1
linux/drivers/net/wireless/ath9k/xmit.c
Jouni Malinen f7a276a625 ath9k: Remove MAC header pad before reporting TX status
Remove the possible MAC header pad before reporting TX status to
mac80211. This pad is hardware specific operation and should not be
exposed outside the driver. This fixes the frame body in monitor
interfaces that could be used to check on TX status for transmitted
frames.

Signed-off-by: Jouni Malinen <jouni.malinen@atheros.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-12-19 15:23:24 -05:00

2566 lines
64 KiB
C

/*
* Copyright (c) 2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "core.h"
#define BITS_PER_BYTE 8
#define OFDM_PLCP_BITS 22
#define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
#define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
#define L_STF 8
#define L_LTF 8
#define L_SIG 4
#define HT_SIG 8
#define HT_STF 4
#define HT_LTF(_ns) (4 * (_ns))
#define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
#define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
#define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
#define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
#define OFDM_SIFS_TIME 16
static u32 bits_per_symbol[][2] = {
/* 20MHz 40MHz */
{ 26, 54 }, /* 0: BPSK */
{ 52, 108 }, /* 1: QPSK 1/2 */
{ 78, 162 }, /* 2: QPSK 3/4 */
{ 104, 216 }, /* 3: 16-QAM 1/2 */
{ 156, 324 }, /* 4: 16-QAM 3/4 */
{ 208, 432 }, /* 5: 64-QAM 2/3 */
{ 234, 486 }, /* 6: 64-QAM 3/4 */
{ 260, 540 }, /* 7: 64-QAM 5/6 */
{ 52, 108 }, /* 8: BPSK */
{ 104, 216 }, /* 9: QPSK 1/2 */
{ 156, 324 }, /* 10: QPSK 3/4 */
{ 208, 432 }, /* 11: 16-QAM 1/2 */
{ 312, 648 }, /* 12: 16-QAM 3/4 */
{ 416, 864 }, /* 13: 64-QAM 2/3 */
{ 468, 972 }, /* 14: 64-QAM 3/4 */
{ 520, 1080 }, /* 15: 64-QAM 5/6 */
};
#define IS_HT_RATE(_rate) ((_rate) & 0x80)
/*
* Insert a chain of ath_buf (descriptors) on a txq and
* assume the descriptors are already chained together by caller.
* NB: must be called with txq lock held
*/
static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
struct list_head *head)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf;
/*
* Insert the frame on the outbound list and
* pass it on to the hardware.
*/
if (list_empty(head))
return;
bf = list_first_entry(head, struct ath_buf, list);
list_splice_tail_init(head, &txq->axq_q);
txq->axq_depth++;
txq->axq_totalqueued++;
txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
DPRINTF(sc, ATH_DBG_QUEUE,
"qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
if (txq->axq_link == NULL) {
ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
DPRINTF(sc, ATH_DBG_XMIT,
"TXDP[%u] = %llx (%p)\n",
txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
} else {
*txq->axq_link = bf->bf_daddr;
DPRINTF(sc, ATH_DBG_XMIT, "link[%u] (%p)=%llx (%p)\n",
txq->axq_qnum, txq->axq_link,
ito64(bf->bf_daddr), bf->bf_desc);
}
txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
ath9k_hw_txstart(ah, txq->axq_qnum);
}
static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
struct ath_xmit_status *tx_status)
{
struct ieee80211_hw *hw = sc->hw;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
int hdrlen, padsize;
DPRINTF(sc, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK ||
tx_info->flags & IEEE80211_TX_STAT_TX_FILTERED) {
kfree(tx_info_priv);
tx_info->rate_driver_data[0] = NULL;
}
if (tx_status->flags & ATH_TX_BAR) {
tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
tx_status->flags &= ~ATH_TX_BAR;
}
if (!(tx_status->flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
/* Frame was ACKed */
tx_info->flags |= IEEE80211_TX_STAT_ACK;
}
tx_info->status.rates[0].count = tx_status->retries;
if (tx_info->status.rates[0].flags & IEEE80211_TX_RC_MCS) {
/* Change idx from internal table index to MCS index */
int idx = tx_info->status.rates[0].idx;
struct ath_rate_table *rate_table = sc->cur_rate_table;
if (idx >= 0 && idx < rate_table->rate_cnt)
tx_info->status.rates[0].idx =
rate_table->info[idx].ratecode & 0x7f;
}
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
padsize = hdrlen & 3;
if (padsize && hdrlen >= 24) {
/*
* Remove MAC header padding before giving the frame back to
* mac80211.
*/
memmove(skb->data + padsize, skb->data, hdrlen);
skb_pull(skb, padsize);
}
ieee80211_tx_status(hw, skb);
}
/* Check if it's okay to send out aggregates */
static int ath_aggr_query(struct ath_softc *sc, struct ath_node *an, u8 tidno)
{
struct ath_atx_tid *tid;
tid = ATH_AN_2_TID(an, tidno);
if (tid->state & AGGR_ADDBA_COMPLETE ||
tid->state & AGGR_ADDBA_PROGRESS)
return 1;
else
return 0;
}
static void ath_get_beaconconfig(struct ath_softc *sc, int if_id,
struct ath_beacon_config *conf)
{
struct ieee80211_hw *hw = sc->hw;
/* fill in beacon config data */
conf->beacon_interval = hw->conf.beacon_int;
conf->listen_interval = 100;
conf->dtim_count = 1;
conf->bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf->listen_interval;
}
/* Calculate Atheros packet type from IEEE80211 packet header */
static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
enum ath9k_pkt_type htype;
__le16 fc;
hdr = (struct ieee80211_hdr *)skb->data;
fc = hdr->frame_control;
if (ieee80211_is_beacon(fc))
htype = ATH9K_PKT_TYPE_BEACON;
else if (ieee80211_is_probe_resp(fc))
htype = ATH9K_PKT_TYPE_PROBE_RESP;
else if (ieee80211_is_atim(fc))
htype = ATH9K_PKT_TYPE_ATIM;
else if (ieee80211_is_pspoll(fc))
htype = ATH9K_PKT_TYPE_PSPOLL;
else
htype = ATH9K_PKT_TYPE_NORMAL;
return htype;
}
static bool is_pae(struct sk_buff *skb)
{
struct ieee80211_hdr *hdr;
__le16 fc;
hdr = (struct ieee80211_hdr *)skb->data;
fc = hdr->frame_control;
if (ieee80211_is_data(fc)) {
if (ieee80211_is_nullfunc(fc) ||
/* Port Access Entity (IEEE 802.1X) */
(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
return true;
}
}
return false;
}
static int get_hw_crypto_keytype(struct sk_buff *skb)
{
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
if (tx_info->control.hw_key) {
if (tx_info->control.hw_key->alg == ALG_WEP)
return ATH9K_KEY_TYPE_WEP;
else if (tx_info->control.hw_key->alg == ALG_TKIP)
return ATH9K_KEY_TYPE_TKIP;
else if (tx_info->control.hw_key->alg == ALG_CCMP)
return ATH9K_KEY_TYPE_AES;
}
return ATH9K_KEY_TYPE_CLEAR;
}
/* Called only when tx aggregation is enabled and HT is supported */
static void assign_aggr_tid_seqno(struct sk_buff *skb,
struct ath_buf *bf)
{
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr;
struct ath_node *an;
struct ath_atx_tid *tid;
__le16 fc;
u8 *qc;
if (!tx_info->control.sta)
return;
an = (struct ath_node *)tx_info->control.sta->drv_priv;
hdr = (struct ieee80211_hdr *)skb->data;
fc = hdr->frame_control;
/* Get tidno */
if (ieee80211_is_data_qos(fc)) {
qc = ieee80211_get_qos_ctl(hdr);
bf->bf_tidno = qc[0] & 0xf;
}
/* Get seqno */
if (ieee80211_is_data(fc) && !is_pae(skb)) {
/* For HT capable stations, we save tidno for later use.
* We also override seqno set by upper layer with the one
* in tx aggregation state.
*
* If fragmentation is on, the sequence number is
* not overridden, since it has been
* incremented by the fragmentation routine.
*
* FIXME: check if the fragmentation threshold exceeds
* IEEE80211 max.
*/
tid = ATH_AN_2_TID(an, bf->bf_tidno);
hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
IEEE80211_SEQ_SEQ_SHIFT);
bf->bf_seqno = tid->seq_next;
INCR(tid->seq_next, IEEE80211_SEQ_MAX);
}
}
static int setup_tx_flags(struct ath_softc *sc, struct sk_buff *skb,
struct ath_txq *txq)
{
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
int flags = 0;
flags |= ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
flags |= ATH9K_TXDESC_INTREQ;
if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
flags |= ATH9K_TXDESC_NOACK;
if (tx_info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
flags |= ATH9K_TXDESC_RTSENA;
return flags;
}
static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
{
struct ath_buf *bf = NULL;
spin_lock_bh(&sc->tx.txbuflock);
if (unlikely(list_empty(&sc->tx.txbuf))) {
spin_unlock_bh(&sc->tx.txbuflock);
return NULL;
}
bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
list_del(&bf->list);
spin_unlock_bh(&sc->tx.txbuflock);
return bf;
}
/* To complete a chain of buffers associated a frame */
static void ath_tx_complete_buf(struct ath_softc *sc,
struct ath_buf *bf,
struct list_head *bf_q,
int txok, int sendbar)
{
struct sk_buff *skb = bf->bf_mpdu;
struct ath_xmit_status tx_status;
unsigned long flags;
/*
* Set retry information.
* NB: Don't use the information in the descriptor, because the frame
* could be software retried.
*/
tx_status.retries = bf->bf_retries;
tx_status.flags = 0;
if (sendbar)
tx_status.flags = ATH_TX_BAR;
if (!txok) {
tx_status.flags |= ATH_TX_ERROR;
if (bf_isxretried(bf))
tx_status.flags |= ATH_TX_XRETRY;
}
/* Unmap this frame */
pci_unmap_single(sc->pdev,
bf->bf_dmacontext,
skb->len,
PCI_DMA_TODEVICE);
/* complete this frame */
ath_tx_complete(sc, skb, &tx_status);
/*
* Return the list of ath_buf of this mpdu to free queue
*/
spin_lock_irqsave(&sc->tx.txbuflock, flags);
list_splice_tail_init(bf_q, &sc->tx.txbuf);
spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
}
/*
* queue up a dest/ac pair for tx scheduling
* NB: must be called with txq lock held
*/
static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
{
struct ath_atx_ac *ac = tid->ac;
/*
* if tid is paused, hold off
*/
if (tid->paused)
return;
/*
* add tid to ac atmost once
*/
if (tid->sched)
return;
tid->sched = true;
list_add_tail(&tid->list, &ac->tid_q);
/*
* add node ac to txq atmost once
*/
if (ac->sched)
return;
ac->sched = true;
list_add_tail(&ac->list, &txq->axq_acq);
}
/* pause a tid */
static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
{
struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
spin_lock_bh(&txq->axq_lock);
tid->paused++;
spin_unlock_bh(&txq->axq_lock);
}
/* resume a tid and schedule aggregate */
void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
{
struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
ASSERT(tid->paused > 0);
spin_lock_bh(&txq->axq_lock);
tid->paused--;
if (tid->paused > 0)
goto unlock;
if (list_empty(&tid->buf_q))
goto unlock;
/*
* Add this TID to scheduler and try to send out aggregates
*/
ath_tx_queue_tid(txq, tid);
ath_txq_schedule(sc, txq);
unlock:
spin_unlock_bh(&txq->axq_lock);
}
/* Compute the number of bad frames */
static int ath_tx_num_badfrms(struct ath_softc *sc, struct ath_buf *bf,
int txok)
{
struct ath_buf *bf_last = bf->bf_lastbf;
struct ath_desc *ds = bf_last->bf_desc;
u16 seq_st = 0;
u32 ba[WME_BA_BMP_SIZE >> 5];
int ba_index;
int nbad = 0;
int isaggr = 0;
if (ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
return 0;
isaggr = bf_isaggr(bf);
if (isaggr) {
seq_st = ATH_DS_BA_SEQ(ds);
memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
}
while (bf) {
ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
nbad++;
bf = bf->bf_next;
}
return nbad;
}
static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
{
struct sk_buff *skb;
struct ieee80211_hdr *hdr;
bf->bf_state.bf_type |= BUF_RETRY;
bf->bf_retries++;
skb = bf->bf_mpdu;
hdr = (struct ieee80211_hdr *)skb->data;
hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
}
/* Update block ack window */
static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
int seqno)
{
int index, cindex;
index = ATH_BA_INDEX(tid->seq_start, seqno);
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
tid->tx_buf[cindex] = NULL;
while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
INCR(tid->seq_start, IEEE80211_SEQ_MAX);
INCR(tid->baw_head, ATH_TID_MAX_BUFS);
}
}
/*
* ath_pkt_dur - compute packet duration (NB: not NAV)
*
* rix - rate index
* pktlen - total bytes (delims + data + fcs + pads + pad delims)
* width - 0 for 20 MHz, 1 for 40 MHz
* half_gi - to use 4us v/s 3.6 us for symbol time
*/
static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, struct ath_buf *bf,
int width, int half_gi, bool shortPreamble)
{
struct ath_rate_table *rate_table = sc->cur_rate_table;
u32 nbits, nsymbits, duration, nsymbols;
u8 rc;
int streams, pktlen;
pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
rc = rate_table->info[rix].ratecode;
/* for legacy rates, use old function to compute packet duration */
if (!IS_HT_RATE(rc))
return ath9k_hw_computetxtime(sc->sc_ah, rate_table, pktlen,
rix, shortPreamble);
/* find number of symbols: PLCP + data */
nbits = (pktlen << 3) + OFDM_PLCP_BITS;
nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
nsymbols = (nbits + nsymbits - 1) / nsymbits;
if (!half_gi)
duration = SYMBOL_TIME(nsymbols);
else
duration = SYMBOL_TIME_HALFGI(nsymbols);
/* addup duration for legacy/ht training and signal fields */
streams = HT_RC_2_STREAMS(rc);
duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
return duration;
}
/* Rate module function to set rate related fields in tx descriptor */
static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_rate_table *rt;
struct ath_desc *ds = bf->bf_desc;
struct ath_desc *lastds = bf->bf_lastbf->bf_desc;
struct ath9k_11n_rate_series series[4];
struct sk_buff *skb;
struct ieee80211_tx_info *tx_info;
struct ieee80211_tx_rate *rates;
struct ieee80211_hdr *hdr;
int i, flags, rtsctsena = 0;
u32 ctsduration = 0;
u8 rix = 0, cix, ctsrate = 0;
__le16 fc;
memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
skb = (struct sk_buff *)bf->bf_mpdu;
hdr = (struct ieee80211_hdr *)skb->data;
fc = hdr->frame_control;
tx_info = IEEE80211_SKB_CB(skb);
rates = tx_info->control.rates;
if (ieee80211_has_morefrags(fc) ||
(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
rates[1].count = rates[2].count = rates[3].count = 0;
rates[1].idx = rates[2].idx = rates[3].idx = 0;
rates[0].count = ATH_TXMAXTRY;
}
/* get the cix for the lowest valid rix */
rt = sc->cur_rate_table;
for (i = 3; i >= 0; i--) {
if (rates[i].count && (rates[i].idx >= 0)) {
rix = rates[i].idx;
break;
}
}
flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
cix = rt->info[rix].ctrl_rate;
/*
* If 802.11g protection is enabled, determine whether to use RTS/CTS or
* just CTS. Note that this is only done for OFDM/HT unicast frames.
*/
if (sc->sc_protmode != PROT_M_NONE && !(bf->bf_flags & ATH9K_TXDESC_NOACK)
&& (rt->info[rix].phy == WLAN_RC_PHY_OFDM ||
WLAN_RC_PHY_HT(rt->info[rix].phy))) {
if (sc->sc_protmode == PROT_M_RTSCTS)
flags = ATH9K_TXDESC_RTSENA;
else if (sc->sc_protmode == PROT_M_CTSONLY)
flags = ATH9K_TXDESC_CTSENA;
cix = rt->info[sc->sc_protrix].ctrl_rate;
rtsctsena = 1;
}
/* For 11n, the default behavior is to enable RTS for hw retried frames.
* We enable the global flag here and let rate series flags determine
* which rates will actually use RTS.
*/
if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) {
/* 802.11g protection not needed, use our default behavior */
if (!rtsctsena)
flags = ATH9K_TXDESC_RTSENA;
}
/* Set protection if aggregate protection on */
if (sc->sc_config.ath_aggr_prot &&
(!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
flags = ATH9K_TXDESC_RTSENA;
cix = rt->info[sc->sc_protrix].ctrl_rate;
rtsctsena = 1;
}
/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
if (bf_isaggr(bf) && (bf->bf_al > ah->ah_caps.rts_aggr_limit))
flags &= ~(ATH9K_TXDESC_RTSENA);
/*
* CTS transmit rate is derived from the transmit rate by looking in the
* h/w rate table. We must also factor in whether or not a short
* preamble is to be used. NB: cix is set above where RTS/CTS is enabled
*/
ctsrate = rt->info[cix].ratecode |
(bf_isshpreamble(bf) ? rt->info[cix].short_preamble : 0);
for (i = 0; i < 4; i++) {
if (!rates[i].count || (rates[i].idx < 0))
continue;
rix = rates[i].idx;
series[i].Rate = rt->info[rix].ratecode |
(bf_isshpreamble(bf) ? rt->info[rix].short_preamble : 0);
series[i].Tries = rates[i].count;
series[i].RateFlags = (
(rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) ?
ATH9K_RATESERIES_RTS_CTS : 0) |
((rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ?
ATH9K_RATESERIES_2040 : 0) |
((rates[i].flags & IEEE80211_TX_RC_SHORT_GI) ?
ATH9K_RATESERIES_HALFGI : 0);
series[i].PktDuration = ath_pkt_duration(sc, rix, bf,
(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) != 0,
(rates[i].flags & IEEE80211_TX_RC_SHORT_GI),
bf_isshpreamble(bf));
series[i].ChSel = sc->sc_tx_chainmask;
if (rtsctsena)
series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
}
/* set dur_update_en for l-sig computation except for PS-Poll frames */
ath9k_hw_set11n_ratescenario(ah, ds, lastds, !bf_ispspoll(bf),
ctsrate, ctsduration,
series, 4, flags);
if (sc->sc_config.ath_aggr_prot && flags)
ath9k_hw_set11n_burstduration(ah, ds, 8192);
}
/*
* Function to send a normal HT (non-AMPDU) frame
* NB: must be called with txq lock held
*/
static int ath_tx_send_normal(struct ath_softc *sc,
struct ath_txq *txq,
struct ath_atx_tid *tid,
struct list_head *bf_head)
{
struct ath_buf *bf;
BUG_ON(list_empty(bf_head));
bf = list_first_entry(bf_head, struct ath_buf, list);
bf->bf_state.bf_type &= ~BUF_AMPDU; /* regular HT frame */
/* update starting sequence number for subsequent ADDBA request */
INCR(tid->seq_start, IEEE80211_SEQ_MAX);
/* Queue to h/w without aggregation */
bf->bf_nframes = 1;
bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
ath_buf_set_rate(sc, bf);
ath_tx_txqaddbuf(sc, txq, bf_head);
return 0;
}
/* flush tid's software queue and send frames as non-ampdu's */
static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
{
struct ath_txq *txq = &sc->tx.txq[tid->ac->qnum];
struct ath_buf *bf;
struct list_head bf_head;
INIT_LIST_HEAD(&bf_head);
ASSERT(tid->paused > 0);
spin_lock_bh(&txq->axq_lock);
tid->paused--;
if (tid->paused > 0) {
spin_unlock_bh(&txq->axq_lock);
return;
}
while (!list_empty(&tid->buf_q)) {
bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
ASSERT(!bf_isretried(bf));
list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
ath_tx_send_normal(sc, txq, tid, &bf_head);
}
spin_unlock_bh(&txq->axq_lock);
}
/* Completion routine of an aggregate */
static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
struct ath_txq *txq,
struct ath_buf *bf,
struct list_head *bf_q,
int txok)
{
struct ath_node *an = NULL;
struct sk_buff *skb;
struct ieee80211_tx_info *tx_info;
struct ath_atx_tid *tid = NULL;
struct ath_buf *bf_last = bf->bf_lastbf;
struct ath_desc *ds = bf_last->bf_desc;
struct ath_buf *bf_next, *bf_lastq = NULL;
struct list_head bf_head, bf_pending;
u16 seq_st = 0;
u32 ba[WME_BA_BMP_SIZE >> 5];
int isaggr, txfail, txpending, sendbar = 0, needreset = 0;
skb = (struct sk_buff *)bf->bf_mpdu;
tx_info = IEEE80211_SKB_CB(skb);
if (tx_info->control.sta) {
an = (struct ath_node *)tx_info->control.sta->drv_priv;
tid = ATH_AN_2_TID(an, bf->bf_tidno);
}
isaggr = bf_isaggr(bf);
if (isaggr) {
if (txok) {
if (ATH_DS_TX_BA(ds)) {
/*
* extract starting sequence and
* block-ack bitmap
*/
seq_st = ATH_DS_BA_SEQ(ds);
memcpy(ba,
ATH_DS_BA_BITMAP(ds),
WME_BA_BMP_SIZE >> 3);
} else {
memset(ba, 0, WME_BA_BMP_SIZE >> 3);
/*
* AR5416 can become deaf/mute when BA
* issue happens. Chip needs to be reset.
* But AP code may have sychronization issues
* when perform internal reset in this routine.
* Only enable reset in STA mode for now.
*/
if (sc->sc_ah->ah_opmode ==
NL80211_IFTYPE_STATION)
needreset = 1;
}
} else {
memset(ba, 0, WME_BA_BMP_SIZE >> 3);
}
}
INIT_LIST_HEAD(&bf_pending);
INIT_LIST_HEAD(&bf_head);
while (bf) {
txfail = txpending = 0;
bf_next = bf->bf_next;
if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
/* transmit completion, subframe is
* acked by block ack */
} else if (!isaggr && txok) {
/* transmit completion */
} else {
if (!(tid->state & AGGR_CLEANUP) &&
ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
ath_tx_set_retry(sc, bf);
txpending = 1;
} else {
bf->bf_state.bf_type |= BUF_XRETRY;
txfail = 1;
sendbar = 1;
}
} else {
/*
* cleanup in progress, just fail
* the un-acked sub-frames
*/
txfail = 1;
}
}
/*
* Remove ath_buf's of this sub-frame from aggregate queue.
*/
if (bf_next == NULL) { /* last subframe in the aggregate */
ASSERT(bf->bf_lastfrm == bf_last);
/*
* The last descriptor of the last sub frame could be
* a holding descriptor for h/w. If that's the case,
* bf->bf_lastfrm won't be in the bf_q.
* Make sure we handle bf_q properly here.
*/
if (!list_empty(bf_q)) {
bf_lastq = list_entry(bf_q->prev,
struct ath_buf, list);
list_cut_position(&bf_head,
bf_q, &bf_lastq->list);
} else {
/*
* XXX: if the last subframe only has one
* descriptor which is also being used as
* a holding descriptor. Then the ath_buf
* is not in the bf_q at all.
*/
INIT_LIST_HEAD(&bf_head);
}
} else {
ASSERT(!list_empty(bf_q));
list_cut_position(&bf_head,
bf_q, &bf->bf_lastfrm->list);
}
if (!txpending) {
/*
* complete the acked-ones/xretried ones; update
* block-ack window
*/
spin_lock_bh(&txq->axq_lock);
ath_tx_update_baw(sc, tid, bf->bf_seqno);
spin_unlock_bh(&txq->axq_lock);
/* complete this sub-frame */
ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar);
} else {
/*
* retry the un-acked ones
*/
/*
* XXX: if the last descriptor is holding descriptor,
* in order to requeue the frame to software queue, we
* need to allocate a new descriptor and
* copy the content of holding descriptor to it.
*/
if (bf->bf_next == NULL &&
bf_last->bf_status & ATH_BUFSTATUS_STALE) {
struct ath_buf *tbf;
/* allocate new descriptor */
spin_lock_bh(&sc->tx.txbuflock);
ASSERT(!list_empty((&sc->tx.txbuf)));
tbf = list_first_entry(&sc->tx.txbuf,
struct ath_buf, list);
list_del(&tbf->list);
spin_unlock_bh(&sc->tx.txbuflock);
ATH_TXBUF_RESET(tbf);
/* copy descriptor content */
tbf->bf_mpdu = bf_last->bf_mpdu;
tbf->bf_buf_addr = bf_last->bf_buf_addr;
*(tbf->bf_desc) = *(bf_last->bf_desc);
/* link it to the frame */
if (bf_lastq) {
bf_lastq->bf_desc->ds_link =
tbf->bf_daddr;
bf->bf_lastfrm = tbf;
ath9k_hw_cleartxdesc(sc->sc_ah,
bf->bf_lastfrm->bf_desc);
} else {
tbf->bf_state = bf_last->bf_state;
tbf->bf_lastfrm = tbf;
ath9k_hw_cleartxdesc(sc->sc_ah,
tbf->bf_lastfrm->bf_desc);
/* copy the DMA context */
tbf->bf_dmacontext =
bf_last->bf_dmacontext;
}
list_add_tail(&tbf->list, &bf_head);
} else {
/*
* Clear descriptor status words for
* software retry
*/
ath9k_hw_cleartxdesc(sc->sc_ah,
bf->bf_lastfrm->bf_desc);
}
/*
* Put this buffer to the temporary pending
* queue to retain ordering
*/
list_splice_tail_init(&bf_head, &bf_pending);
}
bf = bf_next;
}
if (tid->state & AGGR_CLEANUP) {
/* check to see if we're done with cleaning the h/w queue */
spin_lock_bh(&txq->axq_lock);
if (tid->baw_head == tid->baw_tail) {
tid->state &= ~AGGR_ADDBA_COMPLETE;
tid->addba_exchangeattempts = 0;
spin_unlock_bh(&txq->axq_lock);
tid->state &= ~AGGR_CLEANUP;
/* send buffered frames as singles */
ath_tx_flush_tid(sc, tid);
} else
spin_unlock_bh(&txq->axq_lock);
return;
}
/*
* prepend un-acked frames to the beginning of the pending frame queue
*/
if (!list_empty(&bf_pending)) {
spin_lock_bh(&txq->axq_lock);
/* Note: we _prepend_, we _do_not_ at to
* the end of the queue ! */
list_splice(&bf_pending, &tid->buf_q);
ath_tx_queue_tid(txq, tid);
spin_unlock_bh(&txq->axq_lock);
}
if (needreset)
ath_reset(sc, false);
return;
}
static void ath_tx_rc_status(struct ath_buf *bf, struct ath_desc *ds, int nbad)
{
struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
tx_info_priv->update_rc = false;
if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
(bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
if (bf_isdata(bf)) {
memcpy(&tx_info_priv->tx, &ds->ds_txstat,
sizeof(tx_info_priv->tx));
tx_info_priv->n_frames = bf->bf_nframes;
tx_info_priv->n_bad_frames = nbad;
tx_info_priv->update_rc = true;
}
}
}
/* Process completed xmit descriptors from the specified queue */
static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_hal *ah = sc->sc_ah;
struct ath_buf *bf, *lastbf, *bf_held = NULL;
struct list_head bf_head;
struct ath_desc *ds;
int txok, nbad = 0;
int status;
DPRINTF(sc, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
txq->axq_link);
for (;;) {
spin_lock_bh(&txq->axq_lock);
if (list_empty(&txq->axq_q)) {
txq->axq_link = NULL;
txq->axq_linkbuf = NULL;
spin_unlock_bh(&txq->axq_lock);
break;
}
bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
/*
* There is a race condition that a BH gets scheduled
* after sw writes TxE and before hw re-load the last
* descriptor to get the newly chained one.
* Software must keep the last DONE descriptor as a
* holding descriptor - software does so by marking
* it with the STALE flag.
*/
bf_held = NULL;
if (bf->bf_status & ATH_BUFSTATUS_STALE) {
bf_held = bf;
if (list_is_last(&bf_held->list, &txq->axq_q)) {
/* FIXME:
* The holding descriptor is the last
* descriptor in queue. It's safe to remove
* the last holding descriptor in BH context.
*/
spin_unlock_bh(&txq->axq_lock);
break;
} else {
/* Lets work with the next buffer now */
bf = list_entry(bf_held->list.next,
struct ath_buf, list);
}
}
lastbf = bf->bf_lastbf;
ds = lastbf->bf_desc; /* NB: last decriptor */
status = ath9k_hw_txprocdesc(ah, ds);
if (status == -EINPROGRESS) {
spin_unlock_bh(&txq->axq_lock);
break;
}
if (bf->bf_desc == txq->axq_lastdsWithCTS)
txq->axq_lastdsWithCTS = NULL;
if (ds == txq->axq_gatingds)
txq->axq_gatingds = NULL;
/*
* Remove ath_buf's of the same transmit unit from txq,
* however leave the last descriptor back as the holding
* descriptor for hw.
*/
lastbf->bf_status |= ATH_BUFSTATUS_STALE;
INIT_LIST_HEAD(&bf_head);
if (!list_is_singular(&lastbf->list))
list_cut_position(&bf_head,
&txq->axq_q, lastbf->list.prev);
txq->axq_depth--;
if (bf_isaggr(bf))
txq->axq_aggr_depth--;
txok = (ds->ds_txstat.ts_status == 0);
spin_unlock_bh(&txq->axq_lock);
if (bf_held) {
list_del(&bf_held->list);
spin_lock_bh(&sc->tx.txbuflock);
list_add_tail(&bf_held->list, &sc->tx.txbuf);
spin_unlock_bh(&sc->tx.txbuflock);
}
if (!bf_isampdu(bf)) {
/*
* This frame is sent out as a single frame.
* Use hardware retry status for this frame.
*/
bf->bf_retries = ds->ds_txstat.ts_longretry;
if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
bf->bf_state.bf_type |= BUF_XRETRY;
nbad = 0;
} else {
nbad = ath_tx_num_badfrms(sc, bf, txok);
}
ath_tx_rc_status(bf, ds, nbad);
/*
* Complete this transmit unit
*/
if (bf_isampdu(bf))
ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok);
else
ath_tx_complete_buf(sc, bf, &bf_head, txok, 0);
/* Wake up mac80211 queue */
spin_lock_bh(&txq->axq_lock);
if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <=
(ATH_TXBUF - 20)) {
int qnum;
qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
if (qnum != -1) {
ieee80211_wake_queue(sc->hw, qnum);
txq->stopped = 0;
}
}
/*
* schedule any pending packets if aggregation is enabled
*/
if (sc->sc_flags & SC_OP_TXAGGR)
ath_txq_schedule(sc, txq);
spin_unlock_bh(&txq->axq_lock);
}
}
static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_hal *ah = sc->sc_ah;
(void) ath9k_hw_stoptxdma(ah, txq->axq_qnum);
DPRINTF(sc, ATH_DBG_XMIT, "tx queue [%u] %x, link %p\n",
txq->axq_qnum, ath9k_hw_gettxbuf(ah, txq->axq_qnum),
txq->axq_link);
}
/* Drain only the data queues */
static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx)
{
struct ath_hal *ah = sc->sc_ah;
int i, status, npend = 0;
if (!(sc->sc_flags & SC_OP_INVALID)) {
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
ath_tx_stopdma(sc, &sc->tx.txq[i]);
/* The TxDMA may not really be stopped.
* Double check the hal tx pending count */
npend += ath9k_hw_numtxpending(ah,
sc->tx.txq[i].axq_qnum);
}
}
}
if (npend) {
/* TxDMA not stopped, reset the hal */
DPRINTF(sc, ATH_DBG_XMIT, "Unable to stop TxDMA. Reset HAL!\n");
spin_lock_bh(&sc->sc_resetlock);
if (!ath9k_hw_reset(ah,
sc->sc_ah->ah_curchan,
sc->tx_chan_width,
sc->sc_tx_chainmask, sc->sc_rx_chainmask,
sc->sc_ht_extprotspacing, true, &status)) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to reset hardware; hal status %u\n",
status);
}
spin_unlock_bh(&sc->sc_resetlock);
}
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i))
ath_tx_draintxq(sc, &sc->tx.txq[i], retry_tx);
}
}
/* Add a sub-frame to block ack window */
static void ath_tx_addto_baw(struct ath_softc *sc,
struct ath_atx_tid *tid,
struct ath_buf *bf)
{
int index, cindex;
if (bf_isretried(bf))
return;
index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
ASSERT(tid->tx_buf[cindex] == NULL);
tid->tx_buf[cindex] = bf;
if (index >= ((tid->baw_tail - tid->baw_head) &
(ATH_TID_MAX_BUFS - 1))) {
tid->baw_tail = cindex;
INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
}
}
/*
* Function to send an A-MPDU
* NB: must be called with txq lock held
*/
static int ath_tx_send_ampdu(struct ath_softc *sc,
struct ath_atx_tid *tid,
struct list_head *bf_head,
struct ath_tx_control *txctl)
{
struct ath_buf *bf;
BUG_ON(list_empty(bf_head));
bf = list_first_entry(bf_head, struct ath_buf, list);
bf->bf_state.bf_type |= BUF_AMPDU;
/*
* Do not queue to h/w when any of the following conditions is true:
* - there are pending frames in software queue
* - the TID is currently paused for ADDBA/BAR request
* - seqno is not within block-ack window
* - h/w queue depth exceeds low water mark
*/
if (!list_empty(&tid->buf_q) || tid->paused ||
!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
txctl->txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
/*
* Add this frame to software queue for scheduling later
* for aggregation.
*/
list_splice_tail_init(bf_head, &tid->buf_q);
ath_tx_queue_tid(txctl->txq, tid);
return 0;
}
/* Add sub-frame to BAW */
ath_tx_addto_baw(sc, tid, bf);
/* Queue to h/w without aggregation */
bf->bf_nframes = 1;
bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
ath_buf_set_rate(sc, bf);
ath_tx_txqaddbuf(sc, txctl->txq, bf_head);
return 0;
}
/*
* looks up the rate
* returns aggr limit based on lowest of the rates
*/
static u32 ath_lookup_rate(struct ath_softc *sc,
struct ath_buf *bf,
struct ath_atx_tid *tid)
{
struct ath_rate_table *rate_table = sc->cur_rate_table;
struct sk_buff *skb;
struct ieee80211_tx_info *tx_info;
struct ieee80211_tx_rate *rates;
struct ath_tx_info_priv *tx_info_priv;
u32 max_4ms_framelen, frame_length;
u16 aggr_limit, legacy = 0, maxampdu;
int i;
skb = (struct sk_buff *)bf->bf_mpdu;
tx_info = IEEE80211_SKB_CB(skb);
rates = tx_info->control.rates;
tx_info_priv =
(struct ath_tx_info_priv *)tx_info->rate_driver_data[0];
/*
* Find the lowest frame length among the rate series that will have a
* 4ms transmit duration.
* TODO - TXOP limit needs to be considered.
*/
max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
for (i = 0; i < 4; i++) {
if (rates[i].count) {
if (!WLAN_RC_PHY_HT(rate_table->info[rates[i].idx].phy)) {
legacy = 1;
break;
}
frame_length =
rate_table->info[rates[i].idx].max_4ms_framelen;
max_4ms_framelen = min(max_4ms_framelen, frame_length);
}
}
/*
* limit aggregate size by the minimum rate if rate selected is
* not a probe rate, if rate selected is a probe rate then
* avoid aggregation of this packet.
*/
if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
return 0;
aggr_limit = min(max_4ms_framelen,
(u32)ATH_AMPDU_LIMIT_DEFAULT);
/*
* h/w can accept aggregates upto 16 bit lengths (65535).
* The IE, however can hold upto 65536, which shows up here
* as zero. Ignore 65536 since we are constrained by hw.
*/
maxampdu = tid->an->maxampdu;
if (maxampdu)
aggr_limit = min(aggr_limit, maxampdu);
return aggr_limit;
}
/*
* returns the number of delimiters to be added to
* meet the minimum required mpdudensity.
* caller should make sure that the rate is HT rate .
*/
static int ath_compute_num_delims(struct ath_softc *sc,
struct ath_atx_tid *tid,
struct ath_buf *bf,
u16 frmlen)
{
struct ath_rate_table *rt = sc->cur_rate_table;
struct sk_buff *skb = bf->bf_mpdu;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
u32 nsymbits, nsymbols, mpdudensity;
u16 minlen;
u8 rc, flags, rix;
int width, half_gi, ndelim, mindelim;
/* Select standard number of delimiters based on frame length alone */
ndelim = ATH_AGGR_GET_NDELIM(frmlen);
/*
* If encryption enabled, hardware requires some more padding between
* subframes.
* TODO - this could be improved to be dependent on the rate.
* The hardware can keep up at lower rates, but not higher rates
*/
if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
ndelim += ATH_AGGR_ENCRYPTDELIM;
/*
* Convert desired mpdu density from microeconds to bytes based
* on highest rate in rate series (i.e. first rate) to determine
* required minimum length for subframe. Take into account
* whether high rate is 20 or 40Mhz and half or full GI.
*/
mpdudensity = tid->an->mpdudensity;
/*
* If there is no mpdu density restriction, no further calculation
* is needed.
*/
if (mpdudensity == 0)
return ndelim;
rix = tx_info->control.rates[0].idx;
flags = tx_info->control.rates[0].flags;
rc = rt->info[rix].ratecode;
width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
if (half_gi)
nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity);
else
nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity);
if (nsymbols == 0)
nsymbols = 1;
nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
/* Is frame shorter than required minimum length? */
if (frmlen < minlen) {
/* Get the minimum number of delimiters required. */
mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
ndelim = max(mindelim, ndelim);
}
return ndelim;
}
/*
* For aggregation from software buffer queue.
* NB: must be called with txq lock held
*/
static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
struct ath_atx_tid *tid,
struct list_head *bf_q,
struct ath_buf **bf_last,
struct aggr_rifs_param *param,
int *prev_frames)
{
#define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL;
struct list_head bf_head;
int rl = 0, nframes = 0, ndelim;
u16 aggr_limit = 0, al = 0, bpad = 0,
al_delta, h_baw = tid->baw_size / 2;
enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
int prev_al = 0;
INIT_LIST_HEAD(&bf_head);
BUG_ON(list_empty(&tid->buf_q));
bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
do {
bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
/*
* do not step over block-ack window
*/
if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
status = ATH_AGGR_BAW_CLOSED;
break;
}
if (!rl) {
aggr_limit = ath_lookup_rate(sc, bf, tid);
rl = 1;
}
/*
* do not exceed aggregation limit
*/
al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
if (nframes && (aggr_limit <
(al + bpad + al_delta + prev_al))) {
status = ATH_AGGR_LIMITED;
break;
}
/*
* do not exceed subframe limit
*/
if ((nframes + *prev_frames) >=
min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
status = ATH_AGGR_LIMITED;
break;
}
/*
* add padding for previous frame to aggregation length
*/
al += bpad + al_delta;
/*
* Get the delimiters needed to meet the MPDU
* density for this node.
*/
ndelim = ath_compute_num_delims(sc, tid, bf_first, bf->bf_frmlen);
bpad = PADBYTES(al_delta) + (ndelim << 2);
bf->bf_next = NULL;
bf->bf_lastfrm->bf_desc->ds_link = 0;
/*
* this packet is part of an aggregate
* - remove all descriptors belonging to this frame from
* software queue
* - add it to block ack window
* - set up descriptors for aggregation
*/
list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
ath_tx_addto_baw(sc, tid, bf);
list_for_each_entry(tbf, &bf_head, list) {
ath9k_hw_set11n_aggr_middle(sc->sc_ah,
tbf->bf_desc, ndelim);
}
/*
* link buffers of this frame to the aggregate
*/
list_splice_tail_init(&bf_head, bf_q);
nframes++;
if (bf_prev) {
bf_prev->bf_next = bf;
bf_prev->bf_lastfrm->bf_desc->ds_link = bf->bf_daddr;
}
bf_prev = bf;
#ifdef AGGR_NOSHORT
/*
* terminate aggregation on a small packet boundary
*/
if (bf->bf_frmlen < ATH_AGGR_MINPLEN) {
status = ATH_AGGR_SHORTPKT;
break;
}
#endif
} while (!list_empty(&tid->buf_q));
bf_first->bf_al = al;
bf_first->bf_nframes = nframes;
*bf_last = bf_prev;
return status;
#undef PADBYTES
}
/*
* process pending frames possibly doing a-mpdu aggregation
* NB: must be called with txq lock held
*/
static void ath_tx_sched_aggr(struct ath_softc *sc,
struct ath_txq *txq, struct ath_atx_tid *tid)
{
struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL;
enum ATH_AGGR_STATUS status;
struct list_head bf_q;
struct aggr_rifs_param param = {0, 0, 0, 0, NULL};
int prev_frames = 0;
do {
if (list_empty(&tid->buf_q))
return;
INIT_LIST_HEAD(&bf_q);
status = ath_tx_form_aggr(sc, tid, &bf_q, &bf_lastaggr, &param,
&prev_frames);
/*
* no frames picked up to be aggregated; block-ack
* window is not open
*/
if (list_empty(&bf_q))
break;
bf = list_first_entry(&bf_q, struct ath_buf, list);
bf_last = list_entry(bf_q.prev, struct ath_buf, list);
bf->bf_lastbf = bf_last;
/*
* if only one frame, send as non-aggregate
*/
if (bf->bf_nframes == 1) {
ASSERT(bf->bf_lastfrm == bf_last);
bf->bf_state.bf_type &= ~BUF_AGGR;
/*
* clear aggr bits for every descriptor
* XXX TODO: is there a way to optimize it?
*/
list_for_each_entry(tbf, &bf_q, list) {
ath9k_hw_clr11n_aggr(sc->sc_ah, tbf->bf_desc);
}
ath_buf_set_rate(sc, bf);
ath_tx_txqaddbuf(sc, txq, &bf_q);
continue;
}
/*
* setup first desc with rate and aggr info
*/
bf->bf_state.bf_type |= BUF_AGGR;
ath_buf_set_rate(sc, bf);
ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
/*
* anchor last frame of aggregate correctly
*/
ASSERT(bf_lastaggr);
ASSERT(bf_lastaggr->bf_lastfrm == bf_last);
tbf = bf_lastaggr;
ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
/* XXX: We don't enter into this loop, consider removing this */
while (!list_empty(&bf_q) && !list_is_last(&tbf->list, &bf_q)) {
tbf = list_entry(tbf->list.next, struct ath_buf, list);
ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
}
txq->axq_aggr_depth++;
/*
* Normal aggregate, queue to hardware
*/
ath_tx_txqaddbuf(sc, txq, &bf_q);
} while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
status != ATH_AGGR_BAW_CLOSED);
}
/* Called with txq lock held */
static void ath_tid_drain(struct ath_softc *sc,
struct ath_txq *txq,
struct ath_atx_tid *tid)
{
struct ath_buf *bf;
struct list_head bf_head;
INIT_LIST_HEAD(&bf_head);
for (;;) {
if (list_empty(&tid->buf_q))
break;
bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
/* update baw for software retried frame */
if (bf_isretried(bf))
ath_tx_update_baw(sc, tid, bf->bf_seqno);
/*
* do not indicate packets while holding txq spinlock.
* unlock is intentional here
*/
spin_unlock(&txq->axq_lock);
/* complete this sub-frame */
ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
spin_lock(&txq->axq_lock);
}
/*
* TODO: For frame(s) that are in the retry state, we will reuse the
* sequence number(s) without setting the retry bit. The
* alternative is to give up on these and BAR the receiver's window
* forward.
*/
tid->seq_next = tid->seq_start;
tid->baw_tail = tid->baw_head;
}
/*
* Drain all pending buffers
* NB: must be called with txq lock held
*/
static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
struct ath_txq *txq)
{
struct ath_atx_ac *ac, *ac_tmp;
struct ath_atx_tid *tid, *tid_tmp;
list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
list_del(&ac->list);
ac->sched = false;
list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
list_del(&tid->list);
tid->sched = false;
ath_tid_drain(sc, txq, tid);
}
}
}
static int ath_tx_setup_buffer(struct ath_softc *sc, struct ath_buf *bf,
struct sk_buff *skb,
struct ath_tx_control *txctl)
{
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct ath_tx_info_priv *tx_info_priv;
int hdrlen;
__le16 fc;
tx_info_priv = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
if (unlikely(!tx_info_priv))
return -ENOMEM;
tx_info->rate_driver_data[0] = tx_info_priv;
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
fc = hdr->frame_control;
ATH_TXBUF_RESET(bf);
/* Frame type */
bf->bf_frmlen = skb->len + FCS_LEN - (hdrlen & 3);
ieee80211_is_data(fc) ?
(bf->bf_state.bf_type |= BUF_DATA) :
(bf->bf_state.bf_type &= ~BUF_DATA);
ieee80211_is_back_req(fc) ?
(bf->bf_state.bf_type |= BUF_BAR) :
(bf->bf_state.bf_type &= ~BUF_BAR);
ieee80211_is_pspoll(fc) ?
(bf->bf_state.bf_type |= BUF_PSPOLL) :
(bf->bf_state.bf_type &= ~BUF_PSPOLL);
(sc->sc_flags & SC_OP_PREAMBLE_SHORT) ?
(bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE) :
(bf->bf_state.bf_type &= ~BUF_SHORT_PREAMBLE);
(sc->hw->conf.ht.enabled && !is_pae(skb) &&
(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) ?
(bf->bf_state.bf_type |= BUF_HT) :
(bf->bf_state.bf_type &= ~BUF_HT);
bf->bf_flags = setup_tx_flags(sc, skb, txctl->txq);
/* Crypto */
bf->bf_keytype = get_hw_crypto_keytype(skb);
if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR) {
bf->bf_frmlen += tx_info->control.hw_key->icv_len;
bf->bf_keyix = tx_info->control.hw_key->hw_key_idx;
} else {
bf->bf_keyix = ATH9K_TXKEYIX_INVALID;
}
/* Assign seqno, tidno */
if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR))
assign_aggr_tid_seqno(skb, bf);
/* DMA setup */
bf->bf_mpdu = skb;
bf->bf_dmacontext = pci_map_single(sc->pdev, skb->data,
skb->len, PCI_DMA_TODEVICE);
if (unlikely(pci_dma_mapping_error(sc->pdev, bf->bf_dmacontext))) {
bf->bf_mpdu = NULL;
DPRINTF(sc, ATH_DBG_CONFIG,
"pci_dma_mapping_error() on TX\n");
return -ENOMEM;
}
bf->bf_buf_addr = bf->bf_dmacontext;
return 0;
}
/* FIXME: tx power */
static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
struct ath_tx_control *txctl)
{
struct sk_buff *skb = (struct sk_buff *)bf->bf_mpdu;
struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
struct ath_node *an = NULL;
struct list_head bf_head;
struct ath_desc *ds;
struct ath_atx_tid *tid;
struct ath_hal *ah = sc->sc_ah;
int frm_type;
frm_type = get_hw_packet_type(skb);
INIT_LIST_HEAD(&bf_head);
list_add_tail(&bf->list, &bf_head);
/* setup descriptor */
ds = bf->bf_desc;
ds->ds_link = 0;
ds->ds_data = bf->bf_buf_addr;
/* Formulate first tx descriptor with tx controls */
ath9k_hw_set11n_txdesc(ah, ds, bf->bf_frmlen, frm_type, MAX_RATE_POWER,
bf->bf_keyix, bf->bf_keytype, bf->bf_flags);
ath9k_hw_filltxdesc(ah, ds,
skb->len, /* segment length */
true, /* first segment */
true, /* last segment */
ds); /* first descriptor */
bf->bf_lastfrm = bf;
spin_lock_bh(&txctl->txq->axq_lock);
if (bf_isht(bf) && (sc->sc_flags & SC_OP_TXAGGR) &&
tx_info->control.sta) {
an = (struct ath_node *)tx_info->control.sta->drv_priv;
tid = ATH_AN_2_TID(an, bf->bf_tidno);
if (ath_aggr_query(sc, an, bf->bf_tidno)) {
/*
* Try aggregation if it's a unicast data frame
* and the destination is HT capable.
*/
ath_tx_send_ampdu(sc, tid, &bf_head, txctl);
} else {
/*
* Send this frame as regular when ADDBA
* exchange is neither complete nor pending.
*/
ath_tx_send_normal(sc, txctl->txq,
tid, &bf_head);
}
} else {
bf->bf_lastbf = bf;
bf->bf_nframes = 1;
ath_buf_set_rate(sc, bf);
ath_tx_txqaddbuf(sc, txctl->txq, &bf_head);
}
spin_unlock_bh(&txctl->txq->axq_lock);
}
/* Upon failure caller should free skb */
int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb,
struct ath_tx_control *txctl)
{
struct ath_buf *bf;
int r;
/* Check if a tx buffer is available */
bf = ath_tx_get_buffer(sc);
if (!bf) {
DPRINTF(sc, ATH_DBG_XMIT, "TX buffers are full\n");
return -1;
}
r = ath_tx_setup_buffer(sc, bf, skb, txctl);
if (unlikely(r)) {
struct ath_txq *txq = txctl->txq;
DPRINTF(sc, ATH_DBG_FATAL, "TX mem alloc failure\n");
/* upon ath_tx_processq() this TX queue will be resumed, we
* guarantee this will happen by knowing beforehand that
* we will at least have to run TX completionon one buffer
* on the queue */
spin_lock_bh(&txq->axq_lock);
if (ath_txq_depth(sc, txq->axq_qnum) > 1) {
ieee80211_stop_queue(sc->hw,
skb_get_queue_mapping(skb));
txq->stopped = 1;
}
spin_unlock_bh(&txq->axq_lock);
spin_lock_bh(&sc->tx.txbuflock);
list_add_tail(&bf->list, &sc->tx.txbuf);
spin_unlock_bh(&sc->tx.txbuflock);
return r;
}
ath_tx_start_dma(sc, bf, txctl);
return 0;
}
/* Initialize TX queue and h/w */
int ath_tx_init(struct ath_softc *sc, int nbufs)
{
int error = 0;
do {
spin_lock_init(&sc->tx.txbuflock);
/* Setup tx descriptors */
error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
"tx", nbufs, 1);
if (error != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"Failed to allocate tx descriptors: %d\n",
error);
break;
}
/* XXX allocate beacon state together with vap */
error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
"beacon", ATH_BCBUF, 1);
if (error != 0) {
DPRINTF(sc, ATH_DBG_FATAL,
"Failed to allocate beacon descriptors: %d\n",
error);
break;
}
} while (0);
if (error != 0)
ath_tx_cleanup(sc);
return error;
}
/* Reclaim all tx queue resources */
int ath_tx_cleanup(struct ath_softc *sc)
{
/* cleanup beacon descriptors */
if (sc->beacon.bdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
/* cleanup tx descriptors */
if (sc->tx.txdma.dd_desc_len != 0)
ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
return 0;
}
/* Setup a h/w transmit queue */
struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
{
struct ath_hal *ah = sc->sc_ah;
struct ath9k_tx_queue_info qi;
int qnum;
memset(&qi, 0, sizeof(qi));
qi.tqi_subtype = subtype;
qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
qi.tqi_physCompBuf = 0;
/*
* Enable interrupts only for EOL and DESC conditions.
* We mark tx descriptors to receive a DESC interrupt
* when a tx queue gets deep; otherwise waiting for the
* EOL to reap descriptors. Note that this is done to
* reduce interrupt load and this only defers reaping
* descriptors, never transmitting frames. Aside from
* reducing interrupts this also permits more concurrency.
* The only potential downside is if the tx queue backs
* up in which case the top half of the kernel may backup
* due to a lack of tx descriptors.
*
* The UAPSD queue is an exception, since we take a desc-
* based intr on the EOSP frames.
*/
if (qtype == ATH9K_TX_QUEUE_UAPSD)
qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
else
qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
TXQ_FLAG_TXDESCINT_ENABLE;
qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
if (qnum == -1) {
/*
* NB: don't print a message, this happens
* normally on parts with too few tx queues
*/
return NULL;
}
if (qnum >= ARRAY_SIZE(sc->tx.txq)) {
DPRINTF(sc, ATH_DBG_FATAL,
"qnum %u out of range, max %u!\n",
qnum, (unsigned int)ARRAY_SIZE(sc->tx.txq));
ath9k_hw_releasetxqueue(ah, qnum);
return NULL;
}
if (!ATH_TXQ_SETUP(sc, qnum)) {
struct ath_txq *txq = &sc->tx.txq[qnum];
txq->axq_qnum = qnum;
txq->axq_link = NULL;
INIT_LIST_HEAD(&txq->axq_q);
INIT_LIST_HEAD(&txq->axq_acq);
spin_lock_init(&txq->axq_lock);
txq->axq_depth = 0;
txq->axq_aggr_depth = 0;
txq->axq_totalqueued = 0;
txq->axq_linkbuf = NULL;
sc->tx.txqsetup |= 1<<qnum;
}
return &sc->tx.txq[qnum];
}
/* Reclaim resources for a setup queue */
void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
{
ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
}
/*
* Setup a hardware data transmit queue for the specified
* access control. The hal may not support all requested
* queues in which case it will return a reference to a
* previously setup queue. We record the mapping from ac's
* to h/w queues for use by ath_tx_start and also track
* the set of h/w queues being used to optimize work in the
* transmit interrupt handler and related routines.
*/
int ath_tx_setup(struct ath_softc *sc, int haltype)
{
struct ath_txq *txq;
if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
DPRINTF(sc, ATH_DBG_FATAL,
"HAL AC %u out of range, max %zu!\n",
haltype, ARRAY_SIZE(sc->tx.hwq_map));
return 0;
}
txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
if (txq != NULL) {
sc->tx.hwq_map[haltype] = txq->axq_qnum;
return 1;
} else
return 0;
}
int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
{
int qnum;
switch (qtype) {
case ATH9K_TX_QUEUE_DATA:
if (haltype >= ARRAY_SIZE(sc->tx.hwq_map)) {
DPRINTF(sc, ATH_DBG_FATAL,
"HAL AC %u out of range, max %zu!\n",
haltype, ARRAY_SIZE(sc->tx.hwq_map));
return -1;
}
qnum = sc->tx.hwq_map[haltype];
break;
case ATH9K_TX_QUEUE_BEACON:
qnum = sc->beacon.beaconq;
break;
case ATH9K_TX_QUEUE_CAB:
qnum = sc->beacon.cabq->axq_qnum;
break;
default:
qnum = -1;
}
return qnum;
}
/* Get a transmit queue, if available */
struct ath_txq *ath_test_get_txq(struct ath_softc *sc, struct sk_buff *skb)
{
struct ath_txq *txq = NULL;
int qnum;
qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
txq = &sc->tx.txq[qnum];
spin_lock_bh(&txq->axq_lock);
/* Try to avoid running out of descriptors */
if (txq->axq_depth >= (ATH_TXBUF - 20)) {
DPRINTF(sc, ATH_DBG_FATAL,
"TX queue: %d is full, depth: %d\n",
qnum, txq->axq_depth);
ieee80211_stop_queue(sc->hw, skb_get_queue_mapping(skb));
txq->stopped = 1;
spin_unlock_bh(&txq->axq_lock);
return NULL;
}
spin_unlock_bh(&txq->axq_lock);
return txq;
}
/* Update parameters for a transmit queue */
int ath_txq_update(struct ath_softc *sc, int qnum,
struct ath9k_tx_queue_info *qinfo)
{
struct ath_hal *ah = sc->sc_ah;
int error = 0;
struct ath9k_tx_queue_info qi;
if (qnum == sc->beacon.beaconq) {
/*
* XXX: for beacon queue, we just save the parameter.
* It will be picked up by ath_beaconq_config when
* it's necessary.
*/
sc->beacon.beacon_qi = *qinfo;
return 0;
}
ASSERT(sc->tx.txq[qnum].axq_qnum == qnum);
ath9k_hw_get_txq_props(ah, qnum, &qi);
qi.tqi_aifs = qinfo->tqi_aifs;
qi.tqi_cwmin = qinfo->tqi_cwmin;
qi.tqi_cwmax = qinfo->tqi_cwmax;
qi.tqi_burstTime = qinfo->tqi_burstTime;
qi.tqi_readyTime = qinfo->tqi_readyTime;
if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
DPRINTF(sc, ATH_DBG_FATAL,
"Unable to update hardware queue %u!\n", qnum);
error = -EIO;
} else {
ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */
}
return error;
}
int ath_cabq_update(struct ath_softc *sc)
{
struct ath9k_tx_queue_info qi;
int qnum = sc->beacon.cabq->axq_qnum;
struct ath_beacon_config conf;
ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
/*
* Ensure the readytime % is within the bounds.
*/
if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf);
qi.tqi_readyTime =
(conf.beacon_interval * sc->sc_config.cabqReadytime) / 100;
ath_txq_update(sc, qnum, &qi);
return 0;
}
/* Deferred processing of transmit interrupt */
void ath_tx_tasklet(struct ath_softc *sc)
{
int i;
u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
/*
* Process each active queue.
*/
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
ath_tx_processq(sc, &sc->tx.txq[i]);
}
}
void ath_tx_draintxq(struct ath_softc *sc,
struct ath_txq *txq, bool retry_tx)
{
struct ath_buf *bf, *lastbf;
struct list_head bf_head;
INIT_LIST_HEAD(&bf_head);
/*
* NB: this assumes output has been stopped and
* we do not need to block ath_tx_tasklet
*/
for (;;) {
spin_lock_bh(&txq->axq_lock);
if (list_empty(&txq->axq_q)) {
txq->axq_link = NULL;
txq->axq_linkbuf = NULL;
spin_unlock_bh(&txq->axq_lock);
break;
}
bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
if (bf->bf_status & ATH_BUFSTATUS_STALE) {
list_del(&bf->list);
spin_unlock_bh(&txq->axq_lock);
spin_lock_bh(&sc->tx.txbuflock);
list_add_tail(&bf->list, &sc->tx.txbuf);
spin_unlock_bh(&sc->tx.txbuflock);
continue;
}
lastbf = bf->bf_lastbf;
if (!retry_tx)
lastbf->bf_desc->ds_txstat.ts_flags =
ATH9K_TX_SW_ABORTED;
/* remove ath_buf's of the same mpdu from txq */
list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
txq->axq_depth--;
spin_unlock_bh(&txq->axq_lock);
if (bf_isampdu(bf))
ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, 0);
else
ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
}
/* flush any pending frames if aggregation is enabled */
if (sc->sc_flags & SC_OP_TXAGGR) {
if (!retry_tx) {
spin_lock_bh(&txq->axq_lock);
ath_txq_drain_pending_buffers(sc, txq);
spin_unlock_bh(&txq->axq_lock);
}
}
}
/* Drain the transmit queues and reclaim resources */
void ath_draintxq(struct ath_softc *sc, bool retry_tx)
{
/* stop beacon queue. The beacon will be freed when
* we go to INIT state */
if (!(sc->sc_flags & SC_OP_INVALID)) {
(void) ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
DPRINTF(sc, ATH_DBG_XMIT, "beacon queue %x\n",
ath9k_hw_gettxbuf(sc->sc_ah, sc->beacon.beaconq));
}
ath_drain_txdataq(sc, retry_tx);
}
u32 ath_txq_depth(struct ath_softc *sc, int qnum)
{
return sc->tx.txq[qnum].axq_depth;
}
u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum)
{
return sc->tx.txq[qnum].axq_aggr_depth;
}
bool ath_tx_aggr_check(struct ath_softc *sc, struct ath_node *an, u8 tidno)
{
struct ath_atx_tid *txtid;
if (!(sc->sc_flags & SC_OP_TXAGGR))
return false;
txtid = ATH_AN_2_TID(an, tidno);
if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
if (!(txtid->state & AGGR_ADDBA_PROGRESS) &&
(txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) {
txtid->addba_exchangeattempts++;
return true;
}
}
return false;
}
/* Start TX aggregation */
int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
u16 tid, u16 *ssn)
{
struct ath_atx_tid *txtid;
struct ath_node *an;
an = (struct ath_node *)sta->drv_priv;
if (sc->sc_flags & SC_OP_TXAGGR) {
txtid = ATH_AN_2_TID(an, tid);
txtid->state |= AGGR_ADDBA_PROGRESS;
ath_tx_pause_tid(sc, txtid);
}
return 0;
}
/* Stop tx aggregation */
int ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
{
struct ath_node *an = (struct ath_node *)sta->drv_priv;
ath_tx_aggr_teardown(sc, an, tid);
return 0;
}
/* Resume tx aggregation */
void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
{
struct ath_atx_tid *txtid;
struct ath_node *an;
an = (struct ath_node *)sta->drv_priv;
if (sc->sc_flags & SC_OP_TXAGGR) {
txtid = ATH_AN_2_TID(an, tid);
txtid->baw_size =
IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
txtid->state |= AGGR_ADDBA_COMPLETE;
txtid->state &= ~AGGR_ADDBA_PROGRESS;
ath_tx_resume_tid(sc, txtid);
}
}
/*
* Performs transmit side cleanup when TID changes from aggregated to
* unaggregated.
* - Pause the TID and mark cleanup in progress
* - Discard all retry frames from the s/w queue.
*/
void ath_tx_aggr_teardown(struct ath_softc *sc, struct ath_node *an, u8 tid)
{
struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
struct ath_txq *txq = &sc->tx.txq[txtid->ac->qnum];
struct ath_buf *bf;
struct list_head bf_head;
INIT_LIST_HEAD(&bf_head);
if (txtid->state & AGGR_CLEANUP) /* cleanup is in progress */
return;
if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
txtid->addba_exchangeattempts = 0;
return;
}
/* TID must be paused first */
ath_tx_pause_tid(sc, txtid);
/* drop all software retried frames and mark this TID */
spin_lock_bh(&txq->axq_lock);
while (!list_empty(&txtid->buf_q)) {
bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
if (!bf_isretried(bf)) {
/*
* NB: it's based on the assumption that
* software retried frame will always stay
* at the head of software queue.
*/
break;
}
list_cut_position(&bf_head,
&txtid->buf_q, &bf->bf_lastfrm->list);
ath_tx_update_baw(sc, txtid, bf->bf_seqno);
/* complete this sub-frame */
ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
}
if (txtid->baw_head != txtid->baw_tail) {
spin_unlock_bh(&txq->axq_lock);
txtid->state |= AGGR_CLEANUP;
} else {
txtid->state &= ~AGGR_ADDBA_COMPLETE;
txtid->addba_exchangeattempts = 0;
spin_unlock_bh(&txq->axq_lock);
ath_tx_flush_tid(sc, txtid);
}
}
/*
* Tx scheduling logic
* NB: must be called with txq lock held
*/
void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
{
struct ath_atx_ac *ac;
struct ath_atx_tid *tid;
/* nothing to schedule */
if (list_empty(&txq->axq_acq))
return;
/*
* get the first node/ac pair on the queue
*/
ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
list_del(&ac->list);
ac->sched = false;
/*
* process a single tid per destination
*/
do {
/* nothing to schedule */
if (list_empty(&ac->tid_q))
return;
tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
list_del(&tid->list);
tid->sched = false;
if (tid->paused) /* check next tid to keep h/w busy */
continue;
if ((txq->axq_depth % 2) == 0)
ath_tx_sched_aggr(sc, txq, tid);
/*
* add tid to round-robin queue if more frames
* are pending for the tid
*/
if (!list_empty(&tid->buf_q))
ath_tx_queue_tid(txq, tid);
/* only schedule one TID at a time */
break;
} while (!list_empty(&ac->tid_q));
/*
* schedule AC if more TIDs need processing
*/
if (!list_empty(&ac->tid_q)) {
/*
* add dest ac to txq if not already added
*/
if (!ac->sched) {
ac->sched = true;
list_add_tail(&ac->list, &txq->axq_acq);
}
}
}
/* Initialize per-node transmit state */
void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
{
struct ath_atx_tid *tid;
struct ath_atx_ac *ac;
int tidno, acno;
/*
* Init per tid tx state
*/
for (tidno = 0, tid = &an->tid[tidno];
tidno < WME_NUM_TID;
tidno++, tid++) {
tid->an = an;
tid->tidno = tidno;
tid->seq_start = tid->seq_next = 0;
tid->baw_size = WME_MAX_BA;
tid->baw_head = tid->baw_tail = 0;
tid->sched = false;
tid->paused = false;
tid->state &= ~AGGR_CLEANUP;
INIT_LIST_HEAD(&tid->buf_q);
acno = TID_TO_WME_AC(tidno);
tid->ac = &an->ac[acno];
/* ADDBA state */
tid->state &= ~AGGR_ADDBA_COMPLETE;
tid->state &= ~AGGR_ADDBA_PROGRESS;
tid->addba_exchangeattempts = 0;
}
/*
* Init per ac tx state
*/
for (acno = 0, ac = &an->ac[acno];
acno < WME_NUM_AC; acno++, ac++) {
ac->sched = false;
INIT_LIST_HEAD(&ac->tid_q);
switch (acno) {
case WME_AC_BE:
ac->qnum = ath_tx_get_qnum(sc,
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
break;
case WME_AC_BK:
ac->qnum = ath_tx_get_qnum(sc,
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
break;
case WME_AC_VI:
ac->qnum = ath_tx_get_qnum(sc,
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
break;
case WME_AC_VO:
ac->qnum = ath_tx_get_qnum(sc,
ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
break;
}
}
}
/* Cleanupthe pending buffers for the node. */
void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
{
int i;
struct ath_atx_ac *ac, *ac_tmp;
struct ath_atx_tid *tid, *tid_tmp;
struct ath_txq *txq;
for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
if (ATH_TXQ_SETUP(sc, i)) {
txq = &sc->tx.txq[i];
spin_lock(&txq->axq_lock);
list_for_each_entry_safe(ac,
ac_tmp, &txq->axq_acq, list) {
tid = list_first_entry(&ac->tid_q,
struct ath_atx_tid, list);
if (tid && tid->an != an)
continue;
list_del(&ac->list);
ac->sched = false;
list_for_each_entry_safe(tid,
tid_tmp, &ac->tid_q, list) {
list_del(&tid->list);
tid->sched = false;
ath_tid_drain(sc, txq, tid);
tid->state &= ~AGGR_ADDBA_COMPLETE;
tid->addba_exchangeattempts = 0;
tid->state &= ~AGGR_CLEANUP;
}
}
spin_unlock(&txq->axq_lock);
}
}
}
void ath_tx_cabq(struct ath_softc *sc, struct sk_buff *skb)
{
int hdrlen, padsize;
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ath_tx_control txctl;
memset(&txctl, 0, sizeof(struct ath_tx_control));
/*
* As a temporary workaround, assign seq# here; this will likely need
* to be cleaned up to work better with Beacon transmission and virtual
* BSSes.
*/
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
sc->tx.seq_no += 0x10;
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
}
/* Add the padding after the header if this is not already done */
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
if (hdrlen & 3) {
padsize = hdrlen % 4;
if (skb_headroom(skb) < padsize) {
DPRINTF(sc, ATH_DBG_XMIT, "TX CABQ padding failed\n");
dev_kfree_skb_any(skb);
return;
}
skb_push(skb, padsize);
memmove(skb->data, skb->data + padsize, hdrlen);
}
txctl.txq = sc->beacon.cabq;
DPRINTF(sc, ATH_DBG_XMIT, "transmitting CABQ packet, skb: %p\n", skb);
if (ath_tx_start(sc, skb, &txctl) != 0) {
DPRINTF(sc, ATH_DBG_XMIT, "CABQ TX failed\n");
goto exit;
}
return;
exit:
dev_kfree_skb_any(skb);
}