rd), ctx);
|
|
if (!is64 && !aux->verifier_zext && rs != rd)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_MUL | BPF_K:
|
|
case BPF_ALU64 | BPF_MUL | BPF_K:
|
|
emit_imm(HPPA_REG_T1, is64 ? (s64)(s32)imm : (u32)imm, HPPA_REG_T2, ctx);
|
|
rs = HPPA_REG_T1;
|
|
fallthrough;
|
|
case BPF_ALU | BPF_MUL | BPF_X:
|
|
case BPF_ALU64 | BPF_MUL | BPF_X:
|
|
emit_call_libgcc_ll(__muldi3, rd, rs, code, ctx);
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_DIV | BPF_K:
|
|
case BPF_ALU64 | BPF_DIV | BPF_K:
|
|
emit_imm(HPPA_REG_T1, is64 ? (s64)(s32)imm : (u32)imm, HPPA_REG_T2, ctx);
|
|
rs = HPPA_REG_T1;
|
|
fallthrough;
|
|
case BPF_ALU | BPF_DIV | BPF_X:
|
|
case BPF_ALU64 | BPF_DIV | BPF_X:
|
|
emit_call_libgcc_ll(&hppa_div64, rd, rs, code, ctx);
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_MOD | BPF_K:
|
|
case BPF_ALU64 | BPF_MOD | BPF_K:
|
|
emit_imm(HPPA_REG_T1, is64 ? (s64)(s32)imm : (u32)imm, HPPA_REG_T2, ctx);
|
|
rs = HPPA_REG_T1;
|
|
fallthrough;
|
|
case BPF_ALU | BPF_MOD | BPF_X:
|
|
case BPF_ALU64 | BPF_MOD | BPF_X:
|
|
emit_call_libgcc_ll(&hppa_div64_rem, rd, rs, code, ctx);
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
|
|
case BPF_ALU | BPF_LSH | BPF_X:
|
|
case BPF_ALU64 | BPF_LSH | BPF_X:
|
|
emit_hppa64_sext32(rs, HPPA_REG_T0, ctx);
|
|
emit(hppa64_mtsarcm(HPPA_REG_T0), ctx);
|
|
if (is64)
|
|
emit(hppa64_depdz_sar(rd, rd), ctx);
|
|
else
|
|
emit(hppa_depwz_sar(rd, rd), ctx);
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_RSH | BPF_X:
|
|
case BPF_ALU64 | BPF_RSH | BPF_X:
|
|
emit(hppa_mtsar(rs), ctx);
|
|
if (is64)
|
|
emit(hppa64_shrpd_sar(rd, rd), ctx);
|
|
else
|
|
emit(hppa_shrpw_sar(rd, rd), ctx);
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_ARSH | BPF_X:
|
|
case BPF_ALU64 | BPF_ARSH | BPF_X:
|
|
emit_hppa64_sext32(rs, HPPA_REG_T0, ctx);
|
|
emit(hppa64_mtsarcm(HPPA_REG_T0), ctx);
|
|
if (is64)
|
|
emit(hppa_extrd_sar(rd, rd, 1), ctx);
|
|
else
|
|
emit(hppa_extrws_sar(rd, rd), ctx);
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
|
|
/* dst = -dst */
|
|
case BPF_ALU | BPF_NEG:
|
|
case BPF_ALU64 | BPF_NEG:
|
|
emit(hppa_sub(HPPA_REG_ZERO, rd, rd), ctx);
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
|
|
/* dst = BSWAP##imm(dst) */
|
|
case BPF_ALU | BPF_END | BPF_FROM_BE:
|
|
switch (imm) {
|
|
case 16:
|
|
/* zero-extend 16 bits into 64 bits */
|
|
emit_hppa64_depd(HPPA_REG_ZERO, 63-16, 64-16, rd, 1, ctx);
|
|
break;
|
|
case 32:
|
|
if (!aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case 64:
|
|
/* Do nothing */
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case BPF_ALU | BPF_END | BPF_FROM_LE:
|
|
switch (imm) {
|
|
case 16:
|
|
emit(hppa_extru(rd, 31 - 8, 8, HPPA_REG_T1), ctx);
|
|
emit(hppa_depwz(rd, 23, 8, HPPA_REG_T1), ctx);
|
|
emit(hppa_extru(HPPA_REG_T1, 31, 16, rd), ctx);
|
|
emit_hppa64_extrd(HPPA_REG_T1, 63, 16, rd, 0, ctx);
|
|
break;
|
|
case 32:
|
|
emit(hppa_shrpw(rd, rd, 16, HPPA_REG_T1), ctx);
|
|
emit_hppa64_depd(HPPA_REG_T1, 63-16, 8, HPPA_REG_T1, 1, ctx);
|
|
emit(hppa_shrpw(rd, HPPA_REG_T1, 8, HPPA_REG_T1), ctx);
|
|
emit_hppa64_extrd(HPPA_REG_T1, 63, 32, rd, 0, ctx);
|
|
break;
|
|
case 64:
|
|
emit(hppa64_permh_3210(rd, HPPA_REG_T1), ctx);
|
|
emit(hppa64_hshl(HPPA_REG_T1, 8, HPPA_REG_T2), ctx);
|
|
emit(hppa64_hshr_u(HPPA_REG_T1, 8, HPPA_REG_T1), ctx);
|
|
emit(hppa_or(HPPA_REG_T2, HPPA_REG_T1, rd), ctx);
|
|
break;
|
|
default:
|
|
pr_err("bpf-jit: BPF_END imm %d invalid\n", imm);
|
|
return -1;
|
|
}
|
|
break;
|
|
|
|
/* dst = imm */
|
|
case BPF_ALU | BPF_MOV | BPF_K:
|
|
case BPF_ALU64 | BPF_MOV | BPF_K:
|
|
emit_imm(rd, imm, HPPA_REG_T2, ctx);
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
|
|
/* dst = dst OP imm */
|
|
case BPF_ALU | BPF_ADD | BPF_K:
|
|
case BPF_ALU64 | BPF_ADD | BPF_K:
|
|
if (relative_bits_ok(imm, 14)) {
|
|
emit(hppa_ldo(imm, rd, rd), ctx);
|
|
} else {
|
|
emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
|
|
emit(hppa_add(rd, HPPA_REG_T1, rd), ctx);
|
|
}
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_SUB | BPF_K:
|
|
case BPF_ALU64 | BPF_SUB | BPF_K:
|
|
if (relative_bits_ok(-imm, 14)) {
|
|
emit(hppa_ldo(-imm, rd, rd), ctx);
|
|
} else {
|
|
emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
|
|
emit(hppa_sub(rd, HPPA_REG_T1, rd), ctx);
|
|
}
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_AND | BPF_K:
|
|
case BPF_ALU64 | BPF_AND | BPF_K:
|
|
emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
|
|
emit(hppa_and(rd, HPPA_REG_T1, rd), ctx);
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_OR | BPF_K:
|
|
case BPF_ALU64 | BPF_OR | BPF_K:
|
|
emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
|
|
emit(hppa_or(rd, HPPA_REG_T1, rd), ctx);
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_XOR | BPF_K:
|
|
case BPF_ALU64 | BPF_XOR | BPF_K:
|
|
emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
|
|
emit(hppa_xor(rd, HPPA_REG_T1, rd), ctx);
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_LSH | BPF_K:
|
|
case BPF_ALU64 | BPF_LSH | BPF_K:
|
|
if (imm != 0) {
|
|
emit_hppa64_shld(rd, imm, rd, ctx);
|
|
}
|
|
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_RSH | BPF_K:
|
|
case BPF_ALU64 | BPF_RSH | BPF_K:
|
|
if (imm != 0) {
|
|
if (is64)
|
|
emit_hppa64_shrd(rd, imm, rd, false, ctx);
|
|
else
|
|
emit_hppa64_shrw(rd, imm, rd, false, ctx);
|
|
}
|
|
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
case BPF_ALU | BPF_ARSH | BPF_K:
|
|
case BPF_ALU64 | BPF_ARSH | BPF_K:
|
|
if (imm != 0) {
|
|
if (is64)
|
|
emit_hppa64_shrd(rd, imm, rd, true, ctx);
|
|
else
|
|
emit_hppa64_shrw(rd, imm, rd, true, ctx);
|
|
}
|
|
|
|
if (!is64 && !aux->verifier_zext)
|
|
emit_zext_32(rd, ctx);
|
|
break;
|
|
|
|
/* JUMP off */
|
|
case BPF_JMP | BPF_JA:
|
|
paoff = hppa_offset(i, off, ctx);
|
|
ret = emit_jump(paoff, false, ctx);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
|
|
/* IF (dst COND src) JUMP off */
|
|
case BPF_JMP | BPF_JEQ | BPF_X:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_X:
|
|
case BPF_JMP | BPF_JGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JGT | BPF_X:
|
|
case BPF_JMP | BPF_JLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JLT | BPF_X:
|
|
case BPF_JMP | BPF_JGE | BPF_X:
|
|
case BPF_JMP32 | BPF_JGE | BPF_X:
|
|
case BPF_JMP | BPF_JLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JLE | BPF_X:
|
|
case BPF_JMP | BPF_JNE | BPF_X:
|
|
case BPF_JMP32 | BPF_JNE | BPF_X:
|
|
case BPF_JMP | BPF_JSGT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_X:
|
|
case BPF_JMP | BPF_JSLT | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_X:
|
|
case BPF_JMP | BPF_JSGE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_X:
|
|
case BPF_JMP | BPF_JSLE | BPF_X:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_X:
|
|
case BPF_JMP | BPF_JSET | BPF_X:
|
|
case BPF_JMP32 | BPF_JSET | BPF_X:
|
|
paoff = hppa_offset(i, off, ctx);
|
|
if (!is64) {
|
|
s = ctx->ninsns;
|
|
if (is_signed_bpf_cond(BPF_OP(code)))
|
|
emit_sext_32_rd_rs(&rd, &rs, ctx);
|
|
else
|
|
emit_zext_32_rd_rs(&rd, &rs, ctx);
|
|
e = ctx->ninsns;
|
|
|
|
/* Adjust for extra insns */
|
|
paoff -= (e - s);
|
|
}
|
|
if (BPF_OP(code) == BPF_JSET) {
|
|
/* Adjust for and */
|
|
paoff -= 1;
|
|
emit(hppa_and(rs, rd, HPPA_REG_T1), ctx);
|
|
emit_branch(BPF_JNE, HPPA_REG_T1, HPPA_REG_ZERO, paoff,
|
|
ctx);
|
|
} else {
|
|
emit_branch(BPF_OP(code), rd, rs, paoff, ctx);
|
|
}
|
|
break;
|
|
|
|
/* IF (dst COND imm) JUMP off */
|
|
case BPF_JMP | BPF_JEQ | BPF_K:
|
|
case BPF_JMP32 | BPF_JEQ | BPF_K:
|
|
case BPF_JMP | BPF_JGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JGT | BPF_K:
|
|
case BPF_JMP | BPF_JLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JLT | BPF_K:
|
|
case BPF_JMP | BPF_JGE | BPF_K:
|
|
case BPF_JMP32 | BPF_JGE | BPF_K:
|
|
case BPF_JMP | BPF_JLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JLE | BPF_K:
|
|
case BPF_JMP | BPF_JNE | BPF_K:
|
|
case BPF_JMP32 | BPF_JNE | BPF_K:
|
|
case BPF_JMP | BPF_JSGT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGT | BPF_K:
|
|
case BPF_JMP | BPF_JSLT | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLT | BPF_K:
|
|
case BPF_JMP | BPF_JSGE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSGE | BPF_K:
|
|
case BPF_JMP | BPF_JSLE | BPF_K:
|
|
case BPF_JMP32 | BPF_JSLE | BPF_K:
|
|
paoff = hppa_offset(i, off, ctx);
|
|
s = ctx->ninsns;
|
|
if (imm) {
|
|
emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
|
|
rs = HPPA_REG_T1;
|
|
} else {
|
|
rs = HPPA_REG_ZERO;
|
|
}
|
|
if (!is64) {
|
|
if (is_signed_bpf_cond(BPF_OP(code)))
|
|
emit_sext_32_rd(&rd, ctx);
|
|
else
|
|
emit_zext_32_rd_t1(&rd, ctx);
|
|
}
|
|
e = ctx->ninsns;
|
|
|
|
/* Adjust for extra insns */
|
|
paoff -= (e - s);
|
|
emit_branch(BPF_OP(code), rd, rs, paoff, ctx);
|
|
break;
|
|
case BPF_JMP | BPF_JSET | BPF_K:
|
|
case BPF_JMP32 | BPF_JSET | BPF_K:
|
|
paoff = hppa_offset(i, off, ctx);
|
|
s = ctx->ninsns;
|
|
emit_imm(HPPA_REG_T1, imm, HPPA_REG_T2, ctx);
|
|
emit(hppa_and(HPPA_REG_T1, rd, HPPA_REG_T1), ctx);
|
|
/* For jset32, we should clear the upper 32 bits of t1, but
|
|
* sign-extension is sufficient here and saves one instruction,
|
|
* as t1 is used only in comparison against zero.
|
|
*/
|
|
if (!is64 && imm < 0)
|
|
emit_hppa64_sext32(HPPA_REG_T1, HPPA_REG_T1, ctx);
|
|
e = ctx->ninsns;
|
|
paoff -= (e - s);
|
|
emit_branch(BPF_JNE, HPPA_REG_T1, HPPA_REG_ZERO, paoff, ctx);
|
|
break;
|
|
/* function call */
|
|
case BPF_JMP | BPF_CALL:
|
|
{
|
|
bool fixed_addr;
|
|
u64 addr;
|
|
|
|
ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
|
|
&addr, &fixed_addr);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
REG_SET_SEEN_ALL(ctx);
|
|
emit_call(addr, fixed_addr, ctx);
|
|
break;
|
|
}
|
|
/* tail call */
|
|
case BPF_JMP | BPF_TAIL_CALL:
|
|
emit_bpf_tail_call(i, ctx);
|
|
break;
|
|
|
|
/* function return */
|
|
case BPF_JMP | BPF_EXIT:
|
|
if (i == ctx->prog->len - 1)
|
|
break;
|
|
|
|
paoff = epilogue_offset(ctx);
|
|
ret = emit_jump(paoff, false, ctx);
|
|
if (ret)
|
|
return ret;
|
|
break;
|
|
|
|
/* dst = imm64 */
|
|
case BPF_LD | BPF_IMM | BPF_DW:
|
|
{
|
|
struct bpf_insn insn1 = insn[1];
|
|
u64 imm64 = (u64)insn1.imm << 32 | (u32)imm;
|
|
if (bpf_pseudo_func(insn))
|
|
imm64 = (uintptr_t)dereference_function_descriptor((void*)imm64);
|
|
emit_imm(rd, imm64, HPPA_REG_T2, ctx);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* LDX: dst = *(size *)(src + off) */
|
|
case BPF_LDX | BPF_MEM | BPF_B:
|
|
case BPF_LDX | BPF_MEM | BPF_H:
|
|
case BPF_LDX | BPF_MEM | BPF_W:
|
|
case BPF_LDX | BPF_MEM | BPF_DW:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_B:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_H:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_W:
|
|
case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
|
|
{
|
|
u8 srcreg;
|
|
|
|
/* need to calculate address since offset does not fit in 14 bits? */
|
|
if (relative_bits_ok(off, 14))
|
|
srcreg = rs;
|
|
else {
|
|
/* need to use R1 here, since addil puts result into R1 */
|
|
srcreg = HPPA_REG_R1;
|
|
BUG_ON(rs == HPPA_REG_R1);
|
|
BUG_ON(rd == HPPA_REG_R1);
|
|
emit(hppa_addil(off, rs), ctx);
|
|
off = im11(off);
|
|
}
|
|
|
|
switch (BPF_SIZE(code)) {
|
|
case BPF_B:
|
|
emit(hppa_ldb(off, srcreg, rd), ctx);
|
|
if (insn_is_zext(&insn[1]))
|
|
return 1;
|
|
break;
|
|
case BPF_H:
|
|
emit(hppa_ldh(off, srcreg, rd), ctx);
|
|
if (insn_is_zext(&insn[1]))
|
|
return 1;
|
|
break;
|
|
case BPF_W:
|
|
emit(hppa_ldw(off, srcreg, rd), ctx);
|
|
if (insn_is_zext(&insn[1]))
|
|
return 1;
|
|
break;
|
|
case BPF_DW:
|
|
if (off & 7) {
|
|
emit(hppa_ldo(off, srcreg, HPPA_REG_R1), ctx);
|
|
emit(hppa64_ldd_reg(HPPA_REG_ZERO, HPPA_REG_R1, rd), ctx);
|
|
} else if (off >= -16 && off <= 15)
|
|
emit(hppa64_ldd_im5(off, srcreg, rd), ctx);
|
|
else
|
|
emit(hppa64_ldd_im16(off, srcreg, rd), ctx);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
/* speculation barrier */
|
|
case BPF_ST | BPF_NOSPEC:
|
|
break;
|
|
|
|
/* ST: *(size *)(dst + off) = imm */
|
|
/* STX: *(size *)(dst + off) = src */
|
|
case BPF_ST | BPF_MEM | BPF_B:
|
|
case BPF_ST | BPF_MEM | BPF_H:
|
|
case BPF_ST | BPF_MEM | BPF_W:
|
|
case BPF_ST | BPF_MEM | BPF_DW:
|
|
|
|
case BPF_STX | BPF_MEM | BPF_B:
|
|
case BPF_STX | BPF_MEM | BPF_H:
|
|
case BPF_STX | BPF_MEM | BPF_W:
|
|
case BPF_STX | BPF_MEM | BPF_DW:
|
|
if (BPF_CLASS(code) == BPF_ST) {
|
|
emit_imm(HPPA_REG_T2, imm, HPPA_REG_T1, ctx);
|
|
rs = HPPA_REG_T2;
|
|
}
|
|
|
|
emit_store(rd, rs, off, ctx, BPF_SIZE(code), BPF_MODE(code));
|
|
break;
|
|
|
|
case BPF_STX | BPF_ATOMIC | BPF_W:
|
|
case BPF_STX | BPF_ATOMIC | BPF_DW:
|
|
pr_info_once(
|
|
"bpf-jit: not supported: atomic operation %02x ***\n",
|
|
insn->imm);
|
|
return -EFAULT;
|
|
|
|
default:
|
|
pr_err("bpf-jit: unknown opcode %02x\n", code);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void bpf_jit_build_prologue(struct hppa_jit_context *ctx)
|
|
{
|
|
int bpf_stack_adjust, stack_adjust, i;
|
|
unsigned long addr;
|
|
s8 reg;
|
|
|
|
/*
|
|
* stack on hppa grows up, so if tail calls are used we need to
|
|
* allocate the maximum stack size
|
|
*/
|
|
if (REG_ALL_SEEN(ctx))
|
|
bpf_stack_adjust = MAX_BPF_STACK;
|
|
else
|
|
bpf_stack_adjust = ctx->prog->aux->stack_depth;
|
|
bpf_stack_adjust = round_up(bpf_stack_adjust, STACK_ALIGN);
|
|
|
|
stack_adjust = FRAME_SIZE + bpf_stack_adjust;
|
|
stack_adjust = round_up(stack_adjust, STACK_ALIGN);
|
|
|
|
/*
|
|
* NOTE: We construct an Elf64_Fdesc descriptor here.
|
|
* The first 4 words initialize the TCC and compares them.
|
|
* Then follows the virtual address of the eBPF function,
|
|
* and the gp for this function.
|
|
*
|
|
* The first instruction sets the tail-call-counter (TCC) register.
|
|
* This instruction is skipped by tail calls.
|
|
* Use a temporary register instead of a caller-saved register initially.
|
|
*/
|
|
REG_FORCE_SEEN(ctx, HPPA_REG_TCC_IN_INIT);
|
|
emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_TCC_IN_INIT), ctx);
|
|
|
|
/*
|
|
* Skip all initializations when called as BPF TAIL call.
|
|
*/
|
|
emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_R1), ctx);
|
|
emit(hppa_beq(HPPA_REG_TCC_IN_INIT, HPPA_REG_R1, 6 - HPPA_BRANCH_DISPLACEMENT), ctx);
|
|
emit(hppa64_bl_long(ctx->prologue_len - 3 - HPPA_BRANCH_DISPLACEMENT), ctx);
|
|
|
|
/* store entry address of this eBPF function */
|
|
addr = (uintptr_t) &ctx->insns[0];
|
|
emit(addr >> 32, ctx);
|
|
emit(addr & 0xffffffff, ctx);
|
|
|
|
/* store gp of this eBPF function */
|
|
asm("copy %%r27,%0" : "=r" (addr) );
|
|
emit(addr >> 32, ctx);
|
|
emit(addr & 0xffffffff, ctx);
|
|
|
|
/* Set up hppa stack frame. */
|
|
emit_hppa_copy(HPPA_REG_SP, HPPA_REG_R1, ctx);
|
|
emit(hppa_ldo(stack_adjust, HPPA_REG_SP, HPPA_REG_SP), ctx);
|
|
emit(hppa64_std_im5 (HPPA_REG_R1, -REG_SIZE, HPPA_REG_SP), ctx);
|
|
emit(hppa64_std_im16(HPPA_REG_RP, -2*REG_SIZE, HPPA_REG_SP), ctx);
|
|
|
|
/* Save callee-save registers. */
|
|
for (i = 3; i <= 15; i++) {
|
|
if (OPTIMIZE_HPPA && !REG_WAS_SEEN(ctx, HPPA_R(i)))
|
|
continue;
|
|
emit(hppa64_std_im16(HPPA_R(i), -REG_SIZE * i, HPPA_REG_SP), ctx);
|
|
}
|
|
|
|
/* load function parameters; load all if we use tail functions */
|
|
#define LOAD_PARAM(arg, dst) \
|
|
if (REG_WAS_SEEN(ctx, regmap[dst]) || \
|
|
REG_WAS_SEEN(ctx, HPPA_REG_TCC)) \
|
|
emit_hppa_copy(arg, regmap[dst], ctx)
|
|
LOAD_PARAM(HPPA_REG_ARG0, BPF_REG_1);
|
|
LOAD_PARAM(HPPA_REG_ARG1, BPF_REG_2);
|
|
LOAD_PARAM(HPPA_REG_ARG2, BPF_REG_3);
|
|
LOAD_PARAM(HPPA_REG_ARG3, BPF_REG_4);
|
|
LOAD_PARAM(HPPA_REG_ARG4, BPF_REG_5);
|
|
#undef LOAD_PARAM
|
|
|
|
REG_FORCE_SEEN(ctx, HPPA_REG_T0);
|
|
REG_FORCE_SEEN(ctx, HPPA_REG_T1);
|
|
REG_FORCE_SEEN(ctx, HPPA_REG_T2);
|
|
|
|
/*
|
|
* Now really set the tail call counter (TCC) register.
|
|
*/
|
|
if (REG_WAS_SEEN(ctx, HPPA_REG_TCC))
|
|
emit(hppa_ldi(MAX_TAIL_CALL_CNT, HPPA_REG_TCC), ctx);
|
|
|
|
/*
|
|
* Save epilogue function pointer for outer TCC call chain.
|
|
* The main TCC call stores the final RP on stack.
|
|
*/
|
|
addr = (uintptr_t) &ctx->insns[ctx->epilogue_offset];
|
|
/* skip first two instructions which jump to exit */
|
|
addr += 2 * HPPA_INSN_SIZE;
|
|
emit_imm(HPPA_REG_T2, addr, HPPA_REG_T1, ctx);
|
|
emit(EXIT_PTR_STORE(HPPA_REG_T2), ctx);
|
|
|
|
/* Set up BPF frame pointer. */
|
|
reg = regmap[BPF_REG_FP]; /* -> HPPA_REG_FP */
|
|
if (REG_WAS_SEEN(ctx, reg)) {
|
|
emit(hppa_ldo(-FRAME_SIZE, HPPA_REG_SP, reg), ctx);
|
|
}
|
|
}
|
|
|
|
void bpf_jit_build_epilogue(struct hppa_jit_context *ctx)
|
|
{
|
|
__build_epilogue(false, ctx);
|
|
}
|
|
|
|
bool bpf_jit_supports_kfunc_call(void)
|
|
{
|
|
return true;
|
|
}
|