f708223d49
Impact: enable access to hardware feature POWER processors have the ability to "mark" a subset of the instructions and provide more detailed information on what happens to the marked instructions as they flow through the pipeline. This marking is enabled by the "sample enable" bit in MMCRA, and there are synchronization requirements around setting and clearing the bit. This adds logic to the processor-specific back-ends so that they know which events relate to marked instructions and set the sampling enable bit if any event that we want to put on the PMU is a marked instruction event. It also adds logic to the generic powerpc code to do the necessary synchronization if that bit is set. Signed-off-by: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> LKML-Reference: <18908.31930.1024.228867@cargo.ozlabs.ibm.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
864 lines
21 KiB
C
864 lines
21 KiB
C
/*
|
|
* Performance counter support - powerpc architecture code
|
|
*
|
|
* Copyright 2008-2009 Paul Mackerras, IBM Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/perf_counter.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/hardirq.h>
|
|
#include <asm/reg.h>
|
|
#include <asm/pmc.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/firmware.h>
|
|
|
|
struct cpu_hw_counters {
|
|
int n_counters;
|
|
int n_percpu;
|
|
int disabled;
|
|
int n_added;
|
|
struct perf_counter *counter[MAX_HWCOUNTERS];
|
|
unsigned int events[MAX_HWCOUNTERS];
|
|
u64 mmcr[3];
|
|
u8 pmcs_enabled;
|
|
};
|
|
DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
|
|
|
|
struct power_pmu *ppmu;
|
|
|
|
/*
|
|
* Normally, to ignore kernel events we set the FCS (freeze counters
|
|
* in supervisor mode) bit in MMCR0, but if the kernel runs with the
|
|
* hypervisor bit set in the MSR, or if we are running on a processor
|
|
* where the hypervisor bit is forced to 1 (as on Apple G5 processors),
|
|
* then we need to use the FCHV bit to ignore kernel events.
|
|
*/
|
|
static unsigned int freeze_counters_kernel = MMCR0_FCS;
|
|
|
|
static void perf_counter_interrupt(struct pt_regs *regs);
|
|
|
|
void perf_counter_print_debug(void)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Read one performance monitor counter (PMC).
|
|
*/
|
|
static unsigned long read_pmc(int idx)
|
|
{
|
|
unsigned long val;
|
|
|
|
switch (idx) {
|
|
case 1:
|
|
val = mfspr(SPRN_PMC1);
|
|
break;
|
|
case 2:
|
|
val = mfspr(SPRN_PMC2);
|
|
break;
|
|
case 3:
|
|
val = mfspr(SPRN_PMC3);
|
|
break;
|
|
case 4:
|
|
val = mfspr(SPRN_PMC4);
|
|
break;
|
|
case 5:
|
|
val = mfspr(SPRN_PMC5);
|
|
break;
|
|
case 6:
|
|
val = mfspr(SPRN_PMC6);
|
|
break;
|
|
case 7:
|
|
val = mfspr(SPRN_PMC7);
|
|
break;
|
|
case 8:
|
|
val = mfspr(SPRN_PMC8);
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "oops trying to read PMC%d\n", idx);
|
|
val = 0;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Write one PMC.
|
|
*/
|
|
static void write_pmc(int idx, unsigned long val)
|
|
{
|
|
switch (idx) {
|
|
case 1:
|
|
mtspr(SPRN_PMC1, val);
|
|
break;
|
|
case 2:
|
|
mtspr(SPRN_PMC2, val);
|
|
break;
|
|
case 3:
|
|
mtspr(SPRN_PMC3, val);
|
|
break;
|
|
case 4:
|
|
mtspr(SPRN_PMC4, val);
|
|
break;
|
|
case 5:
|
|
mtspr(SPRN_PMC5, val);
|
|
break;
|
|
case 6:
|
|
mtspr(SPRN_PMC6, val);
|
|
break;
|
|
case 7:
|
|
mtspr(SPRN_PMC7, val);
|
|
break;
|
|
case 8:
|
|
mtspr(SPRN_PMC8, val);
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "oops trying to write PMC%d\n", idx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if a set of events can all go on the PMU at once.
|
|
* If they can't, this will look at alternative codes for the events
|
|
* and see if any combination of alternative codes is feasible.
|
|
* The feasible set is returned in event[].
|
|
*/
|
|
static int power_check_constraints(unsigned int event[], int n_ev)
|
|
{
|
|
u64 mask, value, nv;
|
|
unsigned int alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
|
|
u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
|
|
u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
|
|
u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
|
|
int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
|
|
int i, j;
|
|
u64 addf = ppmu->add_fields;
|
|
u64 tadd = ppmu->test_adder;
|
|
|
|
if (n_ev > ppmu->n_counter)
|
|
return -1;
|
|
|
|
/* First see if the events will go on as-is */
|
|
for (i = 0; i < n_ev; ++i) {
|
|
alternatives[i][0] = event[i];
|
|
if (ppmu->get_constraint(event[i], &amasks[i][0],
|
|
&avalues[i][0]))
|
|
return -1;
|
|
choice[i] = 0;
|
|
}
|
|
value = mask = 0;
|
|
for (i = 0; i < n_ev; ++i) {
|
|
nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
|
|
if ((((nv + tadd) ^ value) & mask) != 0 ||
|
|
(((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
|
|
break;
|
|
value = nv;
|
|
mask |= amasks[i][0];
|
|
}
|
|
if (i == n_ev)
|
|
return 0; /* all OK */
|
|
|
|
/* doesn't work, gather alternatives... */
|
|
if (!ppmu->get_alternatives)
|
|
return -1;
|
|
for (i = 0; i < n_ev; ++i) {
|
|
n_alt[i] = ppmu->get_alternatives(event[i], alternatives[i]);
|
|
for (j = 1; j < n_alt[i]; ++j)
|
|
ppmu->get_constraint(alternatives[i][j],
|
|
&amasks[i][j], &avalues[i][j]);
|
|
}
|
|
|
|
/* enumerate all possibilities and see if any will work */
|
|
i = 0;
|
|
j = -1;
|
|
value = mask = nv = 0;
|
|
while (i < n_ev) {
|
|
if (j >= 0) {
|
|
/* we're backtracking, restore context */
|
|
value = svalues[i];
|
|
mask = smasks[i];
|
|
j = choice[i];
|
|
}
|
|
/*
|
|
* See if any alternative k for event i,
|
|
* where k > j, will satisfy the constraints.
|
|
*/
|
|
while (++j < n_alt[i]) {
|
|
nv = (value | avalues[i][j]) +
|
|
(value & avalues[i][j] & addf);
|
|
if ((((nv + tadd) ^ value) & mask) == 0 &&
|
|
(((nv + tadd) ^ avalues[i][j])
|
|
& amasks[i][j]) == 0)
|
|
break;
|
|
}
|
|
if (j >= n_alt[i]) {
|
|
/*
|
|
* No feasible alternative, backtrack
|
|
* to event i-1 and continue enumerating its
|
|
* alternatives from where we got up to.
|
|
*/
|
|
if (--i < 0)
|
|
return -1;
|
|
} else {
|
|
/*
|
|
* Found a feasible alternative for event i,
|
|
* remember where we got up to with this event,
|
|
* go on to the next event, and start with
|
|
* the first alternative for it.
|
|
*/
|
|
choice[i] = j;
|
|
svalues[i] = value;
|
|
smasks[i] = mask;
|
|
value = nv;
|
|
mask |= amasks[i][j];
|
|
++i;
|
|
j = -1;
|
|
}
|
|
}
|
|
|
|
/* OK, we have a feasible combination, tell the caller the solution */
|
|
for (i = 0; i < n_ev; ++i)
|
|
event[i] = alternatives[i][choice[i]];
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check if newly-added counters have consistent settings for
|
|
* exclude_{user,kernel,hv} with each other and any previously
|
|
* added counters.
|
|
*/
|
|
static int check_excludes(struct perf_counter **ctrs, int n_prev, int n_new)
|
|
{
|
|
int eu, ek, eh;
|
|
int i, n;
|
|
struct perf_counter *counter;
|
|
|
|
n = n_prev + n_new;
|
|
if (n <= 1)
|
|
return 0;
|
|
|
|
eu = ctrs[0]->hw_event.exclude_user;
|
|
ek = ctrs[0]->hw_event.exclude_kernel;
|
|
eh = ctrs[0]->hw_event.exclude_hv;
|
|
if (n_prev == 0)
|
|
n_prev = 1;
|
|
for (i = n_prev; i < n; ++i) {
|
|
counter = ctrs[i];
|
|
if (counter->hw_event.exclude_user != eu ||
|
|
counter->hw_event.exclude_kernel != ek ||
|
|
counter->hw_event.exclude_hv != eh)
|
|
return -EAGAIN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void power_perf_read(struct perf_counter *counter)
|
|
{
|
|
long val, delta, prev;
|
|
|
|
if (!counter->hw.idx)
|
|
return;
|
|
/*
|
|
* Performance monitor interrupts come even when interrupts
|
|
* are soft-disabled, as long as interrupts are hard-enabled.
|
|
* Therefore we treat them like NMIs.
|
|
*/
|
|
do {
|
|
prev = atomic64_read(&counter->hw.prev_count);
|
|
barrier();
|
|
val = read_pmc(counter->hw.idx);
|
|
} while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
|
|
|
|
/* The counters are only 32 bits wide */
|
|
delta = (val - prev) & 0xfffffffful;
|
|
atomic64_add(delta, &counter->count);
|
|
atomic64_sub(delta, &counter->hw.period_left);
|
|
}
|
|
|
|
/*
|
|
* Disable all counters to prevent PMU interrupts and to allow
|
|
* counters to be added or removed.
|
|
*/
|
|
u64 hw_perf_save_disable(void)
|
|
{
|
|
struct cpu_hw_counters *cpuhw;
|
|
unsigned long ret;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
|
|
ret = cpuhw->disabled;
|
|
if (!ret) {
|
|
cpuhw->disabled = 1;
|
|
cpuhw->n_added = 0;
|
|
|
|
/*
|
|
* Check if we ever enabled the PMU on this cpu.
|
|
*/
|
|
if (!cpuhw->pmcs_enabled) {
|
|
if (ppc_md.enable_pmcs)
|
|
ppc_md.enable_pmcs();
|
|
cpuhw->pmcs_enabled = 1;
|
|
}
|
|
|
|
/*
|
|
* Disable instruction sampling if it was enabled
|
|
*/
|
|
if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
|
|
mtspr(SPRN_MMCRA,
|
|
cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
|
|
mb();
|
|
}
|
|
|
|
/*
|
|
* Set the 'freeze counters' bit.
|
|
* The barrier is to make sure the mtspr has been
|
|
* executed and the PMU has frozen the counters
|
|
* before we return.
|
|
*/
|
|
mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) | MMCR0_FC);
|
|
mb();
|
|
}
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Re-enable all counters if disable == 0.
|
|
* If we were previously disabled and counters were added, then
|
|
* put the new config on the PMU.
|
|
*/
|
|
void hw_perf_restore(u64 disable)
|
|
{
|
|
struct perf_counter *counter;
|
|
struct cpu_hw_counters *cpuhw;
|
|
unsigned long flags;
|
|
long i;
|
|
unsigned long val;
|
|
s64 left;
|
|
unsigned int hwc_index[MAX_HWCOUNTERS];
|
|
|
|
if (disable)
|
|
return;
|
|
local_irq_save(flags);
|
|
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
cpuhw->disabled = 0;
|
|
|
|
/*
|
|
* If we didn't change anything, or only removed counters,
|
|
* no need to recalculate MMCR* settings and reset the PMCs.
|
|
* Just reenable the PMU with the current MMCR* settings
|
|
* (possibly updated for removal of counters).
|
|
*/
|
|
if (!cpuhw->n_added) {
|
|
mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
|
|
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
|
|
if (cpuhw->n_counters == 0)
|
|
get_lppaca()->pmcregs_in_use = 0;
|
|
goto out_enable;
|
|
}
|
|
|
|
/*
|
|
* Compute MMCR* values for the new set of counters
|
|
*/
|
|
if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
|
|
cpuhw->mmcr)) {
|
|
/* shouldn't ever get here */
|
|
printk(KERN_ERR "oops compute_mmcr failed\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Add in MMCR0 freeze bits corresponding to the
|
|
* hw_event.exclude_* bits for the first counter.
|
|
* We have already checked that all counters have the
|
|
* same values for these bits as the first counter.
|
|
*/
|
|
counter = cpuhw->counter[0];
|
|
if (counter->hw_event.exclude_user)
|
|
cpuhw->mmcr[0] |= MMCR0_FCP;
|
|
if (counter->hw_event.exclude_kernel)
|
|
cpuhw->mmcr[0] |= freeze_counters_kernel;
|
|
if (counter->hw_event.exclude_hv)
|
|
cpuhw->mmcr[0] |= MMCR0_FCHV;
|
|
|
|
/*
|
|
* Write the new configuration to MMCR* with the freeze
|
|
* bit set and set the hardware counters to their initial values.
|
|
* Then unfreeze the counters.
|
|
*/
|
|
get_lppaca()->pmcregs_in_use = 1;
|
|
mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
|
|
mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
|
|
mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
|
|
| MMCR0_FC);
|
|
|
|
/*
|
|
* Read off any pre-existing counters that need to move
|
|
* to another PMC.
|
|
*/
|
|
for (i = 0; i < cpuhw->n_counters; ++i) {
|
|
counter = cpuhw->counter[i];
|
|
if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
|
|
power_perf_read(counter);
|
|
write_pmc(counter->hw.idx, 0);
|
|
counter->hw.idx = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the PMCs for all the new and moved counters.
|
|
*/
|
|
for (i = 0; i < cpuhw->n_counters; ++i) {
|
|
counter = cpuhw->counter[i];
|
|
if (counter->hw.idx)
|
|
continue;
|
|
val = 0;
|
|
if (counter->hw_event.irq_period) {
|
|
left = atomic64_read(&counter->hw.period_left);
|
|
if (left < 0x80000000L)
|
|
val = 0x80000000L - left;
|
|
}
|
|
atomic64_set(&counter->hw.prev_count, val);
|
|
counter->hw.idx = hwc_index[i] + 1;
|
|
write_pmc(counter->hw.idx, val);
|
|
perf_counter_update_userpage(counter);
|
|
}
|
|
cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
|
|
|
|
out_enable:
|
|
mb();
|
|
mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
|
|
|
|
/*
|
|
* Enable instruction sampling if necessary
|
|
*/
|
|
if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
|
|
mb();
|
|
mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
|
|
}
|
|
|
|
out:
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static int collect_events(struct perf_counter *group, int max_count,
|
|
struct perf_counter *ctrs[], unsigned int *events)
|
|
{
|
|
int n = 0;
|
|
struct perf_counter *counter;
|
|
|
|
if (!is_software_counter(group)) {
|
|
if (n >= max_count)
|
|
return -1;
|
|
ctrs[n] = group;
|
|
events[n++] = group->hw.config;
|
|
}
|
|
list_for_each_entry(counter, &group->sibling_list, list_entry) {
|
|
if (!is_software_counter(counter) &&
|
|
counter->state != PERF_COUNTER_STATE_OFF) {
|
|
if (n >= max_count)
|
|
return -1;
|
|
ctrs[n] = counter;
|
|
events[n++] = counter->hw.config;
|
|
}
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static void counter_sched_in(struct perf_counter *counter, int cpu)
|
|
{
|
|
counter->state = PERF_COUNTER_STATE_ACTIVE;
|
|
counter->oncpu = cpu;
|
|
counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
|
|
if (is_software_counter(counter))
|
|
counter->hw_ops->enable(counter);
|
|
}
|
|
|
|
/*
|
|
* Called to enable a whole group of counters.
|
|
* Returns 1 if the group was enabled, or -EAGAIN if it could not be.
|
|
* Assumes the caller has disabled interrupts and has
|
|
* frozen the PMU with hw_perf_save_disable.
|
|
*/
|
|
int hw_perf_group_sched_in(struct perf_counter *group_leader,
|
|
struct perf_cpu_context *cpuctx,
|
|
struct perf_counter_context *ctx, int cpu)
|
|
{
|
|
struct cpu_hw_counters *cpuhw;
|
|
long i, n, n0;
|
|
struct perf_counter *sub;
|
|
|
|
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
n0 = cpuhw->n_counters;
|
|
n = collect_events(group_leader, ppmu->n_counter - n0,
|
|
&cpuhw->counter[n0], &cpuhw->events[n0]);
|
|
if (n < 0)
|
|
return -EAGAIN;
|
|
if (check_excludes(cpuhw->counter, n0, n))
|
|
return -EAGAIN;
|
|
if (power_check_constraints(cpuhw->events, n + n0))
|
|
return -EAGAIN;
|
|
cpuhw->n_counters = n0 + n;
|
|
cpuhw->n_added += n;
|
|
|
|
/*
|
|
* OK, this group can go on; update counter states etc.,
|
|
* and enable any software counters
|
|
*/
|
|
for (i = n0; i < n0 + n; ++i)
|
|
cpuhw->counter[i]->hw.config = cpuhw->events[i];
|
|
cpuctx->active_oncpu += n;
|
|
n = 1;
|
|
counter_sched_in(group_leader, cpu);
|
|
list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
|
|
if (sub->state != PERF_COUNTER_STATE_OFF) {
|
|
counter_sched_in(sub, cpu);
|
|
++n;
|
|
}
|
|
}
|
|
ctx->nr_active += n;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Add a counter to the PMU.
|
|
* If all counters are not already frozen, then we disable and
|
|
* re-enable the PMU in order to get hw_perf_restore to do the
|
|
* actual work of reconfiguring the PMU.
|
|
*/
|
|
static int power_perf_enable(struct perf_counter *counter)
|
|
{
|
|
struct cpu_hw_counters *cpuhw;
|
|
unsigned long flags;
|
|
u64 pmudis;
|
|
int n0;
|
|
int ret = -EAGAIN;
|
|
|
|
local_irq_save(flags);
|
|
pmudis = hw_perf_save_disable();
|
|
|
|
/*
|
|
* Add the counter to the list (if there is room)
|
|
* and check whether the total set is still feasible.
|
|
*/
|
|
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
n0 = cpuhw->n_counters;
|
|
if (n0 >= ppmu->n_counter)
|
|
goto out;
|
|
cpuhw->counter[n0] = counter;
|
|
cpuhw->events[n0] = counter->hw.config;
|
|
if (check_excludes(cpuhw->counter, n0, 1))
|
|
goto out;
|
|
if (power_check_constraints(cpuhw->events, n0 + 1))
|
|
goto out;
|
|
|
|
counter->hw.config = cpuhw->events[n0];
|
|
++cpuhw->n_counters;
|
|
++cpuhw->n_added;
|
|
|
|
ret = 0;
|
|
out:
|
|
hw_perf_restore(pmudis);
|
|
local_irq_restore(flags);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Remove a counter from the PMU.
|
|
*/
|
|
static void power_perf_disable(struct perf_counter *counter)
|
|
{
|
|
struct cpu_hw_counters *cpuhw;
|
|
long i;
|
|
u64 pmudis;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
pmudis = hw_perf_save_disable();
|
|
|
|
power_perf_read(counter);
|
|
|
|
cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
for (i = 0; i < cpuhw->n_counters; ++i) {
|
|
if (counter == cpuhw->counter[i]) {
|
|
while (++i < cpuhw->n_counters)
|
|
cpuhw->counter[i-1] = cpuhw->counter[i];
|
|
--cpuhw->n_counters;
|
|
ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
|
|
write_pmc(counter->hw.idx, 0);
|
|
counter->hw.idx = 0;
|
|
perf_counter_update_userpage(counter);
|
|
break;
|
|
}
|
|
}
|
|
if (cpuhw->n_counters == 0) {
|
|
/* disable exceptions if no counters are running */
|
|
cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
|
|
}
|
|
|
|
hw_perf_restore(pmudis);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
struct hw_perf_counter_ops power_perf_ops = {
|
|
.enable = power_perf_enable,
|
|
.disable = power_perf_disable,
|
|
.read = power_perf_read
|
|
};
|
|
|
|
/* Number of perf_counters counting hardware events */
|
|
static atomic_t num_counters;
|
|
/* Used to avoid races in calling reserve/release_pmc_hardware */
|
|
static DEFINE_MUTEX(pmc_reserve_mutex);
|
|
|
|
/*
|
|
* Release the PMU if this is the last perf_counter.
|
|
*/
|
|
static void hw_perf_counter_destroy(struct perf_counter *counter)
|
|
{
|
|
if (!atomic_add_unless(&num_counters, -1, 1)) {
|
|
mutex_lock(&pmc_reserve_mutex);
|
|
if (atomic_dec_return(&num_counters) == 0)
|
|
release_pmc_hardware();
|
|
mutex_unlock(&pmc_reserve_mutex);
|
|
}
|
|
}
|
|
|
|
const struct hw_perf_counter_ops *
|
|
hw_perf_counter_init(struct perf_counter *counter)
|
|
{
|
|
unsigned long ev;
|
|
struct perf_counter *ctrs[MAX_HWCOUNTERS];
|
|
unsigned int events[MAX_HWCOUNTERS];
|
|
int n;
|
|
int err;
|
|
|
|
if (!ppmu)
|
|
return ERR_PTR(-ENXIO);
|
|
if ((s64)counter->hw_event.irq_period < 0)
|
|
return ERR_PTR(-EINVAL);
|
|
if (!perf_event_raw(&counter->hw_event)) {
|
|
ev = perf_event_id(&counter->hw_event);
|
|
if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
|
|
return ERR_PTR(-EOPNOTSUPP);
|
|
ev = ppmu->generic_events[ev];
|
|
} else {
|
|
ev = perf_event_config(&counter->hw_event);
|
|
}
|
|
counter->hw.config_base = ev;
|
|
counter->hw.idx = 0;
|
|
|
|
/*
|
|
* If we are not running on a hypervisor, force the
|
|
* exclude_hv bit to 0 so that we don't care what
|
|
* the user set it to.
|
|
*/
|
|
if (!firmware_has_feature(FW_FEATURE_LPAR))
|
|
counter->hw_event.exclude_hv = 0;
|
|
|
|
/*
|
|
* If this is in a group, check if it can go on with all the
|
|
* other hardware counters in the group. We assume the counter
|
|
* hasn't been linked into its leader's sibling list at this point.
|
|
*/
|
|
n = 0;
|
|
if (counter->group_leader != counter) {
|
|
n = collect_events(counter->group_leader, ppmu->n_counter - 1,
|
|
ctrs, events);
|
|
if (n < 0)
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
events[n] = ev;
|
|
ctrs[n] = counter;
|
|
if (check_excludes(ctrs, n, 1))
|
|
return ERR_PTR(-EINVAL);
|
|
if (power_check_constraints(events, n + 1))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
counter->hw.config = events[n];
|
|
atomic64_set(&counter->hw.period_left, counter->hw_event.irq_period);
|
|
|
|
/*
|
|
* See if we need to reserve the PMU.
|
|
* If no counters are currently in use, then we have to take a
|
|
* mutex to ensure that we don't race with another task doing
|
|
* reserve_pmc_hardware or release_pmc_hardware.
|
|
*/
|
|
err = 0;
|
|
if (!atomic_inc_not_zero(&num_counters)) {
|
|
mutex_lock(&pmc_reserve_mutex);
|
|
if (atomic_read(&num_counters) == 0 &&
|
|
reserve_pmc_hardware(perf_counter_interrupt))
|
|
err = -EBUSY;
|
|
else
|
|
atomic_inc(&num_counters);
|
|
mutex_unlock(&pmc_reserve_mutex);
|
|
}
|
|
counter->destroy = hw_perf_counter_destroy;
|
|
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
return &power_perf_ops;
|
|
}
|
|
|
|
/*
|
|
* A counter has overflowed; update its count and record
|
|
* things if requested. Note that interrupts are hard-disabled
|
|
* here so there is no possibility of being interrupted.
|
|
*/
|
|
static void record_and_restart(struct perf_counter *counter, long val,
|
|
struct pt_regs *regs)
|
|
{
|
|
s64 prev, delta, left;
|
|
int record = 0;
|
|
|
|
/* we don't have to worry about interrupts here */
|
|
prev = atomic64_read(&counter->hw.prev_count);
|
|
delta = (val - prev) & 0xfffffffful;
|
|
atomic64_add(delta, &counter->count);
|
|
|
|
/*
|
|
* See if the total period for this counter has expired,
|
|
* and update for the next period.
|
|
*/
|
|
val = 0;
|
|
left = atomic64_read(&counter->hw.period_left) - delta;
|
|
if (counter->hw_event.irq_period) {
|
|
if (left <= 0) {
|
|
left += counter->hw_event.irq_period;
|
|
if (left <= 0)
|
|
left = counter->hw_event.irq_period;
|
|
record = 1;
|
|
}
|
|
if (left < 0x80000000L)
|
|
val = 0x80000000L - left;
|
|
}
|
|
write_pmc(counter->hw.idx, val);
|
|
atomic64_set(&counter->hw.prev_count, val);
|
|
atomic64_set(&counter->hw.period_left, left);
|
|
perf_counter_update_userpage(counter);
|
|
|
|
/*
|
|
* Finally record data if requested.
|
|
*/
|
|
if (record)
|
|
perf_counter_overflow(counter, 1, regs);
|
|
}
|
|
|
|
/*
|
|
* Performance monitor interrupt stuff
|
|
*/
|
|
static void perf_counter_interrupt(struct pt_regs *regs)
|
|
{
|
|
int i;
|
|
struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
|
|
struct perf_counter *counter;
|
|
long val;
|
|
int found = 0;
|
|
|
|
for (i = 0; i < cpuhw->n_counters; ++i) {
|
|
counter = cpuhw->counter[i];
|
|
val = read_pmc(counter->hw.idx);
|
|
if ((int)val < 0) {
|
|
/* counter has overflowed */
|
|
found = 1;
|
|
record_and_restart(counter, val, regs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In case we didn't find and reset the counter that caused
|
|
* the interrupt, scan all counters and reset any that are
|
|
* negative, to avoid getting continual interrupts.
|
|
* Any that we processed in the previous loop will not be negative.
|
|
*/
|
|
if (!found) {
|
|
for (i = 0; i < ppmu->n_counter; ++i) {
|
|
val = read_pmc(i + 1);
|
|
if ((int)val < 0)
|
|
write_pmc(i + 1, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reset MMCR0 to its normal value. This will set PMXE and
|
|
* clear FC (freeze counters) and PMAO (perf mon alert occurred)
|
|
* and thus allow interrupts to occur again.
|
|
* XXX might want to use MSR.PM to keep the counters frozen until
|
|
* we get back out of this interrupt.
|
|
*/
|
|
mtspr(SPRN_MMCR0, cpuhw->mmcr[0]);
|
|
|
|
/*
|
|
* If we need a wakeup, check whether interrupts were soft-enabled
|
|
* when we took the interrupt. If they were, we can wake stuff up
|
|
* immediately; otherwise we'll have do the wakeup when interrupts
|
|
* get soft-enabled.
|
|
*/
|
|
if (test_perf_counter_pending() && regs->softe) {
|
|
irq_enter();
|
|
clear_perf_counter_pending();
|
|
perf_counter_do_pending();
|
|
irq_exit();
|
|
}
|
|
}
|
|
|
|
void hw_perf_counter_setup(int cpu)
|
|
{
|
|
struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
|
|
|
|
memset(cpuhw, 0, sizeof(*cpuhw));
|
|
cpuhw->mmcr[0] = MMCR0_FC;
|
|
}
|
|
|
|
extern struct power_pmu power4_pmu;
|
|
extern struct power_pmu ppc970_pmu;
|
|
extern struct power_pmu power5_pmu;
|
|
extern struct power_pmu power5p_pmu;
|
|
extern struct power_pmu power6_pmu;
|
|
|
|
static int init_perf_counters(void)
|
|
{
|
|
unsigned long pvr;
|
|
|
|
/* XXX should get this from cputable */
|
|
pvr = mfspr(SPRN_PVR);
|
|
switch (PVR_VER(pvr)) {
|
|
case PV_POWER4:
|
|
case PV_POWER4p:
|
|
ppmu = &power4_pmu;
|
|
break;
|
|
case PV_970:
|
|
case PV_970FX:
|
|
case PV_970MP:
|
|
ppmu = &ppc970_pmu;
|
|
break;
|
|
case PV_POWER5:
|
|
ppmu = &power5_pmu;
|
|
break;
|
|
case PV_POWER5p:
|
|
ppmu = &power5p_pmu;
|
|
break;
|
|
case 0x3e:
|
|
ppmu = &power6_pmu;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Use FCHV to ignore kernel events if MSR.HV is set.
|
|
*/
|
|
if (mfmsr() & MSR_HV)
|
|
freeze_counters_kernel = MMCR0_FCHV;
|
|
|
|
return 0;
|
|
}
|
|
|
|
arch_initcall(init_perf_counters);
|