1
linux/drivers/net/phy/phy.c
Andy Fleming e13934563d [PATCH] PHY Layer fixup
This patch adds back the code that was taken out, thus re-enabling:

* The PHY Layer to initialize without crashing
* Drivers to actually connect to PHYs
* The entire PHY Control Layer

This patch is used by the gianfar driver, and other drivers which are in
development.

Signed-off-by: Andy Fleming <afleming@freescale.com>
Signed-off-by: Jeff Garzik <jgarzik@pobox.com>
2005-08-28 20:28:25 -04:00

872 lines
20 KiB
C

/*
* drivers/net/phy/phy.c
*
* Framework for configuring and reading PHY devices
* Based on code in sungem_phy.c and gianfar_phy.c
*
* Author: Andy Fleming
*
* Copyright (c) 2004 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
*/
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/unistd.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/phy.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/uaccess.h>
/* Convenience function to print out the current phy status
*/
void phy_print_status(struct phy_device *phydev)
{
pr_info("%s: Link is %s", phydev->dev.bus_id,
phydev->link ? "Up" : "Down");
if (phydev->link)
printk(" - %d/%s", phydev->speed,
DUPLEX_FULL == phydev->duplex ?
"Full" : "Half");
printk("\n");
}
EXPORT_SYMBOL(phy_print_status);
/* Convenience functions for reading/writing a given PHY
* register. They MUST NOT be called from interrupt context,
* because the bus read/write functions may wait for an interrupt
* to conclude the operation. */
int phy_read(struct phy_device *phydev, u16 regnum)
{
int retval;
struct mii_bus *bus = phydev->bus;
spin_lock_bh(&bus->mdio_lock);
retval = bus->read(bus, phydev->addr, regnum);
spin_unlock_bh(&bus->mdio_lock);
return retval;
}
EXPORT_SYMBOL(phy_read);
int phy_write(struct phy_device *phydev, u16 regnum, u16 val)
{
int err;
struct mii_bus *bus = phydev->bus;
spin_lock_bh(&bus->mdio_lock);
err = bus->write(bus, phydev->addr, regnum, val);
spin_unlock_bh(&bus->mdio_lock);
return err;
}
EXPORT_SYMBOL(phy_write);
int phy_clear_interrupt(struct phy_device *phydev)
{
int err = 0;
if (phydev->drv->ack_interrupt)
err = phydev->drv->ack_interrupt(phydev);
return err;
}
int phy_config_interrupt(struct phy_device *phydev, u32 interrupts)
{
int err = 0;
phydev->interrupts = interrupts;
if (phydev->drv->config_intr)
err = phydev->drv->config_intr(phydev);
return err;
}
/* phy_aneg_done
*
* description: Reads the status register and returns 0 either if
* auto-negotiation is incomplete, or if there was an error.
* Returns BMSR_ANEGCOMPLETE if auto-negotiation is done.
*/
static inline int phy_aneg_done(struct phy_device *phydev)
{
int retval;
retval = phy_read(phydev, MII_BMSR);
return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE);
}
/* A structure for mapping a particular speed and duplex
* combination to a particular SUPPORTED and ADVERTISED value */
struct phy_setting {
int speed;
int duplex;
u32 setting;
};
/* A mapping of all SUPPORTED settings to speed/duplex */
static struct phy_setting settings[] = {
{
.speed = 10000,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_10000baseT_Full,
},
{
.speed = SPEED_1000,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_1000baseT_Full,
},
{
.speed = SPEED_1000,
.duplex = DUPLEX_HALF,
.setting = SUPPORTED_1000baseT_Half,
},
{
.speed = SPEED_100,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_100baseT_Full,
},
{
.speed = SPEED_100,
.duplex = DUPLEX_HALF,
.setting = SUPPORTED_100baseT_Half,
},
{
.speed = SPEED_10,
.duplex = DUPLEX_FULL,
.setting = SUPPORTED_10baseT_Full,
},
{
.speed = SPEED_10,
.duplex = DUPLEX_HALF,
.setting = SUPPORTED_10baseT_Half,
},
};
#define MAX_NUM_SETTINGS (sizeof(settings)/sizeof(struct phy_setting))
/* phy_find_setting
*
* description: Searches the settings array for the setting which
* matches the desired speed and duplex, and returns the index
* of that setting. Returns the index of the last setting if
* none of the others match.
*/
static inline int phy_find_setting(int speed, int duplex)
{
int idx = 0;
while (idx < ARRAY_SIZE(settings) &&
(settings[idx].speed != speed ||
settings[idx].duplex != duplex))
idx++;
return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
}
/* phy_find_valid
* idx: The first index in settings[] to search
* features: A mask of the valid settings
*
* description: Returns the index of the first valid setting less
* than or equal to the one pointed to by idx, as determined by
* the mask in features. Returns the index of the last setting
* if nothing else matches.
*/
static inline int phy_find_valid(int idx, u32 features)
{
while (idx < MAX_NUM_SETTINGS && !(settings[idx].setting & features))
idx++;
return idx < MAX_NUM_SETTINGS ? idx : MAX_NUM_SETTINGS - 1;
}
/* phy_sanitize_settings
*
* description: Make sure the PHY is set to supported speeds and
* duplexes. Drop down by one in this order: 1000/FULL,
* 1000/HALF, 100/FULL, 100/HALF, 10/FULL, 10/HALF
*/
void phy_sanitize_settings(struct phy_device *phydev)
{
u32 features = phydev->supported;
int idx;
/* Sanitize settings based on PHY capabilities */
if ((features & SUPPORTED_Autoneg) == 0)
phydev->autoneg = 0;
idx = phy_find_valid(phy_find_setting(phydev->speed, phydev->duplex),
features);
phydev->speed = settings[idx].speed;
phydev->duplex = settings[idx].duplex;
}
EXPORT_SYMBOL(phy_sanitize_settings);
/* phy_ethtool_sset:
* A generic ethtool sset function. Handles all the details
*
* A few notes about parameter checking:
* - We don't set port or transceiver, so we don't care what they
* were set to.
* - phy_start_aneg() will make sure forced settings are sane, and
* choose the next best ones from the ones selected, so we don't
* care if ethtool tries to give us bad values
*
* A note about the PHYCONTROL Layer. If you turn off
* CONFIG_PHYCONTROL, you will need to read the PHY status
* registers after this function completes, and update your
* controller manually.
*/
int phy_ethtool_sset(struct phy_device *phydev, struct ethtool_cmd *cmd)
{
if (cmd->phy_address != phydev->addr)
return -EINVAL;
/* We make sure that we don't pass unsupported
* values in to the PHY */
cmd->advertising &= phydev->supported;
/* Verify the settings we care about. */
if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
return -EINVAL;
if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
return -EINVAL;
if (cmd->autoneg == AUTONEG_DISABLE
&& ((cmd->speed != SPEED_1000
&& cmd->speed != SPEED_100
&& cmd->speed != SPEED_10)
|| (cmd->duplex != DUPLEX_HALF
&& cmd->duplex != DUPLEX_FULL)))
return -EINVAL;
phydev->autoneg = cmd->autoneg;
phydev->speed = cmd->speed;
phydev->advertising = cmd->advertising;
if (AUTONEG_ENABLE == cmd->autoneg)
phydev->advertising |= ADVERTISED_Autoneg;
else
phydev->advertising &= ~ADVERTISED_Autoneg;
phydev->duplex = cmd->duplex;
/* Restart the PHY */
phy_start_aneg(phydev);
return 0;
}
int phy_ethtool_gset(struct phy_device *phydev, struct ethtool_cmd *cmd)
{
cmd->supported = phydev->supported;
cmd->advertising = phydev->advertising;
cmd->speed = phydev->speed;
cmd->duplex = phydev->duplex;
cmd->port = PORT_MII;
cmd->phy_address = phydev->addr;
cmd->transceiver = XCVR_EXTERNAL;
cmd->autoneg = phydev->autoneg;
return 0;
}
/* Note that this function is currently incompatible with the
* PHYCONTROL layer. It changes registers without regard to
* current state. Use at own risk
*/
int phy_mii_ioctl(struct phy_device *phydev,
struct mii_ioctl_data *mii_data, int cmd)
{
u16 val = mii_data->val_in;
switch (cmd) {
case SIOCGMIIPHY:
mii_data->phy_id = phydev->addr;
break;
case SIOCGMIIREG:
mii_data->val_out = phy_read(phydev, mii_data->reg_num);
break;
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (mii_data->phy_id == phydev->addr) {
switch(mii_data->reg_num) {
case MII_BMCR:
if (val & (BMCR_RESET|BMCR_ANENABLE))
phydev->autoneg = AUTONEG_DISABLE;
else
phydev->autoneg = AUTONEG_ENABLE;
if ((!phydev->autoneg) && (val & BMCR_FULLDPLX))
phydev->duplex = DUPLEX_FULL;
else
phydev->duplex = DUPLEX_HALF;
break;
case MII_ADVERTISE:
phydev->advertising = val;
break;
default:
/* do nothing */
break;
}
}
phy_write(phydev, mii_data->reg_num, val);
if (mii_data->reg_num == MII_BMCR
&& val & BMCR_RESET
&& phydev->drv->config_init)
phydev->drv->config_init(phydev);
break;
}
return 0;
}
/* phy_start_aneg
*
* description: Sanitizes the settings (if we're not
* autonegotiating them), and then calls the driver's
* config_aneg function. If the PHYCONTROL Layer is operating,
* we change the state to reflect the beginning of
* Auto-negotiation or forcing.
*/
int phy_start_aneg(struct phy_device *phydev)
{
int err;
spin_lock(&phydev->lock);
if (AUTONEG_DISABLE == phydev->autoneg)
phy_sanitize_settings(phydev);
err = phydev->drv->config_aneg(phydev);
#ifdef CONFIG_PHYCONTROL
if (err < 0)
goto out_unlock;
if (phydev->state != PHY_HALTED) {
if (AUTONEG_ENABLE == phydev->autoneg) {
phydev->state = PHY_AN;
phydev->link_timeout = PHY_AN_TIMEOUT;
} else {
phydev->state = PHY_FORCING;
phydev->link_timeout = PHY_FORCE_TIMEOUT;
}
}
out_unlock:
#endif
spin_unlock(&phydev->lock);
return err;
}
EXPORT_SYMBOL(phy_start_aneg);
#ifdef CONFIG_PHYCONTROL
static void phy_change(void *data);
static void phy_timer(unsigned long data);
/* phy_start_machine:
*
* description: The PHY infrastructure can run a state machine
* which tracks whether the PHY is starting up, negotiating,
* etc. This function starts the timer which tracks the state
* of the PHY. If you want to be notified when the state
* changes, pass in the callback, otherwise, pass NULL. If you
* want to maintain your own state machine, do not call this
* function. */
void phy_start_machine(struct phy_device *phydev,
void (*handler)(struct net_device *))
{
phydev->adjust_state = handler;
init_timer(&phydev->phy_timer);
phydev->phy_timer.function = &phy_timer;
phydev->phy_timer.data = (unsigned long) phydev;
mod_timer(&phydev->phy_timer, jiffies + HZ);
}
/* phy_stop_machine
*
* description: Stops the state machine timer, sets the state to
* UP (unless it wasn't up yet), and then frees the interrupt,
* if it is in use. This function must be called BEFORE
* phy_detach.
*/
void phy_stop_machine(struct phy_device *phydev)
{
del_timer_sync(&phydev->phy_timer);
spin_lock(&phydev->lock);
if (phydev->state > PHY_UP)
phydev->state = PHY_UP;
spin_unlock(&phydev->lock);
if (phydev->irq != PHY_POLL)
phy_stop_interrupts(phydev);
phydev->adjust_state = NULL;
}
/* phy_force_reduction
*
* description: Reduces the speed/duplex settings by
* one notch. The order is so:
* 1000/FULL, 1000/HALF, 100/FULL, 100/HALF,
* 10/FULL, 10/HALF. The function bottoms out at 10/HALF.
*/
static void phy_force_reduction(struct phy_device *phydev)
{
int idx;
idx = phy_find_setting(phydev->speed, phydev->duplex);
idx++;
idx = phy_find_valid(idx, phydev->supported);
phydev->speed = settings[idx].speed;
phydev->duplex = settings[idx].duplex;
pr_info("Trying %d/%s\n", phydev->speed,
DUPLEX_FULL == phydev->duplex ?
"FULL" : "HALF");
}
/* phy_error:
*
* Moves the PHY to the HALTED state in response to a read
* or write error, and tells the controller the link is down.
* Must not be called from interrupt context, or while the
* phydev->lock is held.
*/
void phy_error(struct phy_device *phydev)
{
spin_lock(&phydev->lock);
phydev->state = PHY_HALTED;
spin_unlock(&phydev->lock);
}
/* phy_interrupt
*
* description: When a PHY interrupt occurs, the handler disables
* interrupts, and schedules a work task to clear the interrupt.
*/
static irqreturn_t phy_interrupt(int irq, void *phy_dat, struct pt_regs *regs)
{
struct phy_device *phydev = phy_dat;
/* The MDIO bus is not allowed to be written in interrupt
* context, so we need to disable the irq here. A work
* queue will write the PHY to disable and clear the
* interrupt, and then reenable the irq line. */
disable_irq_nosync(irq);
schedule_work(&phydev->phy_queue);
return IRQ_HANDLED;
}
/* Enable the interrupts from the PHY side */
int phy_enable_interrupts(struct phy_device *phydev)
{
int err;
err = phy_clear_interrupt(phydev);
if (err < 0)
return err;
err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
return err;
}
EXPORT_SYMBOL(phy_enable_interrupts);
/* Disable the PHY interrupts from the PHY side */
int phy_disable_interrupts(struct phy_device *phydev)
{
int err;
/* Disable PHY interrupts */
err = phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
if (err)
goto phy_err;
/* Clear the interrupt */
err = phy_clear_interrupt(phydev);
if (err)
goto phy_err;
return 0;
phy_err:
phy_error(phydev);
return err;
}
EXPORT_SYMBOL(phy_disable_interrupts);
/* phy_start_interrupts
*
* description: Request the interrupt for the given PHY. If
* this fails, then we set irq to PHY_POLL.
* Otherwise, we enable the interrupts in the PHY.
* Returns 0 on success.
* This should only be called with a valid IRQ number.
*/
int phy_start_interrupts(struct phy_device *phydev)
{
int err = 0;
INIT_WORK(&phydev->phy_queue, phy_change, phydev);
if (request_irq(phydev->irq, phy_interrupt,
SA_SHIRQ,
"phy_interrupt",
phydev) < 0) {
printk(KERN_WARNING "%s: Can't get IRQ %d (PHY)\n",
phydev->bus->name,
phydev->irq);
phydev->irq = PHY_POLL;
return 0;
}
err = phy_enable_interrupts(phydev);
return err;
}
EXPORT_SYMBOL(phy_start_interrupts);
int phy_stop_interrupts(struct phy_device *phydev)
{
int err;
err = phy_disable_interrupts(phydev);
if (err)
phy_error(phydev);
free_irq(phydev->irq, phydev);
return err;
}
EXPORT_SYMBOL(phy_stop_interrupts);
/* Scheduled by the phy_interrupt/timer to handle PHY changes */
static void phy_change(void *data)
{
int err;
struct phy_device *phydev = data;
err = phy_disable_interrupts(phydev);
if (err)
goto phy_err;
spin_lock(&phydev->lock);
if ((PHY_RUNNING == phydev->state) || (PHY_NOLINK == phydev->state))
phydev->state = PHY_CHANGELINK;
spin_unlock(&phydev->lock);
enable_irq(phydev->irq);
/* Reenable interrupts */
err = phy_config_interrupt(phydev, PHY_INTERRUPT_ENABLED);
if (err)
goto irq_enable_err;
return;
irq_enable_err:
disable_irq(phydev->irq);
phy_err:
phy_error(phydev);
}
/* Bring down the PHY link, and stop checking the status. */
void phy_stop(struct phy_device *phydev)
{
spin_lock(&phydev->lock);
if (PHY_HALTED == phydev->state)
goto out_unlock;
if (phydev->irq != PHY_POLL) {
/* Clear any pending interrupts */
phy_clear_interrupt(phydev);
/* Disable PHY Interrupts */
phy_config_interrupt(phydev, PHY_INTERRUPT_DISABLED);
}
phydev->state = PHY_HALTED;
out_unlock:
spin_unlock(&phydev->lock);
}
/* phy_start
*
* description: Indicates the attached device's readiness to
* handle PHY-related work. Used during startup to start the
* PHY, and after a call to phy_stop() to resume operation.
* Also used to indicate the MDIO bus has cleared an error
* condition.
*/
void phy_start(struct phy_device *phydev)
{
spin_lock(&phydev->lock);
switch (phydev->state) {
case PHY_STARTING:
phydev->state = PHY_PENDING;
break;
case PHY_READY:
phydev->state = PHY_UP;
break;
case PHY_HALTED:
phydev->state = PHY_RESUMING;
default:
break;
}
spin_unlock(&phydev->lock);
}
EXPORT_SYMBOL(phy_stop);
EXPORT_SYMBOL(phy_start);
/* PHY timer which handles the state machine */
static void phy_timer(unsigned long data)
{
struct phy_device *phydev = (struct phy_device *)data;
int needs_aneg = 0;
int err = 0;
spin_lock(&phydev->lock);
if (phydev->adjust_state)
phydev->adjust_state(phydev->attached_dev);
switch(phydev->state) {
case PHY_DOWN:
case PHY_STARTING:
case PHY_READY:
case PHY_PENDING:
break;
case PHY_UP:
needs_aneg = 1;
phydev->link_timeout = PHY_AN_TIMEOUT;
break;
case PHY_AN:
/* Check if negotiation is done. Break
* if there's an error */
err = phy_aneg_done(phydev);
if (err < 0)
break;
/* If auto-negotiation is done, we change to
* either RUNNING, or NOLINK */
if (err > 0) {
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
} else {
phydev->state = PHY_NOLINK;
netif_carrier_off(phydev->attached_dev);
}
phydev->adjust_link(phydev->attached_dev);
} else if (0 == phydev->link_timeout--) {
/* The counter expired, so either we
* switch to forced mode, or the
* magic_aneg bit exists, and we try aneg
* again */
if (!(phydev->drv->flags & PHY_HAS_MAGICANEG)) {
int idx;
/* We'll start from the
* fastest speed, and work
* our way down */
idx = phy_find_valid(0,
phydev->supported);
phydev->speed = settings[idx].speed;
phydev->duplex = settings[idx].duplex;
phydev->autoneg = AUTONEG_DISABLE;
phydev->state = PHY_FORCING;
phydev->link_timeout =
PHY_FORCE_TIMEOUT;
pr_info("Trying %d/%s\n",
phydev->speed,
DUPLEX_FULL ==
phydev->duplex ?
"FULL" : "HALF");
}
needs_aneg = 1;
}
break;
case PHY_NOLINK:
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
phydev->adjust_link(phydev->attached_dev);
}
break;
case PHY_FORCING:
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
} else {
if (0 == phydev->link_timeout--) {
phy_force_reduction(phydev);
needs_aneg = 1;
}
}
phydev->adjust_link(phydev->attached_dev);
break;
case PHY_RUNNING:
/* Only register a CHANGE if we are
* polling */
if (PHY_POLL == phydev->irq)
phydev->state = PHY_CHANGELINK;
break;
case PHY_CHANGELINK:
err = phy_read_status(phydev);
if (err)
break;
if (phydev->link) {
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
} else {
phydev->state = PHY_NOLINK;
netif_carrier_off(phydev->attached_dev);
}
phydev->adjust_link(phydev->attached_dev);
if (PHY_POLL != phydev->irq)
err = phy_config_interrupt(phydev,
PHY_INTERRUPT_ENABLED);
break;
case PHY_HALTED:
if (phydev->link) {
phydev->link = 0;
netif_carrier_off(phydev->attached_dev);
phydev->adjust_link(phydev->attached_dev);
}
break;
case PHY_RESUMING:
err = phy_clear_interrupt(phydev);
if (err)
break;
err = phy_config_interrupt(phydev,
PHY_INTERRUPT_ENABLED);
if (err)
break;
if (AUTONEG_ENABLE == phydev->autoneg) {
err = phy_aneg_done(phydev);
if (err < 0)
break;
/* err > 0 if AN is done.
* Otherwise, it's 0, and we're
* still waiting for AN */
if (err > 0) {
phydev->state = PHY_RUNNING;
} else {
phydev->state = PHY_AN;
phydev->link_timeout = PHY_AN_TIMEOUT;
}
} else
phydev->state = PHY_RUNNING;
break;
}
spin_unlock(&phydev->lock);
if (needs_aneg)
err = phy_start_aneg(phydev);
if (err < 0)
phy_error(phydev);
mod_timer(&phydev->phy_timer, jiffies + PHY_STATE_TIME * HZ);
}
#endif /* CONFIG_PHYCONTROL */