1
linux/fs/btrfs/raid-stripe-tree.c
Johannes Thumshirn 0c749585fc btrfs: change RST lookup error message level to debug
Now that RAID stripe-tree lookup failures are not treated as a fatal issue
any more, change the RAID stripe-tree lookup error message to debug level.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2024-09-10 16:51:17 +02:00

297 lines
7.0 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2023 Western Digital Corporation or its affiliates.
*/
#include <linux/btrfs_tree.h>
#include "ctree.h"
#include "fs.h"
#include "accessors.h"
#include "transaction.h"
#include "disk-io.h"
#include "raid-stripe-tree.h"
#include "volumes.h"
#include "print-tree.h"
int btrfs_delete_raid_extent(struct btrfs_trans_handle *trans, u64 start, u64 length)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_root *stripe_root = fs_info->stripe_root;
struct btrfs_path *path;
struct btrfs_key key;
struct extent_buffer *leaf;
u64 found_start;
u64 found_end;
u64 end = start + length;
int slot;
int ret;
if (!stripe_root)
return 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
while (1) {
key.objectid = start;
key.type = BTRFS_RAID_STRIPE_KEY;
key.offset = length;
ret = btrfs_search_slot(trans, stripe_root, &key, path, -1, 1);
if (ret < 0)
break;
if (ret > 0) {
ret = 0;
if (path->slots[0] == 0)
break;
path->slots[0]--;
}
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &key, slot);
found_start = key.objectid;
found_end = found_start + key.offset;
/* That stripe ends before we start, we're done. */
if (found_end <= start)
break;
trace_btrfs_raid_extent_delete(fs_info, start, end,
found_start, found_end);
ASSERT(found_start >= start && found_end <= end);
ret = btrfs_del_item(trans, stripe_root, path);
if (ret)
break;
start += key.offset;
length -= key.offset;
if (length == 0)
break;
btrfs_release_path(path);
}
btrfs_free_path(path);
return ret;
}
static int update_raid_extent_item(struct btrfs_trans_handle *trans,
struct btrfs_key *key,
struct btrfs_stripe_extent *stripe_extent,
const size_t item_size)
{
struct btrfs_path *path;
struct extent_buffer *leaf;
int ret;
int slot;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_search_slot(trans, trans->fs_info->stripe_root, key, path,
0, 1);
if (ret)
return (ret == 1 ? ret : -EINVAL);
leaf = path->nodes[0];
slot = path->slots[0];
write_extent_buffer(leaf, stripe_extent, btrfs_item_ptr_offset(leaf, slot),
item_size);
btrfs_mark_buffer_dirty(trans, leaf);
btrfs_free_path(path);
return ret;
}
static int btrfs_insert_one_raid_extent(struct btrfs_trans_handle *trans,
struct btrfs_io_context *bioc)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct btrfs_key stripe_key;
struct btrfs_root *stripe_root = fs_info->stripe_root;
const int num_stripes = btrfs_bg_type_to_factor(bioc->map_type);
struct btrfs_stripe_extent *stripe_extent;
const size_t item_size = struct_size(stripe_extent, strides, num_stripes);
int ret;
stripe_extent = kzalloc(item_size, GFP_NOFS);
if (!stripe_extent) {
btrfs_abort_transaction(trans, -ENOMEM);
btrfs_end_transaction(trans);
return -ENOMEM;
}
trace_btrfs_insert_one_raid_extent(fs_info, bioc->logical, bioc->size,
num_stripes);
for (int i = 0; i < num_stripes; i++) {
u64 devid = bioc->stripes[i].dev->devid;
u64 physical = bioc->stripes[i].physical;
u64 length = bioc->stripes[i].length;
struct btrfs_raid_stride *raid_stride = &stripe_extent->strides[i];
if (length == 0)
length = bioc->size;
btrfs_set_stack_raid_stride_devid(raid_stride, devid);
btrfs_set_stack_raid_stride_physical(raid_stride, physical);
}
stripe_key.objectid = bioc->logical;
stripe_key.type = BTRFS_RAID_STRIPE_KEY;
stripe_key.offset = bioc->size;
ret = btrfs_insert_item(trans, stripe_root, &stripe_key, stripe_extent,
item_size);
if (ret == -EEXIST)
ret = update_raid_extent_item(trans, &stripe_key, stripe_extent,
item_size);
if (ret)
btrfs_abort_transaction(trans, ret);
kfree(stripe_extent);
return ret;
}
int btrfs_insert_raid_extent(struct btrfs_trans_handle *trans,
struct btrfs_ordered_extent *ordered_extent)
{
struct btrfs_io_context *bioc;
int ret;
if (!btrfs_fs_incompat(trans->fs_info, RAID_STRIPE_TREE))
return 0;
list_for_each_entry(bioc, &ordered_extent->bioc_list, rst_ordered_entry) {
ret = btrfs_insert_one_raid_extent(trans, bioc);
if (ret)
return ret;
}
while (!list_empty(&ordered_extent->bioc_list)) {
bioc = list_first_entry(&ordered_extent->bioc_list,
typeof(*bioc), rst_ordered_entry);
list_del(&bioc->rst_ordered_entry);
btrfs_put_bioc(bioc);
}
return 0;
}
int btrfs_get_raid_extent_offset(struct btrfs_fs_info *fs_info,
u64 logical, u64 *length, u64 map_type,
u32 stripe_index, struct btrfs_io_stripe *stripe)
{
struct btrfs_root *stripe_root = fs_info->stripe_root;
struct btrfs_stripe_extent *stripe_extent;
struct btrfs_key stripe_key;
struct btrfs_key found_key;
struct btrfs_path *path;
struct extent_buffer *leaf;
const u64 end = logical + *length;
int num_stripes;
u64 offset;
u64 found_logical;
u64 found_length;
u64 found_end;
int slot;
int ret;
stripe_key.objectid = logical;
stripe_key.type = BTRFS_RAID_STRIPE_KEY;
stripe_key.offset = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
if (stripe->rst_search_commit_root) {
path->skip_locking = 1;
path->search_commit_root = 1;
}
ret = btrfs_search_slot(NULL, stripe_root, &stripe_key, path, 0, 0);
if (ret < 0)
goto free_path;
if (ret) {
if (path->slots[0] != 0)
path->slots[0]--;
}
while (1) {
leaf = path->nodes[0];
slot = path->slots[0];
btrfs_item_key_to_cpu(leaf, &found_key, slot);
found_logical = found_key.objectid;
found_length = found_key.offset;
found_end = found_logical + found_length;
if (found_logical > end) {
ret = -ENOENT;
goto out;
}
if (in_range(logical, found_logical, found_length))
break;
ret = btrfs_next_item(stripe_root, path);
if (ret)
goto out;
}
offset = logical - found_logical;
/*
* If we have a logically contiguous, but physically non-continuous
* range, we need to split the bio. Record the length after which we
* must split the bio.
*/
if (end > found_end)
*length -= end - found_end;
num_stripes = btrfs_num_raid_stripes(btrfs_item_size(leaf, slot));
stripe_extent = btrfs_item_ptr(leaf, slot, struct btrfs_stripe_extent);
for (int i = 0; i < num_stripes; i++) {
struct btrfs_raid_stride *stride = &stripe_extent->strides[i];
u64 devid = btrfs_raid_stride_devid(leaf, stride);
u64 physical = btrfs_raid_stride_physical(leaf, stride);
if (devid != stripe->dev->devid)
continue;
if ((map_type & BTRFS_BLOCK_GROUP_DUP) && stripe_index != i)
continue;
stripe->physical = physical + offset;
trace_btrfs_get_raid_extent_offset(fs_info, logical, *length,
stripe->physical, devid);
ret = 0;
goto free_path;
}
/* If we're here, we haven't found the requested devid in the stripe. */
ret = -ENOENT;
out:
if (ret > 0)
ret = -ENOENT;
if (ret && ret != -EIO && !stripe->rst_search_commit_root) {
btrfs_debug(fs_info,
"cannot find raid-stripe for logical [%llu, %llu] devid %llu, profile %s",
logical, logical + *length, stripe->dev->devid,
btrfs_bg_type_to_raid_name(map_type));
}
free_path:
btrfs_free_path(path);
return ret;
}