1
linux/include/rdma/ib_verbs.h
Tony Jones f4e91eb4a8 IB: convert struct class_device to struct device
This converts the main ib_device to use struct device instead of struct
class_device as class_device is going away.

Signed-off-by: Tony Jones <tonyj@suse.de>
Signed-off-by: Kay Sievers <kay.sievers@vrfy.org>
Cc: Roland Dreier <rolandd@cisco.com>
Cc: Sean Hefty <sean.hefty@intel.com>
Cc: Hal Rosenstock <hal.rosenstock@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
2008-04-19 19:10:30 -07:00

1870 lines
54 KiB
C

/*
* Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
* Copyright (c) 2004 Infinicon Corporation. All rights reserved.
* Copyright (c) 2004 Intel Corporation. All rights reserved.
* Copyright (c) 2004 Topspin Corporation. All rights reserved.
* Copyright (c) 2004 Voltaire Corporation. All rights reserved.
* Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
* Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* $Id: ib_verbs.h 1349 2004-12-16 21:09:43Z roland $
*/
#if !defined(IB_VERBS_H)
#define IB_VERBS_H
#include <linux/types.h>
#include <linux/device.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/rwsem.h>
#include <linux/scatterlist.h>
#include <asm/atomic.h>
#include <asm/uaccess.h>
union ib_gid {
u8 raw[16];
struct {
__be64 subnet_prefix;
__be64 interface_id;
} global;
};
enum rdma_node_type {
/* IB values map to NodeInfo:NodeType. */
RDMA_NODE_IB_CA = 1,
RDMA_NODE_IB_SWITCH,
RDMA_NODE_IB_ROUTER,
RDMA_NODE_RNIC
};
enum rdma_transport_type {
RDMA_TRANSPORT_IB,
RDMA_TRANSPORT_IWARP
};
enum rdma_transport_type
rdma_node_get_transport(enum rdma_node_type node_type) __attribute_const__;
enum ib_device_cap_flags {
IB_DEVICE_RESIZE_MAX_WR = 1,
IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
IB_DEVICE_RAW_MULTI = (1<<3),
IB_DEVICE_AUTO_PATH_MIG = (1<<4),
IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
IB_DEVICE_SHUTDOWN_PORT = (1<<8),
IB_DEVICE_INIT_TYPE = (1<<9),
IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
IB_DEVICE_SRQ_RESIZE = (1<<13),
IB_DEVICE_N_NOTIFY_CQ = (1<<14),
IB_DEVICE_ZERO_STAG = (1<<15),
IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
IB_DEVICE_MEM_WINDOW = (1<<17),
/*
* Devices should set IB_DEVICE_UD_IP_SUM if they support
* insertion of UDP and TCP checksum on outgoing UD IPoIB
* messages and can verify the validity of checksum for
* incoming messages. Setting this flag implies that the
* IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
*/
IB_DEVICE_UD_IP_CSUM = (1<<18),
IB_DEVICE_UD_TSO = (1<<19),
IB_DEVICE_SEND_W_INV = (1<<21),
};
enum ib_atomic_cap {
IB_ATOMIC_NONE,
IB_ATOMIC_HCA,
IB_ATOMIC_GLOB
};
struct ib_device_attr {
u64 fw_ver;
__be64 sys_image_guid;
u64 max_mr_size;
u64 page_size_cap;
u32 vendor_id;
u32 vendor_part_id;
u32 hw_ver;
int max_qp;
int max_qp_wr;
int device_cap_flags;
int max_sge;
int max_sge_rd;
int max_cq;
int max_cqe;
int max_mr;
int max_pd;
int max_qp_rd_atom;
int max_ee_rd_atom;
int max_res_rd_atom;
int max_qp_init_rd_atom;
int max_ee_init_rd_atom;
enum ib_atomic_cap atomic_cap;
int max_ee;
int max_rdd;
int max_mw;
int max_raw_ipv6_qp;
int max_raw_ethy_qp;
int max_mcast_grp;
int max_mcast_qp_attach;
int max_total_mcast_qp_attach;
int max_ah;
int max_fmr;
int max_map_per_fmr;
int max_srq;
int max_srq_wr;
int max_srq_sge;
u16 max_pkeys;
u8 local_ca_ack_delay;
};
enum ib_mtu {
IB_MTU_256 = 1,
IB_MTU_512 = 2,
IB_MTU_1024 = 3,
IB_MTU_2048 = 4,
IB_MTU_4096 = 5
};
static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
{
switch (mtu) {
case IB_MTU_256: return 256;
case IB_MTU_512: return 512;
case IB_MTU_1024: return 1024;
case IB_MTU_2048: return 2048;
case IB_MTU_4096: return 4096;
default: return -1;
}
}
enum ib_port_state {
IB_PORT_NOP = 0,
IB_PORT_DOWN = 1,
IB_PORT_INIT = 2,
IB_PORT_ARMED = 3,
IB_PORT_ACTIVE = 4,
IB_PORT_ACTIVE_DEFER = 5
};
enum ib_port_cap_flags {
IB_PORT_SM = 1 << 1,
IB_PORT_NOTICE_SUP = 1 << 2,
IB_PORT_TRAP_SUP = 1 << 3,
IB_PORT_OPT_IPD_SUP = 1 << 4,
IB_PORT_AUTO_MIGR_SUP = 1 << 5,
IB_PORT_SL_MAP_SUP = 1 << 6,
IB_PORT_MKEY_NVRAM = 1 << 7,
IB_PORT_PKEY_NVRAM = 1 << 8,
IB_PORT_LED_INFO_SUP = 1 << 9,
IB_PORT_SM_DISABLED = 1 << 10,
IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
IB_PORT_CM_SUP = 1 << 16,
IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
IB_PORT_REINIT_SUP = 1 << 18,
IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
IB_PORT_DR_NOTICE_SUP = 1 << 21,
IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
IB_PORT_BOOT_MGMT_SUP = 1 << 23,
IB_PORT_LINK_LATENCY_SUP = 1 << 24,
IB_PORT_CLIENT_REG_SUP = 1 << 25
};
enum ib_port_width {
IB_WIDTH_1X = 1,
IB_WIDTH_4X = 2,
IB_WIDTH_8X = 4,
IB_WIDTH_12X = 8
};
static inline int ib_width_enum_to_int(enum ib_port_width width)
{
switch (width) {
case IB_WIDTH_1X: return 1;
case IB_WIDTH_4X: return 4;
case IB_WIDTH_8X: return 8;
case IB_WIDTH_12X: return 12;
default: return -1;
}
}
struct ib_port_attr {
enum ib_port_state state;
enum ib_mtu max_mtu;
enum ib_mtu active_mtu;
int gid_tbl_len;
u32 port_cap_flags;
u32 max_msg_sz;
u32 bad_pkey_cntr;
u32 qkey_viol_cntr;
u16 pkey_tbl_len;
u16 lid;
u16 sm_lid;
u8 lmc;
u8 max_vl_num;
u8 sm_sl;
u8 subnet_timeout;
u8 init_type_reply;
u8 active_width;
u8 active_speed;
u8 phys_state;
};
enum ib_device_modify_flags {
IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
};
struct ib_device_modify {
u64 sys_image_guid;
char node_desc[64];
};
enum ib_port_modify_flags {
IB_PORT_SHUTDOWN = 1,
IB_PORT_INIT_TYPE = (1<<2),
IB_PORT_RESET_QKEY_CNTR = (1<<3)
};
struct ib_port_modify {
u32 set_port_cap_mask;
u32 clr_port_cap_mask;
u8 init_type;
};
enum ib_event_type {
IB_EVENT_CQ_ERR,
IB_EVENT_QP_FATAL,
IB_EVENT_QP_REQ_ERR,
IB_EVENT_QP_ACCESS_ERR,
IB_EVENT_COMM_EST,
IB_EVENT_SQ_DRAINED,
IB_EVENT_PATH_MIG,
IB_EVENT_PATH_MIG_ERR,
IB_EVENT_DEVICE_FATAL,
IB_EVENT_PORT_ACTIVE,
IB_EVENT_PORT_ERR,
IB_EVENT_LID_CHANGE,
IB_EVENT_PKEY_CHANGE,
IB_EVENT_SM_CHANGE,
IB_EVENT_SRQ_ERR,
IB_EVENT_SRQ_LIMIT_REACHED,
IB_EVENT_QP_LAST_WQE_REACHED,
IB_EVENT_CLIENT_REREGISTER
};
struct ib_event {
struct ib_device *device;
union {
struct ib_cq *cq;
struct ib_qp *qp;
struct ib_srq *srq;
u8 port_num;
} element;
enum ib_event_type event;
};
struct ib_event_handler {
struct ib_device *device;
void (*handler)(struct ib_event_handler *, struct ib_event *);
struct list_head list;
};
#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
do { \
(_ptr)->device = _device; \
(_ptr)->handler = _handler; \
INIT_LIST_HEAD(&(_ptr)->list); \
} while (0)
struct ib_global_route {
union ib_gid dgid;
u32 flow_label;
u8 sgid_index;
u8 hop_limit;
u8 traffic_class;
};
struct ib_grh {
__be32 version_tclass_flow;
__be16 paylen;
u8 next_hdr;
u8 hop_limit;
union ib_gid sgid;
union ib_gid dgid;
};
enum {
IB_MULTICAST_QPN = 0xffffff
};
#define IB_LID_PERMISSIVE __constant_htons(0xFFFF)
enum ib_ah_flags {
IB_AH_GRH = 1
};
enum ib_rate {
IB_RATE_PORT_CURRENT = 0,
IB_RATE_2_5_GBPS = 2,
IB_RATE_5_GBPS = 5,
IB_RATE_10_GBPS = 3,
IB_RATE_20_GBPS = 6,
IB_RATE_30_GBPS = 4,
IB_RATE_40_GBPS = 7,
IB_RATE_60_GBPS = 8,
IB_RATE_80_GBPS = 9,
IB_RATE_120_GBPS = 10
};
/**
* ib_rate_to_mult - Convert the IB rate enum to a multiple of the
* base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
* converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
* @rate: rate to convert.
*/
int ib_rate_to_mult(enum ib_rate rate) __attribute_const__;
/**
* mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
* enum.
* @mult: multiple to convert.
*/
enum ib_rate mult_to_ib_rate(int mult) __attribute_const__;
struct ib_ah_attr {
struct ib_global_route grh;
u16 dlid;
u8 sl;
u8 src_path_bits;
u8 static_rate;
u8 ah_flags;
u8 port_num;
};
enum ib_wc_status {
IB_WC_SUCCESS,
IB_WC_LOC_LEN_ERR,
IB_WC_LOC_QP_OP_ERR,
IB_WC_LOC_EEC_OP_ERR,
IB_WC_LOC_PROT_ERR,
IB_WC_WR_FLUSH_ERR,
IB_WC_MW_BIND_ERR,
IB_WC_BAD_RESP_ERR,
IB_WC_LOC_ACCESS_ERR,
IB_WC_REM_INV_REQ_ERR,
IB_WC_REM_ACCESS_ERR,
IB_WC_REM_OP_ERR,
IB_WC_RETRY_EXC_ERR,
IB_WC_RNR_RETRY_EXC_ERR,
IB_WC_LOC_RDD_VIOL_ERR,
IB_WC_REM_INV_RD_REQ_ERR,
IB_WC_REM_ABORT_ERR,
IB_WC_INV_EECN_ERR,
IB_WC_INV_EEC_STATE_ERR,
IB_WC_FATAL_ERR,
IB_WC_RESP_TIMEOUT_ERR,
IB_WC_GENERAL_ERR
};
enum ib_wc_opcode {
IB_WC_SEND,
IB_WC_RDMA_WRITE,
IB_WC_RDMA_READ,
IB_WC_COMP_SWAP,
IB_WC_FETCH_ADD,
IB_WC_BIND_MW,
IB_WC_LSO,
/*
* Set value of IB_WC_RECV so consumers can test if a completion is a
* receive by testing (opcode & IB_WC_RECV).
*/
IB_WC_RECV = 1 << 7,
IB_WC_RECV_RDMA_WITH_IMM
};
enum ib_wc_flags {
IB_WC_GRH = 1,
IB_WC_WITH_IMM = (1<<1)
};
struct ib_wc {
u64 wr_id;
enum ib_wc_status status;
enum ib_wc_opcode opcode;
u32 vendor_err;
u32 byte_len;
struct ib_qp *qp;
__be32 imm_data;
u32 src_qp;
int wc_flags;
u16 pkey_index;
u16 slid;
u8 sl;
u8 dlid_path_bits;
u8 port_num; /* valid only for DR SMPs on switches */
int csum_ok;
};
enum ib_cq_notify_flags {
IB_CQ_SOLICITED = 1 << 0,
IB_CQ_NEXT_COMP = 1 << 1,
IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
};
enum ib_srq_attr_mask {
IB_SRQ_MAX_WR = 1 << 0,
IB_SRQ_LIMIT = 1 << 1,
};
struct ib_srq_attr {
u32 max_wr;
u32 max_sge;
u32 srq_limit;
};
struct ib_srq_init_attr {
void (*event_handler)(struct ib_event *, void *);
void *srq_context;
struct ib_srq_attr attr;
};
struct ib_qp_cap {
u32 max_send_wr;
u32 max_recv_wr;
u32 max_send_sge;
u32 max_recv_sge;
u32 max_inline_data;
};
enum ib_sig_type {
IB_SIGNAL_ALL_WR,
IB_SIGNAL_REQ_WR
};
enum ib_qp_type {
/*
* IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
* here (and in that order) since the MAD layer uses them as
* indices into a 2-entry table.
*/
IB_QPT_SMI,
IB_QPT_GSI,
IB_QPT_RC,
IB_QPT_UC,
IB_QPT_UD,
IB_QPT_RAW_IPV6,
IB_QPT_RAW_ETY
};
enum ib_qp_create_flags {
IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
};
struct ib_qp_init_attr {
void (*event_handler)(struct ib_event *, void *);
void *qp_context;
struct ib_cq *send_cq;
struct ib_cq *recv_cq;
struct ib_srq *srq;
struct ib_qp_cap cap;
enum ib_sig_type sq_sig_type;
enum ib_qp_type qp_type;
enum ib_qp_create_flags create_flags;
u8 port_num; /* special QP types only */
};
enum ib_rnr_timeout {
IB_RNR_TIMER_655_36 = 0,
IB_RNR_TIMER_000_01 = 1,
IB_RNR_TIMER_000_02 = 2,
IB_RNR_TIMER_000_03 = 3,
IB_RNR_TIMER_000_04 = 4,
IB_RNR_TIMER_000_06 = 5,
IB_RNR_TIMER_000_08 = 6,
IB_RNR_TIMER_000_12 = 7,
IB_RNR_TIMER_000_16 = 8,
IB_RNR_TIMER_000_24 = 9,
IB_RNR_TIMER_000_32 = 10,
IB_RNR_TIMER_000_48 = 11,
IB_RNR_TIMER_000_64 = 12,
IB_RNR_TIMER_000_96 = 13,
IB_RNR_TIMER_001_28 = 14,
IB_RNR_TIMER_001_92 = 15,
IB_RNR_TIMER_002_56 = 16,
IB_RNR_TIMER_003_84 = 17,
IB_RNR_TIMER_005_12 = 18,
IB_RNR_TIMER_007_68 = 19,
IB_RNR_TIMER_010_24 = 20,
IB_RNR_TIMER_015_36 = 21,
IB_RNR_TIMER_020_48 = 22,
IB_RNR_TIMER_030_72 = 23,
IB_RNR_TIMER_040_96 = 24,
IB_RNR_TIMER_061_44 = 25,
IB_RNR_TIMER_081_92 = 26,
IB_RNR_TIMER_122_88 = 27,
IB_RNR_TIMER_163_84 = 28,
IB_RNR_TIMER_245_76 = 29,
IB_RNR_TIMER_327_68 = 30,
IB_RNR_TIMER_491_52 = 31
};
enum ib_qp_attr_mask {
IB_QP_STATE = 1,
IB_QP_CUR_STATE = (1<<1),
IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
IB_QP_ACCESS_FLAGS = (1<<3),
IB_QP_PKEY_INDEX = (1<<4),
IB_QP_PORT = (1<<5),
IB_QP_QKEY = (1<<6),
IB_QP_AV = (1<<7),
IB_QP_PATH_MTU = (1<<8),
IB_QP_TIMEOUT = (1<<9),
IB_QP_RETRY_CNT = (1<<10),
IB_QP_RNR_RETRY = (1<<11),
IB_QP_RQ_PSN = (1<<12),
IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
IB_QP_ALT_PATH = (1<<14),
IB_QP_MIN_RNR_TIMER = (1<<15),
IB_QP_SQ_PSN = (1<<16),
IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
IB_QP_PATH_MIG_STATE = (1<<18),
IB_QP_CAP = (1<<19),
IB_QP_DEST_QPN = (1<<20)
};
enum ib_qp_state {
IB_QPS_RESET,
IB_QPS_INIT,
IB_QPS_RTR,
IB_QPS_RTS,
IB_QPS_SQD,
IB_QPS_SQE,
IB_QPS_ERR
};
enum ib_mig_state {
IB_MIG_MIGRATED,
IB_MIG_REARM,
IB_MIG_ARMED
};
struct ib_qp_attr {
enum ib_qp_state qp_state;
enum ib_qp_state cur_qp_state;
enum ib_mtu path_mtu;
enum ib_mig_state path_mig_state;
u32 qkey;
u32 rq_psn;
u32 sq_psn;
u32 dest_qp_num;
int qp_access_flags;
struct ib_qp_cap cap;
struct ib_ah_attr ah_attr;
struct ib_ah_attr alt_ah_attr;
u16 pkey_index;
u16 alt_pkey_index;
u8 en_sqd_async_notify;
u8 sq_draining;
u8 max_rd_atomic;
u8 max_dest_rd_atomic;
u8 min_rnr_timer;
u8 port_num;
u8 timeout;
u8 retry_cnt;
u8 rnr_retry;
u8 alt_port_num;
u8 alt_timeout;
};
enum ib_wr_opcode {
IB_WR_RDMA_WRITE,
IB_WR_RDMA_WRITE_WITH_IMM,
IB_WR_SEND,
IB_WR_SEND_WITH_IMM,
IB_WR_RDMA_READ,
IB_WR_ATOMIC_CMP_AND_SWP,
IB_WR_ATOMIC_FETCH_AND_ADD,
IB_WR_LSO,
IB_WR_SEND_WITH_INV,
};
enum ib_send_flags {
IB_SEND_FENCE = 1,
IB_SEND_SIGNALED = (1<<1),
IB_SEND_SOLICITED = (1<<2),
IB_SEND_INLINE = (1<<3),
IB_SEND_IP_CSUM = (1<<4)
};
struct ib_sge {
u64 addr;
u32 length;
u32 lkey;
};
struct ib_send_wr {
struct ib_send_wr *next;
u64 wr_id;
struct ib_sge *sg_list;
int num_sge;
enum ib_wr_opcode opcode;
int send_flags;
union {
__be32 imm_data;
u32 invalidate_rkey;
} ex;
union {
struct {
u64 remote_addr;
u32 rkey;
} rdma;
struct {
u64 remote_addr;
u64 compare_add;
u64 swap;
u32 rkey;
} atomic;
struct {
struct ib_ah *ah;
void *header;
int hlen;
int mss;
u32 remote_qpn;
u32 remote_qkey;
u16 pkey_index; /* valid for GSI only */
u8 port_num; /* valid for DR SMPs on switch only */
} ud;
} wr;
};
struct ib_recv_wr {
struct ib_recv_wr *next;
u64 wr_id;
struct ib_sge *sg_list;
int num_sge;
};
enum ib_access_flags {
IB_ACCESS_LOCAL_WRITE = 1,
IB_ACCESS_REMOTE_WRITE = (1<<1),
IB_ACCESS_REMOTE_READ = (1<<2),
IB_ACCESS_REMOTE_ATOMIC = (1<<3),
IB_ACCESS_MW_BIND = (1<<4)
};
struct ib_phys_buf {
u64 addr;
u64 size;
};
struct ib_mr_attr {
struct ib_pd *pd;
u64 device_virt_addr;
u64 size;
int mr_access_flags;
u32 lkey;
u32 rkey;
};
enum ib_mr_rereg_flags {
IB_MR_REREG_TRANS = 1,
IB_MR_REREG_PD = (1<<1),
IB_MR_REREG_ACCESS = (1<<2)
};
struct ib_mw_bind {
struct ib_mr *mr;
u64 wr_id;
u64 addr;
u32 length;
int send_flags;
int mw_access_flags;
};
struct ib_fmr_attr {
int max_pages;
int max_maps;
u8 page_shift;
};
struct ib_ucontext {
struct ib_device *device;
struct list_head pd_list;
struct list_head mr_list;
struct list_head mw_list;
struct list_head cq_list;
struct list_head qp_list;
struct list_head srq_list;
struct list_head ah_list;
int closing;
};
struct ib_uobject {
u64 user_handle; /* handle given to us by userspace */
struct ib_ucontext *context; /* associated user context */
void *object; /* containing object */
struct list_head list; /* link to context's list */
int id; /* index into kernel idr */
struct kref ref;
struct rw_semaphore mutex; /* protects .live */
int live;
};
struct ib_udata {
void __user *inbuf;
void __user *outbuf;
size_t inlen;
size_t outlen;
};
struct ib_pd {
struct ib_device *device;
struct ib_uobject *uobject;
atomic_t usecnt; /* count all resources */
};
struct ib_ah {
struct ib_device *device;
struct ib_pd *pd;
struct ib_uobject *uobject;
};
typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
struct ib_cq {
struct ib_device *device;
struct ib_uobject *uobject;
ib_comp_handler comp_handler;
void (*event_handler)(struct ib_event *, void *);
void * cq_context;
int cqe;
atomic_t usecnt; /* count number of work queues */
};
struct ib_srq {
struct ib_device *device;
struct ib_pd *pd;
struct ib_uobject *uobject;
void (*event_handler)(struct ib_event *, void *);
void *srq_context;
atomic_t usecnt;
};
struct ib_qp {
struct ib_device *device;
struct ib_pd *pd;
struct ib_cq *send_cq;
struct ib_cq *recv_cq;
struct ib_srq *srq;
struct ib_uobject *uobject;
void (*event_handler)(struct ib_event *, void *);
void *qp_context;
u32 qp_num;
enum ib_qp_type qp_type;
};
struct ib_mr {
struct ib_device *device;
struct ib_pd *pd;
struct ib_uobject *uobject;
u32 lkey;
u32 rkey;
atomic_t usecnt; /* count number of MWs */
};
struct ib_mw {
struct ib_device *device;
struct ib_pd *pd;
struct ib_uobject *uobject;
u32 rkey;
};
struct ib_fmr {
struct ib_device *device;
struct ib_pd *pd;
struct list_head list;
u32 lkey;
u32 rkey;
};
struct ib_mad;
struct ib_grh;
enum ib_process_mad_flags {
IB_MAD_IGNORE_MKEY = 1,
IB_MAD_IGNORE_BKEY = 2,
IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
};
enum ib_mad_result {
IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
};
#define IB_DEVICE_NAME_MAX 64
struct ib_cache {
rwlock_t lock;
struct ib_event_handler event_handler;
struct ib_pkey_cache **pkey_cache;
struct ib_gid_cache **gid_cache;
u8 *lmc_cache;
};
struct ib_dma_mapping_ops {
int (*mapping_error)(struct ib_device *dev,
u64 dma_addr);
u64 (*map_single)(struct ib_device *dev,
void *ptr, size_t size,
enum dma_data_direction direction);
void (*unmap_single)(struct ib_device *dev,
u64 addr, size_t size,
enum dma_data_direction direction);
u64 (*map_page)(struct ib_device *dev,
struct page *page, unsigned long offset,
size_t size,
enum dma_data_direction direction);
void (*unmap_page)(struct ib_device *dev,
u64 addr, size_t size,
enum dma_data_direction direction);
int (*map_sg)(struct ib_device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction direction);
void (*unmap_sg)(struct ib_device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction direction);
u64 (*dma_address)(struct ib_device *dev,
struct scatterlist *sg);
unsigned int (*dma_len)(struct ib_device *dev,
struct scatterlist *sg);
void (*sync_single_for_cpu)(struct ib_device *dev,
u64 dma_handle,
size_t size,
enum dma_data_direction dir);
void (*sync_single_for_device)(struct ib_device *dev,
u64 dma_handle,
size_t size,
enum dma_data_direction dir);
void *(*alloc_coherent)(struct ib_device *dev,
size_t size,
u64 *dma_handle,
gfp_t flag);
void (*free_coherent)(struct ib_device *dev,
size_t size, void *cpu_addr,
u64 dma_handle);
};
struct iw_cm_verbs;
struct ib_device {
struct device *dma_device;
char name[IB_DEVICE_NAME_MAX];
struct list_head event_handler_list;
spinlock_t event_handler_lock;
struct list_head core_list;
struct list_head client_data_list;
spinlock_t client_data_lock;
struct ib_cache cache;
int *pkey_tbl_len;
int *gid_tbl_len;
int num_comp_vectors;
struct iw_cm_verbs *iwcm;
int (*query_device)(struct ib_device *device,
struct ib_device_attr *device_attr);
int (*query_port)(struct ib_device *device,
u8 port_num,
struct ib_port_attr *port_attr);
int (*query_gid)(struct ib_device *device,
u8 port_num, int index,
union ib_gid *gid);
int (*query_pkey)(struct ib_device *device,
u8 port_num, u16 index, u16 *pkey);
int (*modify_device)(struct ib_device *device,
int device_modify_mask,
struct ib_device_modify *device_modify);
int (*modify_port)(struct ib_device *device,
u8 port_num, int port_modify_mask,
struct ib_port_modify *port_modify);
struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
struct ib_udata *udata);
int (*dealloc_ucontext)(struct ib_ucontext *context);
int (*mmap)(struct ib_ucontext *context,
struct vm_area_struct *vma);
struct ib_pd * (*alloc_pd)(struct ib_device *device,
struct ib_ucontext *context,
struct ib_udata *udata);
int (*dealloc_pd)(struct ib_pd *pd);
struct ib_ah * (*create_ah)(struct ib_pd *pd,
struct ib_ah_attr *ah_attr);
int (*modify_ah)(struct ib_ah *ah,
struct ib_ah_attr *ah_attr);
int (*query_ah)(struct ib_ah *ah,
struct ib_ah_attr *ah_attr);
int (*destroy_ah)(struct ib_ah *ah);
struct ib_srq * (*create_srq)(struct ib_pd *pd,
struct ib_srq_init_attr *srq_init_attr,
struct ib_udata *udata);
int (*modify_srq)(struct ib_srq *srq,
struct ib_srq_attr *srq_attr,
enum ib_srq_attr_mask srq_attr_mask,
struct ib_udata *udata);
int (*query_srq)(struct ib_srq *srq,
struct ib_srq_attr *srq_attr);
int (*destroy_srq)(struct ib_srq *srq);
int (*post_srq_recv)(struct ib_srq *srq,
struct ib_recv_wr *recv_wr,
struct ib_recv_wr **bad_recv_wr);
struct ib_qp * (*create_qp)(struct ib_pd *pd,
struct ib_qp_init_attr *qp_init_attr,
struct ib_udata *udata);
int (*modify_qp)(struct ib_qp *qp,
struct ib_qp_attr *qp_attr,
int qp_attr_mask,
struct ib_udata *udata);
int (*query_qp)(struct ib_qp *qp,
struct ib_qp_attr *qp_attr,
int qp_attr_mask,
struct ib_qp_init_attr *qp_init_attr);
int (*destroy_qp)(struct ib_qp *qp);
int (*post_send)(struct ib_qp *qp,
struct ib_send_wr *send_wr,
struct ib_send_wr **bad_send_wr);
int (*post_recv)(struct ib_qp *qp,
struct ib_recv_wr *recv_wr,
struct ib_recv_wr **bad_recv_wr);
struct ib_cq * (*create_cq)(struct ib_device *device, int cqe,
int comp_vector,
struct ib_ucontext *context,
struct ib_udata *udata);
int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
u16 cq_period);
int (*destroy_cq)(struct ib_cq *cq);
int (*resize_cq)(struct ib_cq *cq, int cqe,
struct ib_udata *udata);
int (*poll_cq)(struct ib_cq *cq, int num_entries,
struct ib_wc *wc);
int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
int (*req_notify_cq)(struct ib_cq *cq,
enum ib_cq_notify_flags flags);
int (*req_ncomp_notif)(struct ib_cq *cq,
int wc_cnt);
struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
int mr_access_flags);
struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
struct ib_phys_buf *phys_buf_array,
int num_phys_buf,
int mr_access_flags,
u64 *iova_start);
struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
u64 start, u64 length,
u64 virt_addr,
int mr_access_flags,
struct ib_udata *udata);
int (*query_mr)(struct ib_mr *mr,
struct ib_mr_attr *mr_attr);
int (*dereg_mr)(struct ib_mr *mr);
int (*rereg_phys_mr)(struct ib_mr *mr,
int mr_rereg_mask,
struct ib_pd *pd,
struct ib_phys_buf *phys_buf_array,
int num_phys_buf,
int mr_access_flags,
u64 *iova_start);
struct ib_mw * (*alloc_mw)(struct ib_pd *pd);
int (*bind_mw)(struct ib_qp *qp,
struct ib_mw *mw,
struct ib_mw_bind *mw_bind);
int (*dealloc_mw)(struct ib_mw *mw);
struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
int mr_access_flags,
struct ib_fmr_attr *fmr_attr);
int (*map_phys_fmr)(struct ib_fmr *fmr,
u64 *page_list, int list_len,
u64 iova);
int (*unmap_fmr)(struct list_head *fmr_list);
int (*dealloc_fmr)(struct ib_fmr *fmr);
int (*attach_mcast)(struct ib_qp *qp,
union ib_gid *gid,
u16 lid);
int (*detach_mcast)(struct ib_qp *qp,
union ib_gid *gid,
u16 lid);
int (*process_mad)(struct ib_device *device,
int process_mad_flags,
u8 port_num,
struct ib_wc *in_wc,
struct ib_grh *in_grh,
struct ib_mad *in_mad,
struct ib_mad *out_mad);
struct ib_dma_mapping_ops *dma_ops;
struct module *owner;
struct device dev;
struct kobject *ports_parent;
struct list_head port_list;
enum {
IB_DEV_UNINITIALIZED,
IB_DEV_REGISTERED,
IB_DEV_UNREGISTERED
} reg_state;
u64 uverbs_cmd_mask;
int uverbs_abi_ver;
char node_desc[64];
__be64 node_guid;
u8 node_type;
u8 phys_port_cnt;
};
struct ib_client {
char *name;
void (*add) (struct ib_device *);
void (*remove)(struct ib_device *);
struct list_head list;
};
struct ib_device *ib_alloc_device(size_t size);
void ib_dealloc_device(struct ib_device *device);
int ib_register_device (struct ib_device *device);
void ib_unregister_device(struct ib_device *device);
int ib_register_client (struct ib_client *client);
void ib_unregister_client(struct ib_client *client);
void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
void ib_set_client_data(struct ib_device *device, struct ib_client *client,
void *data);
static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
{
return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
}
static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
{
return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
}
/**
* ib_modify_qp_is_ok - Check that the supplied attribute mask
* contains all required attributes and no attributes not allowed for
* the given QP state transition.
* @cur_state: Current QP state
* @next_state: Next QP state
* @type: QP type
* @mask: Mask of supplied QP attributes
*
* This function is a helper function that a low-level driver's
* modify_qp method can use to validate the consumer's input. It
* checks that cur_state and next_state are valid QP states, that a
* transition from cur_state to next_state is allowed by the IB spec,
* and that the attribute mask supplied is allowed for the transition.
*/
int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
enum ib_qp_type type, enum ib_qp_attr_mask mask);
int ib_register_event_handler (struct ib_event_handler *event_handler);
int ib_unregister_event_handler(struct ib_event_handler *event_handler);
void ib_dispatch_event(struct ib_event *event);
int ib_query_device(struct ib_device *device,
struct ib_device_attr *device_attr);
int ib_query_port(struct ib_device *device,
u8 port_num, struct ib_port_attr *port_attr);
int ib_query_gid(struct ib_device *device,
u8 port_num, int index, union ib_gid *gid);
int ib_query_pkey(struct ib_device *device,
u8 port_num, u16 index, u16 *pkey);
int ib_modify_device(struct ib_device *device,
int device_modify_mask,
struct ib_device_modify *device_modify);
int ib_modify_port(struct ib_device *device,
u8 port_num, int port_modify_mask,
struct ib_port_modify *port_modify);
int ib_find_gid(struct ib_device *device, union ib_gid *gid,
u8 *port_num, u16 *index);
int ib_find_pkey(struct ib_device *device,
u8 port_num, u16 pkey, u16 *index);
/**
* ib_alloc_pd - Allocates an unused protection domain.
* @device: The device on which to allocate the protection domain.
*
* A protection domain object provides an association between QPs, shared
* receive queues, address handles, memory regions, and memory windows.
*/
struct ib_pd *ib_alloc_pd(struct ib_device *device);
/**
* ib_dealloc_pd - Deallocates a protection domain.
* @pd: The protection domain to deallocate.
*/
int ib_dealloc_pd(struct ib_pd *pd);
/**
* ib_create_ah - Creates an address handle for the given address vector.
* @pd: The protection domain associated with the address handle.
* @ah_attr: The attributes of the address vector.
*
* The address handle is used to reference a local or global destination
* in all UD QP post sends.
*/
struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
/**
* ib_init_ah_from_wc - Initializes address handle attributes from a
* work completion.
* @device: Device on which the received message arrived.
* @port_num: Port on which the received message arrived.
* @wc: Work completion associated with the received message.
* @grh: References the received global route header. This parameter is
* ignored unless the work completion indicates that the GRH is valid.
* @ah_attr: Returned attributes that can be used when creating an address
* handle for replying to the message.
*/
int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, struct ib_wc *wc,
struct ib_grh *grh, struct ib_ah_attr *ah_attr);
/**
* ib_create_ah_from_wc - Creates an address handle associated with the
* sender of the specified work completion.
* @pd: The protection domain associated with the address handle.
* @wc: Work completion information associated with a received message.
* @grh: References the received global route header. This parameter is
* ignored unless the work completion indicates that the GRH is valid.
* @port_num: The outbound port number to associate with the address.
*
* The address handle is used to reference a local or global destination
* in all UD QP post sends.
*/
struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, struct ib_wc *wc,
struct ib_grh *grh, u8 port_num);
/**
* ib_modify_ah - Modifies the address vector associated with an address
* handle.
* @ah: The address handle to modify.
* @ah_attr: The new address vector attributes to associate with the
* address handle.
*/
int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
/**
* ib_query_ah - Queries the address vector associated with an address
* handle.
* @ah: The address handle to query.
* @ah_attr: The address vector attributes associated with the address
* handle.
*/
int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
/**
* ib_destroy_ah - Destroys an address handle.
* @ah: The address handle to destroy.
*/
int ib_destroy_ah(struct ib_ah *ah);
/**
* ib_create_srq - Creates a SRQ associated with the specified protection
* domain.
* @pd: The protection domain associated with the SRQ.
* @srq_init_attr: A list of initial attributes required to create the
* SRQ. If SRQ creation succeeds, then the attributes are updated to
* the actual capabilities of the created SRQ.
*
* srq_attr->max_wr and srq_attr->max_sge are read the determine the
* requested size of the SRQ, and set to the actual values allocated
* on return. If ib_create_srq() succeeds, then max_wr and max_sge
* will always be at least as large as the requested values.
*/
struct ib_srq *ib_create_srq(struct ib_pd *pd,
struct ib_srq_init_attr *srq_init_attr);
/**
* ib_modify_srq - Modifies the attributes for the specified SRQ.
* @srq: The SRQ to modify.
* @srq_attr: On input, specifies the SRQ attributes to modify. On output,
* the current values of selected SRQ attributes are returned.
* @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
* are being modified.
*
* The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
* IB_SRQ_LIMIT to set the SRQ's limit and request notification when
* the number of receives queued drops below the limit.
*/
int ib_modify_srq(struct ib_srq *srq,
struct ib_srq_attr *srq_attr,
enum ib_srq_attr_mask srq_attr_mask);
/**
* ib_query_srq - Returns the attribute list and current values for the
* specified SRQ.
* @srq: The SRQ to query.
* @srq_attr: The attributes of the specified SRQ.
*/
int ib_query_srq(struct ib_srq *srq,
struct ib_srq_attr *srq_attr);
/**
* ib_destroy_srq - Destroys the specified SRQ.
* @srq: The SRQ to destroy.
*/
int ib_destroy_srq(struct ib_srq *srq);
/**
* ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
* @srq: The SRQ to post the work request on.
* @recv_wr: A list of work requests to post on the receive queue.
* @bad_recv_wr: On an immediate failure, this parameter will reference
* the work request that failed to be posted on the QP.
*/
static inline int ib_post_srq_recv(struct ib_srq *srq,
struct ib_recv_wr *recv_wr,
struct ib_recv_wr **bad_recv_wr)
{
return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
}
/**
* ib_create_qp - Creates a QP associated with the specified protection
* domain.
* @pd: The protection domain associated with the QP.
* @qp_init_attr: A list of initial attributes required to create the
* QP. If QP creation succeeds, then the attributes are updated to
* the actual capabilities of the created QP.
*/
struct ib_qp *ib_create_qp(struct ib_pd *pd,
struct ib_qp_init_attr *qp_init_attr);
/**
* ib_modify_qp - Modifies the attributes for the specified QP and then
* transitions the QP to the given state.
* @qp: The QP to modify.
* @qp_attr: On input, specifies the QP attributes to modify. On output,
* the current values of selected QP attributes are returned.
* @qp_attr_mask: A bit-mask used to specify which attributes of the QP
* are being modified.
*/
int ib_modify_qp(struct ib_qp *qp,
struct ib_qp_attr *qp_attr,
int qp_attr_mask);
/**
* ib_query_qp - Returns the attribute list and current values for the
* specified QP.
* @qp: The QP to query.
* @qp_attr: The attributes of the specified QP.
* @qp_attr_mask: A bit-mask used to select specific attributes to query.
* @qp_init_attr: Additional attributes of the selected QP.
*
* The qp_attr_mask may be used to limit the query to gathering only the
* selected attributes.
*/
int ib_query_qp(struct ib_qp *qp,
struct ib_qp_attr *qp_attr,
int qp_attr_mask,
struct ib_qp_init_attr *qp_init_attr);
/**
* ib_destroy_qp - Destroys the specified QP.
* @qp: The QP to destroy.
*/
int ib_destroy_qp(struct ib_qp *qp);
/**
* ib_post_send - Posts a list of work requests to the send queue of
* the specified QP.
* @qp: The QP to post the work request on.
* @send_wr: A list of work requests to post on the send queue.
* @bad_send_wr: On an immediate failure, this parameter will reference
* the work request that failed to be posted on the QP.
*/
static inline int ib_post_send(struct ib_qp *qp,
struct ib_send_wr *send_wr,
struct ib_send_wr **bad_send_wr)
{
return qp->device->post_send(qp, send_wr, bad_send_wr);
}
/**
* ib_post_recv - Posts a list of work requests to the receive queue of
* the specified QP.
* @qp: The QP to post the work request on.
* @recv_wr: A list of work requests to post on the receive queue.
* @bad_recv_wr: On an immediate failure, this parameter will reference
* the work request that failed to be posted on the QP.
*/
static inline int ib_post_recv(struct ib_qp *qp,
struct ib_recv_wr *recv_wr,
struct ib_recv_wr **bad_recv_wr)
{
return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
}
/**
* ib_create_cq - Creates a CQ on the specified device.
* @device: The device on which to create the CQ.
* @comp_handler: A user-specified callback that is invoked when a
* completion event occurs on the CQ.
* @event_handler: A user-specified callback that is invoked when an
* asynchronous event not associated with a completion occurs on the CQ.
* @cq_context: Context associated with the CQ returned to the user via
* the associated completion and event handlers.
* @cqe: The minimum size of the CQ.
* @comp_vector - Completion vector used to signal completion events.
* Must be >= 0 and < context->num_comp_vectors.
*
* Users can examine the cq structure to determine the actual CQ size.
*/
struct ib_cq *ib_create_cq(struct ib_device *device,
ib_comp_handler comp_handler,
void (*event_handler)(struct ib_event *, void *),
void *cq_context, int cqe, int comp_vector);
/**
* ib_resize_cq - Modifies the capacity of the CQ.
* @cq: The CQ to resize.
* @cqe: The minimum size of the CQ.
*
* Users can examine the cq structure to determine the actual CQ size.
*/
int ib_resize_cq(struct ib_cq *cq, int cqe);
/**
* ib_modify_cq - Modifies moderation params of the CQ
* @cq: The CQ to modify.
* @cq_count: number of CQEs that will trigger an event
* @cq_period: max period of time in usec before triggering an event
*
*/
int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
/**
* ib_destroy_cq - Destroys the specified CQ.
* @cq: The CQ to destroy.
*/
int ib_destroy_cq(struct ib_cq *cq);
/**
* ib_poll_cq - poll a CQ for completion(s)
* @cq:the CQ being polled
* @num_entries:maximum number of completions to return
* @wc:array of at least @num_entries &struct ib_wc where completions
* will be returned
*
* Poll a CQ for (possibly multiple) completions. If the return value
* is < 0, an error occurred. If the return value is >= 0, it is the
* number of completions returned. If the return value is
* non-negative and < num_entries, then the CQ was emptied.
*/
static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
struct ib_wc *wc)
{
return cq->device->poll_cq(cq, num_entries, wc);
}
/**
* ib_peek_cq - Returns the number of unreaped completions currently
* on the specified CQ.
* @cq: The CQ to peek.
* @wc_cnt: A minimum number of unreaped completions to check for.
*
* If the number of unreaped completions is greater than or equal to wc_cnt,
* this function returns wc_cnt, otherwise, it returns the actual number of
* unreaped completions.
*/
int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
/**
* ib_req_notify_cq - Request completion notification on a CQ.
* @cq: The CQ to generate an event for.
* @flags:
* Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
* to request an event on the next solicited event or next work
* completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
* may also be |ed in to request a hint about missed events, as
* described below.
*
* Return Value:
* < 0 means an error occurred while requesting notification
* == 0 means notification was requested successfully, and if
* IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
* were missed and it is safe to wait for another event. In
* this case is it guaranteed that any work completions added
* to the CQ since the last CQ poll will trigger a completion
* notification event.
* > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
* in. It means that the consumer must poll the CQ again to
* make sure it is empty to avoid missing an event because of a
* race between requesting notification and an entry being
* added to the CQ. This return value means it is possible
* (but not guaranteed) that a work completion has been added
* to the CQ since the last poll without triggering a
* completion notification event.
*/
static inline int ib_req_notify_cq(struct ib_cq *cq,
enum ib_cq_notify_flags flags)
{
return cq->device->req_notify_cq(cq, flags);
}
/**
* ib_req_ncomp_notif - Request completion notification when there are
* at least the specified number of unreaped completions on the CQ.
* @cq: The CQ to generate an event for.
* @wc_cnt: The number of unreaped completions that should be on the
* CQ before an event is generated.
*/
static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
{
return cq->device->req_ncomp_notif ?
cq->device->req_ncomp_notif(cq, wc_cnt) :
-ENOSYS;
}
/**
* ib_get_dma_mr - Returns a memory region for system memory that is
* usable for DMA.
* @pd: The protection domain associated with the memory region.
* @mr_access_flags: Specifies the memory access rights.
*
* Note that the ib_dma_*() functions defined below must be used
* to create/destroy addresses used with the Lkey or Rkey returned
* by ib_get_dma_mr().
*/
struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
/**
* ib_dma_mapping_error - check a DMA addr for error
* @dev: The device for which the dma_addr was created
* @dma_addr: The DMA address to check
*/
static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
{
if (dev->dma_ops)
return dev->dma_ops->mapping_error(dev, dma_addr);
return dma_mapping_error(dma_addr);
}
/**
* ib_dma_map_single - Map a kernel virtual address to DMA address
* @dev: The device for which the dma_addr is to be created
* @cpu_addr: The kernel virtual address
* @size: The size of the region in bytes
* @direction: The direction of the DMA
*/
static inline u64 ib_dma_map_single(struct ib_device *dev,
void *cpu_addr, size_t size,
enum dma_data_direction direction)
{
if (dev->dma_ops)
return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
return dma_map_single(dev->dma_device, cpu_addr, size, direction);
}
/**
* ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
* @dev: The device for which the DMA address was created
* @addr: The DMA address
* @size: The size of the region in bytes
* @direction: The direction of the DMA
*/
static inline void ib_dma_unmap_single(struct ib_device *dev,
u64 addr, size_t size,
enum dma_data_direction direction)
{
if (dev->dma_ops)
dev->dma_ops->unmap_single(dev, addr, size, direction);
else
dma_unmap_single(dev->dma_device, addr, size, direction);
}
/**
* ib_dma_map_page - Map a physical page to DMA address
* @dev: The device for which the dma_addr is to be created
* @page: The page to be mapped
* @offset: The offset within the page
* @size: The size of the region in bytes
* @direction: The direction of the DMA
*/
static inline u64 ib_dma_map_page(struct ib_device *dev,
struct page *page,
unsigned long offset,
size_t size,
enum dma_data_direction direction)
{
if (dev->dma_ops)
return dev->dma_ops->map_page(dev, page, offset, size, direction);
return dma_map_page(dev->dma_device, page, offset, size, direction);
}
/**
* ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
* @dev: The device for which the DMA address was created
* @addr: The DMA address
* @size: The size of the region in bytes
* @direction: The direction of the DMA
*/
static inline void ib_dma_unmap_page(struct ib_device *dev,
u64 addr, size_t size,
enum dma_data_direction direction)
{
if (dev->dma_ops)
dev->dma_ops->unmap_page(dev, addr, size, direction);
else
dma_unmap_page(dev->dma_device, addr, size, direction);
}
/**
* ib_dma_map_sg - Map a scatter/gather list to DMA addresses
* @dev: The device for which the DMA addresses are to be created
* @sg: The array of scatter/gather entries
* @nents: The number of scatter/gather entries
* @direction: The direction of the DMA
*/
static inline int ib_dma_map_sg(struct ib_device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction direction)
{
if (dev->dma_ops)
return dev->dma_ops->map_sg(dev, sg, nents, direction);
return dma_map_sg(dev->dma_device, sg, nents, direction);
}
/**
* ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
* @dev: The device for which the DMA addresses were created
* @sg: The array of scatter/gather entries
* @nents: The number of scatter/gather entries
* @direction: The direction of the DMA
*/
static inline void ib_dma_unmap_sg(struct ib_device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction direction)
{
if (dev->dma_ops)
dev->dma_ops->unmap_sg(dev, sg, nents, direction);
else
dma_unmap_sg(dev->dma_device, sg, nents, direction);
}
/**
* ib_sg_dma_address - Return the DMA address from a scatter/gather entry
* @dev: The device for which the DMA addresses were created
* @sg: The scatter/gather entry
*/
static inline u64 ib_sg_dma_address(struct ib_device *dev,
struct scatterlist *sg)
{
if (dev->dma_ops)
return dev->dma_ops->dma_address(dev, sg);
return sg_dma_address(sg);
}
/**
* ib_sg_dma_len - Return the DMA length from a scatter/gather entry
* @dev: The device for which the DMA addresses were created
* @sg: The scatter/gather entry
*/
static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
struct scatterlist *sg)
{
if (dev->dma_ops)
return dev->dma_ops->dma_len(dev, sg);
return sg_dma_len(sg);
}
/**
* ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
* @dev: The device for which the DMA address was created
* @addr: The DMA address
* @size: The size of the region in bytes
* @dir: The direction of the DMA
*/
static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
u64 addr,
size_t size,
enum dma_data_direction dir)
{
if (dev->dma_ops)
dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
else
dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
}
/**
* ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
* @dev: The device for which the DMA address was created
* @addr: The DMA address
* @size: The size of the region in bytes
* @dir: The direction of the DMA
*/
static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
u64 addr,
size_t size,
enum dma_data_direction dir)
{
if (dev->dma_ops)
dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
else
dma_sync_single_for_device(dev->dma_device, addr, size, dir);
}
/**
* ib_dma_alloc_coherent - Allocate memory and map it for DMA
* @dev: The device for which the DMA address is requested
* @size: The size of the region to allocate in bytes
* @dma_handle: A pointer for returning the DMA address of the region
* @flag: memory allocator flags
*/
static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
size_t size,
u64 *dma_handle,
gfp_t flag)
{
if (dev->dma_ops)
return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
else {
dma_addr_t handle;
void *ret;
ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
*dma_handle = handle;
return ret;
}
}
/**
* ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
* @dev: The device for which the DMA addresses were allocated
* @size: The size of the region
* @cpu_addr: the address returned by ib_dma_alloc_coherent()
* @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
*/
static inline void ib_dma_free_coherent(struct ib_device *dev,
size_t size, void *cpu_addr,
u64 dma_handle)
{
if (dev->dma_ops)
dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
else
dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
}
/**
* ib_reg_phys_mr - Prepares a virtually addressed memory region for use
* by an HCA.
* @pd: The protection domain associated assigned to the registered region.
* @phys_buf_array: Specifies a list of physical buffers to use in the
* memory region.
* @num_phys_buf: Specifies the size of the phys_buf_array.
* @mr_access_flags: Specifies the memory access rights.
* @iova_start: The offset of the region's starting I/O virtual address.
*/
struct ib_mr *ib_reg_phys_mr(struct ib_pd *pd,
struct ib_phys_buf *phys_buf_array,
int num_phys_buf,
int mr_access_flags,
u64 *iova_start);
/**
* ib_rereg_phys_mr - Modifies the attributes of an existing memory region.
* Conceptually, this call performs the functions deregister memory region
* followed by register physical memory region. Where possible,
* resources are reused instead of deallocated and reallocated.
* @mr: The memory region to modify.
* @mr_rereg_mask: A bit-mask used to indicate which of the following
* properties of the memory region are being modified.
* @pd: If %IB_MR_REREG_PD is set in mr_rereg_mask, this field specifies
* the new protection domain to associated with the memory region,
* otherwise, this parameter is ignored.
* @phys_buf_array: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
* field specifies a list of physical buffers to use in the new
* translation, otherwise, this parameter is ignored.
* @num_phys_buf: If %IB_MR_REREG_TRANS is set in mr_rereg_mask, this
* field specifies the size of the phys_buf_array, otherwise, this
* parameter is ignored.
* @mr_access_flags: If %IB_MR_REREG_ACCESS is set in mr_rereg_mask, this
* field specifies the new memory access rights, otherwise, this
* parameter is ignored.
* @iova_start: The offset of the region's starting I/O virtual address.
*/
int ib_rereg_phys_mr(struct ib_mr *mr,
int mr_rereg_mask,
struct ib_pd *pd,
struct ib_phys_buf *phys_buf_array,
int num_phys_buf,
int mr_access_flags,
u64 *iova_start);
/**
* ib_query_mr - Retrieves information about a specific memory region.
* @mr: The memory region to retrieve information about.
* @mr_attr: The attributes of the specified memory region.
*/
int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
/**
* ib_dereg_mr - Deregisters a memory region and removes it from the
* HCA translation table.
* @mr: The memory region to deregister.
*/
int ib_dereg_mr(struct ib_mr *mr);
/**
* ib_alloc_mw - Allocates a memory window.
* @pd: The protection domain associated with the memory window.
*/
struct ib_mw *ib_alloc_mw(struct ib_pd *pd);
/**
* ib_bind_mw - Posts a work request to the send queue of the specified
* QP, which binds the memory window to the given address range and
* remote access attributes.
* @qp: QP to post the bind work request on.
* @mw: The memory window to bind.
* @mw_bind: Specifies information about the memory window, including
* its address range, remote access rights, and associated memory region.
*/
static inline int ib_bind_mw(struct ib_qp *qp,
struct ib_mw *mw,
struct ib_mw_bind *mw_bind)
{
/* XXX reference counting in corresponding MR? */
return mw->device->bind_mw ?
mw->device->bind_mw(qp, mw, mw_bind) :
-ENOSYS;
}
/**
* ib_dealloc_mw - Deallocates a memory window.
* @mw: The memory window to deallocate.
*/
int ib_dealloc_mw(struct ib_mw *mw);
/**
* ib_alloc_fmr - Allocates a unmapped fast memory region.
* @pd: The protection domain associated with the unmapped region.
* @mr_access_flags: Specifies the memory access rights.
* @fmr_attr: Attributes of the unmapped region.
*
* A fast memory region must be mapped before it can be used as part of
* a work request.
*/
struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
int mr_access_flags,
struct ib_fmr_attr *fmr_attr);
/**
* ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
* @fmr: The fast memory region to associate with the pages.
* @page_list: An array of physical pages to map to the fast memory region.
* @list_len: The number of pages in page_list.
* @iova: The I/O virtual address to use with the mapped region.
*/
static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
u64 *page_list, int list_len,
u64 iova)
{
return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
}
/**
* ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
* @fmr_list: A linked list of fast memory regions to unmap.
*/
int ib_unmap_fmr(struct list_head *fmr_list);
/**
* ib_dealloc_fmr - Deallocates a fast memory region.
* @fmr: The fast memory region to deallocate.
*/
int ib_dealloc_fmr(struct ib_fmr *fmr);
/**
* ib_attach_mcast - Attaches the specified QP to a multicast group.
* @qp: QP to attach to the multicast group. The QP must be type
* IB_QPT_UD.
* @gid: Multicast group GID.
* @lid: Multicast group LID in host byte order.
*
* In order to send and receive multicast packets, subnet
* administration must have created the multicast group and configured
* the fabric appropriately. The port associated with the specified
* QP must also be a member of the multicast group.
*/
int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
/**
* ib_detach_mcast - Detaches the specified QP from a multicast group.
* @qp: QP to detach from the multicast group.
* @gid: Multicast group GID.
* @lid: Multicast group LID in host byte order.
*/
int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
#endif /* IB_VERBS_H */