1
linux/fs/exec.c
Neil Horman 76595f79d7 coredump: suppress uid comparison test if core output files are pipes
Modify uid check in do_coredump so as to not apply it in the case of
pipes.

This just got noticed in testing.  The end of do_coredump validates the
uid of the inode for the created file against the uid of the crashing
process to ensure that no one can pre-create a core file with different
ownership and grab the information contained in the core when they
shouldn' tbe able to.  This causes failures when using pipes for a core
dumps if the crashing process is not root, which is the uid of the pipe
when it is created.

The fix is simple.  Since the check for matching uid's isn't relevant for
pipes (a process can't create a pipe that the uermodehelper code will open
anyway), we can just just skip it in the event ispipe is non-zero

Reverts a pipe-affecting change which was accidentally made in

: commit c46f739dd3
: Author:     Ingo Molnar <mingo@elte.hu>
: AuthorDate: Wed Nov 28 13:59:18 2007 +0100
: Commit:     Linus Torvalds <torvalds@woody.linux-foundation.org>
: CommitDate: Wed Nov 28 10:58:01 2007 -0800
:
:     vfs: coredumping fix

Signed-off-by: Neil Horman <nhorman@tuxdriver.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Alan Cox <alan@lxorguk.ukuu.org.uk>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2010-03-06 11:26:46 -08:00

1972 lines
46 KiB
C

/*
* linux/fs/exec.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* #!-checking implemented by tytso.
*/
/*
* Demand-loading implemented 01.12.91 - no need to read anything but
* the header into memory. The inode of the executable is put into
* "current->executable", and page faults do the actual loading. Clean.
*
* Once more I can proudly say that linux stood up to being changed: it
* was less than 2 hours work to get demand-loading completely implemented.
*
* Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
* current->executable is only used by the procfs. This allows a dispatch
* table to check for several different types of binary formats. We keep
* trying until we recognize the file or we run out of supported binary
* formats.
*/
#include <linux/slab.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/mm.h>
#include <linux/stat.h>
#include <linux/fcntl.h>
#include <linux/smp_lock.h>
#include <linux/swap.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/perf_event.h>
#include <linux/highmem.h>
#include <linux/spinlock.h>
#include <linux/key.h>
#include <linux/personality.h>
#include <linux/binfmts.h>
#include <linux/utsname.h>
#include <linux/pid_namespace.h>
#include <linux/module.h>
#include <linux/namei.h>
#include <linux/proc_fs.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/tsacct_kern.h>
#include <linux/cn_proc.h>
#include <linux/audit.h>
#include <linux/tracehook.h>
#include <linux/kmod.h>
#include <linux/fsnotify.h>
#include <linux/fs_struct.h>
#include <linux/pipe_fs_i.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/tlb.h>
#include "internal.h"
int core_uses_pid;
char core_pattern[CORENAME_MAX_SIZE] = "core";
unsigned int core_pipe_limit;
int suid_dumpable = 0;
/* The maximal length of core_pattern is also specified in sysctl.c */
static LIST_HEAD(formats);
static DEFINE_RWLOCK(binfmt_lock);
int __register_binfmt(struct linux_binfmt * fmt, int insert)
{
if (!fmt)
return -EINVAL;
write_lock(&binfmt_lock);
insert ? list_add(&fmt->lh, &formats) :
list_add_tail(&fmt->lh, &formats);
write_unlock(&binfmt_lock);
return 0;
}
EXPORT_SYMBOL(__register_binfmt);
void unregister_binfmt(struct linux_binfmt * fmt)
{
write_lock(&binfmt_lock);
list_del(&fmt->lh);
write_unlock(&binfmt_lock);
}
EXPORT_SYMBOL(unregister_binfmt);
static inline void put_binfmt(struct linux_binfmt * fmt)
{
module_put(fmt->module);
}
/*
* Note that a shared library must be both readable and executable due to
* security reasons.
*
* Also note that we take the address to load from from the file itself.
*/
SYSCALL_DEFINE1(uselib, const char __user *, library)
{
struct file *file;
char *tmp = getname(library);
int error = PTR_ERR(tmp);
if (IS_ERR(tmp))
goto out;
file = do_filp_open(AT_FDCWD, tmp,
O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
MAY_READ | MAY_EXEC | MAY_OPEN);
putname(tmp);
error = PTR_ERR(file);
if (IS_ERR(file))
goto out;
error = -EINVAL;
if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
goto exit;
error = -EACCES;
if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
goto exit;
fsnotify_open(file->f_path.dentry);
error = -ENOEXEC;
if(file->f_op) {
struct linux_binfmt * fmt;
read_lock(&binfmt_lock);
list_for_each_entry(fmt, &formats, lh) {
if (!fmt->load_shlib)
continue;
if (!try_module_get(fmt->module))
continue;
read_unlock(&binfmt_lock);
error = fmt->load_shlib(file);
read_lock(&binfmt_lock);
put_binfmt(fmt);
if (error != -ENOEXEC)
break;
}
read_unlock(&binfmt_lock);
}
exit:
fput(file);
out:
return error;
}
#ifdef CONFIG_MMU
static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
int write)
{
struct page *page;
int ret;
#ifdef CONFIG_STACK_GROWSUP
if (write) {
ret = expand_stack_downwards(bprm->vma, pos);
if (ret < 0)
return NULL;
}
#endif
ret = get_user_pages(current, bprm->mm, pos,
1, write, 1, &page, NULL);
if (ret <= 0)
return NULL;
if (write) {
unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
struct rlimit *rlim;
/*
* We've historically supported up to 32 pages (ARG_MAX)
* of argument strings even with small stacks
*/
if (size <= ARG_MAX)
return page;
/*
* Limit to 1/4-th the stack size for the argv+env strings.
* This ensures that:
* - the remaining binfmt code will not run out of stack space,
* - the program will have a reasonable amount of stack left
* to work from.
*/
rlim = current->signal->rlim;
if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
put_page(page);
return NULL;
}
}
return page;
}
static void put_arg_page(struct page *page)
{
put_page(page);
}
static void free_arg_page(struct linux_binprm *bprm, int i)
{
}
static void free_arg_pages(struct linux_binprm *bprm)
{
}
static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
struct page *page)
{
flush_cache_page(bprm->vma, pos, page_to_pfn(page));
}
static int __bprm_mm_init(struct linux_binprm *bprm)
{
int err;
struct vm_area_struct *vma = NULL;
struct mm_struct *mm = bprm->mm;
bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
if (!vma)
return -ENOMEM;
down_write(&mm->mmap_sem);
vma->vm_mm = mm;
/*
* Place the stack at the largest stack address the architecture
* supports. Later, we'll move this to an appropriate place. We don't
* use STACK_TOP because that can depend on attributes which aren't
* configured yet.
*/
vma->vm_end = STACK_TOP_MAX;
vma->vm_start = vma->vm_end - PAGE_SIZE;
vma->vm_flags = VM_STACK_FLAGS;
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
INIT_LIST_HEAD(&vma->anon_vma_chain);
err = insert_vm_struct(mm, vma);
if (err)
goto err;
mm->stack_vm = mm->total_vm = 1;
up_write(&mm->mmap_sem);
bprm->p = vma->vm_end - sizeof(void *);
return 0;
err:
up_write(&mm->mmap_sem);
bprm->vma = NULL;
kmem_cache_free(vm_area_cachep, vma);
return err;
}
static bool valid_arg_len(struct linux_binprm *bprm, long len)
{
return len <= MAX_ARG_STRLEN;
}
#else
static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
int write)
{
struct page *page;
page = bprm->page[pos / PAGE_SIZE];
if (!page && write) {
page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
if (!page)
return NULL;
bprm->page[pos / PAGE_SIZE] = page;
}
return page;
}
static void put_arg_page(struct page *page)
{
}
static void free_arg_page(struct linux_binprm *bprm, int i)
{
if (bprm->page[i]) {
__free_page(bprm->page[i]);
bprm->page[i] = NULL;
}
}
static void free_arg_pages(struct linux_binprm *bprm)
{
int i;
for (i = 0; i < MAX_ARG_PAGES; i++)
free_arg_page(bprm, i);
}
static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
struct page *page)
{
}
static int __bprm_mm_init(struct linux_binprm *bprm)
{
bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
return 0;
}
static bool valid_arg_len(struct linux_binprm *bprm, long len)
{
return len <= bprm->p;
}
#endif /* CONFIG_MMU */
/*
* Create a new mm_struct and populate it with a temporary stack
* vm_area_struct. We don't have enough context at this point to set the stack
* flags, permissions, and offset, so we use temporary values. We'll update
* them later in setup_arg_pages().
*/
int bprm_mm_init(struct linux_binprm *bprm)
{
int err;
struct mm_struct *mm = NULL;
bprm->mm = mm = mm_alloc();
err = -ENOMEM;
if (!mm)
goto err;
err = init_new_context(current, mm);
if (err)
goto err;
err = __bprm_mm_init(bprm);
if (err)
goto err;
return 0;
err:
if (mm) {
bprm->mm = NULL;
mmdrop(mm);
}
return err;
}
/*
* count() counts the number of strings in array ARGV.
*/
static int count(char __user * __user * argv, int max)
{
int i = 0;
if (argv != NULL) {
for (;;) {
char __user * p;
if (get_user(p, argv))
return -EFAULT;
if (!p)
break;
argv++;
if (i++ >= max)
return -E2BIG;
cond_resched();
}
}
return i;
}
/*
* 'copy_strings()' copies argument/environment strings from the old
* processes's memory to the new process's stack. The call to get_user_pages()
* ensures the destination page is created and not swapped out.
*/
static int copy_strings(int argc, char __user * __user * argv,
struct linux_binprm *bprm)
{
struct page *kmapped_page = NULL;
char *kaddr = NULL;
unsigned long kpos = 0;
int ret;
while (argc-- > 0) {
char __user *str;
int len;
unsigned long pos;
if (get_user(str, argv+argc) ||
!(len = strnlen_user(str, MAX_ARG_STRLEN))) {
ret = -EFAULT;
goto out;
}
if (!valid_arg_len(bprm, len)) {
ret = -E2BIG;
goto out;
}
/* We're going to work our way backwords. */
pos = bprm->p;
str += len;
bprm->p -= len;
while (len > 0) {
int offset, bytes_to_copy;
offset = pos % PAGE_SIZE;
if (offset == 0)
offset = PAGE_SIZE;
bytes_to_copy = offset;
if (bytes_to_copy > len)
bytes_to_copy = len;
offset -= bytes_to_copy;
pos -= bytes_to_copy;
str -= bytes_to_copy;
len -= bytes_to_copy;
if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
struct page *page;
page = get_arg_page(bprm, pos, 1);
if (!page) {
ret = -E2BIG;
goto out;
}
if (kmapped_page) {
flush_kernel_dcache_page(kmapped_page);
kunmap(kmapped_page);
put_arg_page(kmapped_page);
}
kmapped_page = page;
kaddr = kmap(kmapped_page);
kpos = pos & PAGE_MASK;
flush_arg_page(bprm, kpos, kmapped_page);
}
if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
ret = -EFAULT;
goto out;
}
}
}
ret = 0;
out:
if (kmapped_page) {
flush_kernel_dcache_page(kmapped_page);
kunmap(kmapped_page);
put_arg_page(kmapped_page);
}
return ret;
}
/*
* Like copy_strings, but get argv and its values from kernel memory.
*/
int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
{
int r;
mm_segment_t oldfs = get_fs();
set_fs(KERNEL_DS);
r = copy_strings(argc, (char __user * __user *)argv, bprm);
set_fs(oldfs);
return r;
}
EXPORT_SYMBOL(copy_strings_kernel);
#ifdef CONFIG_MMU
/*
* During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
* the binfmt code determines where the new stack should reside, we shift it to
* its final location. The process proceeds as follows:
*
* 1) Use shift to calculate the new vma endpoints.
* 2) Extend vma to cover both the old and new ranges. This ensures the
* arguments passed to subsequent functions are consistent.
* 3) Move vma's page tables to the new range.
* 4) Free up any cleared pgd range.
* 5) Shrink the vma to cover only the new range.
*/
static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
{
struct mm_struct *mm = vma->vm_mm;
unsigned long old_start = vma->vm_start;
unsigned long old_end = vma->vm_end;
unsigned long length = old_end - old_start;
unsigned long new_start = old_start - shift;
unsigned long new_end = old_end - shift;
struct mmu_gather *tlb;
BUG_ON(new_start > new_end);
/*
* ensure there are no vmas between where we want to go
* and where we are
*/
if (vma != find_vma(mm, new_start))
return -EFAULT;
/*
* cover the whole range: [new_start, old_end)
*/
if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
return -ENOMEM;
/*
* move the page tables downwards, on failure we rely on
* process cleanup to remove whatever mess we made.
*/
if (length != move_page_tables(vma, old_start,
vma, new_start, length))
return -ENOMEM;
lru_add_drain();
tlb = tlb_gather_mmu(mm, 0);
if (new_end > old_start) {
/*
* when the old and new regions overlap clear from new_end.
*/
free_pgd_range(tlb, new_end, old_end, new_end,
vma->vm_next ? vma->vm_next->vm_start : 0);
} else {
/*
* otherwise, clean from old_start; this is done to not touch
* the address space in [new_end, old_start) some architectures
* have constraints on va-space that make this illegal (IA64) -
* for the others its just a little faster.
*/
free_pgd_range(tlb, old_start, old_end, new_end,
vma->vm_next ? vma->vm_next->vm_start : 0);
}
tlb_finish_mmu(tlb, new_end, old_end);
/*
* Shrink the vma to just the new range. Always succeeds.
*/
vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
return 0;
}
/*
* Finalizes the stack vm_area_struct. The flags and permissions are updated,
* the stack is optionally relocated, and some extra space is added.
*/
int setup_arg_pages(struct linux_binprm *bprm,
unsigned long stack_top,
int executable_stack)
{
unsigned long ret;
unsigned long stack_shift;
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma = bprm->vma;
struct vm_area_struct *prev = NULL;
unsigned long vm_flags;
unsigned long stack_base;
unsigned long stack_size;
unsigned long stack_expand;
unsigned long rlim_stack;
#ifdef CONFIG_STACK_GROWSUP
/* Limit stack size to 1GB */
stack_base = rlimit_max(RLIMIT_STACK);
if (stack_base > (1 << 30))
stack_base = 1 << 30;
/* Make sure we didn't let the argument array grow too large. */
if (vma->vm_end - vma->vm_start > stack_base)
return -ENOMEM;
stack_base = PAGE_ALIGN(stack_top - stack_base);
stack_shift = vma->vm_start - stack_base;
mm->arg_start = bprm->p - stack_shift;
bprm->p = vma->vm_end - stack_shift;
#else
stack_top = arch_align_stack(stack_top);
stack_top = PAGE_ALIGN(stack_top);
stack_shift = vma->vm_end - stack_top;
bprm->p -= stack_shift;
mm->arg_start = bprm->p;
#endif
if (bprm->loader)
bprm->loader -= stack_shift;
bprm->exec -= stack_shift;
down_write(&mm->mmap_sem);
vm_flags = VM_STACK_FLAGS;
/*
* Adjust stack execute permissions; explicitly enable for
* EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
* (arch default) otherwise.
*/
if (unlikely(executable_stack == EXSTACK_ENABLE_X))
vm_flags |= VM_EXEC;
else if (executable_stack == EXSTACK_DISABLE_X)
vm_flags &= ~VM_EXEC;
vm_flags |= mm->def_flags;
ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
vm_flags);
if (ret)
goto out_unlock;
BUG_ON(prev != vma);
/* Move stack pages down in memory. */
if (stack_shift) {
ret = shift_arg_pages(vma, stack_shift);
if (ret)
goto out_unlock;
}
stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
stack_size = vma->vm_end - vma->vm_start;
/*
* Align this down to a page boundary as expand_stack
* will align it up.
*/
rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
#ifdef CONFIG_STACK_GROWSUP
if (stack_size + stack_expand > rlim_stack)
stack_base = vma->vm_start + rlim_stack;
else
stack_base = vma->vm_end + stack_expand;
#else
if (stack_size + stack_expand > rlim_stack)
stack_base = vma->vm_end - rlim_stack;
else
stack_base = vma->vm_start - stack_expand;
#endif
ret = expand_stack(vma, stack_base);
if (ret)
ret = -EFAULT;
out_unlock:
up_write(&mm->mmap_sem);
return ret;
}
EXPORT_SYMBOL(setup_arg_pages);
#endif /* CONFIG_MMU */
struct file *open_exec(const char *name)
{
struct file *file;
int err;
file = do_filp_open(AT_FDCWD, name,
O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
MAY_EXEC | MAY_OPEN);
if (IS_ERR(file))
goto out;
err = -EACCES;
if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
goto exit;
if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
goto exit;
fsnotify_open(file->f_path.dentry);
err = deny_write_access(file);
if (err)
goto exit;
out:
return file;
exit:
fput(file);
return ERR_PTR(err);
}
EXPORT_SYMBOL(open_exec);
int kernel_read(struct file *file, loff_t offset,
char *addr, unsigned long count)
{
mm_segment_t old_fs;
loff_t pos = offset;
int result;
old_fs = get_fs();
set_fs(get_ds());
/* The cast to a user pointer is valid due to the set_fs() */
result = vfs_read(file, (void __user *)addr, count, &pos);
set_fs(old_fs);
return result;
}
EXPORT_SYMBOL(kernel_read);
static int exec_mmap(struct mm_struct *mm)
{
struct task_struct *tsk;
struct mm_struct * old_mm, *active_mm;
/* Notify parent that we're no longer interested in the old VM */
tsk = current;
old_mm = current->mm;
sync_mm_rss(tsk, old_mm);
mm_release(tsk, old_mm);
if (old_mm) {
/*
* Make sure that if there is a core dump in progress
* for the old mm, we get out and die instead of going
* through with the exec. We must hold mmap_sem around
* checking core_state and changing tsk->mm.
*/
down_read(&old_mm->mmap_sem);
if (unlikely(old_mm->core_state)) {
up_read(&old_mm->mmap_sem);
return -EINTR;
}
}
task_lock(tsk);
active_mm = tsk->active_mm;
tsk->mm = mm;
tsk->active_mm = mm;
activate_mm(active_mm, mm);
task_unlock(tsk);
arch_pick_mmap_layout(mm);
if (old_mm) {
up_read(&old_mm->mmap_sem);
BUG_ON(active_mm != old_mm);
mm_update_next_owner(old_mm);
mmput(old_mm);
return 0;
}
mmdrop(active_mm);
return 0;
}
/*
* This function makes sure the current process has its own signal table,
* so that flush_signal_handlers can later reset the handlers without
* disturbing other processes. (Other processes might share the signal
* table via the CLONE_SIGHAND option to clone().)
*/
static int de_thread(struct task_struct *tsk)
{
struct signal_struct *sig = tsk->signal;
struct sighand_struct *oldsighand = tsk->sighand;
spinlock_t *lock = &oldsighand->siglock;
int count;
if (thread_group_empty(tsk))
goto no_thread_group;
/*
* Kill all other threads in the thread group.
*/
spin_lock_irq(lock);
if (signal_group_exit(sig)) {
/*
* Another group action in progress, just
* return so that the signal is processed.
*/
spin_unlock_irq(lock);
return -EAGAIN;
}
sig->group_exit_task = tsk;
zap_other_threads(tsk);
/* Account for the thread group leader hanging around: */
count = thread_group_leader(tsk) ? 1 : 2;
sig->notify_count = count;
while (atomic_read(&sig->count) > count) {
__set_current_state(TASK_UNINTERRUPTIBLE);
spin_unlock_irq(lock);
schedule();
spin_lock_irq(lock);
}
spin_unlock_irq(lock);
/*
* At this point all other threads have exited, all we have to
* do is to wait for the thread group leader to become inactive,
* and to assume its PID:
*/
if (!thread_group_leader(tsk)) {
struct task_struct *leader = tsk->group_leader;
sig->notify_count = -1; /* for exit_notify() */
for (;;) {
write_lock_irq(&tasklist_lock);
if (likely(leader->exit_state))
break;
__set_current_state(TASK_UNINTERRUPTIBLE);
write_unlock_irq(&tasklist_lock);
schedule();
}
/*
* The only record we have of the real-time age of a
* process, regardless of execs it's done, is start_time.
* All the past CPU time is accumulated in signal_struct
* from sister threads now dead. But in this non-leader
* exec, nothing survives from the original leader thread,
* whose birth marks the true age of this process now.
* When we take on its identity by switching to its PID, we
* also take its birthdate (always earlier than our own).
*/
tsk->start_time = leader->start_time;
BUG_ON(!same_thread_group(leader, tsk));
BUG_ON(has_group_leader_pid(tsk));
/*
* An exec() starts a new thread group with the
* TGID of the previous thread group. Rehash the
* two threads with a switched PID, and release
* the former thread group leader:
*/
/* Become a process group leader with the old leader's pid.
* The old leader becomes a thread of the this thread group.
* Note: The old leader also uses this pid until release_task
* is called. Odd but simple and correct.
*/
detach_pid(tsk, PIDTYPE_PID);
tsk->pid = leader->pid;
attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
transfer_pid(leader, tsk, PIDTYPE_PGID);
transfer_pid(leader, tsk, PIDTYPE_SID);
list_replace_rcu(&leader->tasks, &tsk->tasks);
list_replace_init(&leader->sibling, &tsk->sibling);
tsk->group_leader = tsk;
leader->group_leader = tsk;
tsk->exit_signal = SIGCHLD;
BUG_ON(leader->exit_state != EXIT_ZOMBIE);
leader->exit_state = EXIT_DEAD;
write_unlock_irq(&tasklist_lock);
release_task(leader);
}
sig->group_exit_task = NULL;
sig->notify_count = 0;
no_thread_group:
if (current->mm)
setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
exit_itimers(sig);
flush_itimer_signals();
if (atomic_read(&oldsighand->count) != 1) {
struct sighand_struct *newsighand;
/*
* This ->sighand is shared with the CLONE_SIGHAND
* but not CLONE_THREAD task, switch to the new one.
*/
newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
if (!newsighand)
return -ENOMEM;
atomic_set(&newsighand->count, 1);
memcpy(newsighand->action, oldsighand->action,
sizeof(newsighand->action));
write_lock_irq(&tasklist_lock);
spin_lock(&oldsighand->siglock);
rcu_assign_pointer(tsk->sighand, newsighand);
spin_unlock(&oldsighand->siglock);
write_unlock_irq(&tasklist_lock);
__cleanup_sighand(oldsighand);
}
BUG_ON(!thread_group_leader(tsk));
return 0;
}
/*
* These functions flushes out all traces of the currently running executable
* so that a new one can be started
*/
static void flush_old_files(struct files_struct * files)
{
long j = -1;
struct fdtable *fdt;
spin_lock(&files->file_lock);
for (;;) {
unsigned long set, i;
j++;
i = j * __NFDBITS;
fdt = files_fdtable(files);
if (i >= fdt->max_fds)
break;
set = fdt->close_on_exec->fds_bits[j];
if (!set)
continue;
fdt->close_on_exec->fds_bits[j] = 0;
spin_unlock(&files->file_lock);
for ( ; set ; i++,set >>= 1) {
if (set & 1) {
sys_close(i);
}
}
spin_lock(&files->file_lock);
}
spin_unlock(&files->file_lock);
}
char *get_task_comm(char *buf, struct task_struct *tsk)
{
/* buf must be at least sizeof(tsk->comm) in size */
task_lock(tsk);
strncpy(buf, tsk->comm, sizeof(tsk->comm));
task_unlock(tsk);
return buf;
}
void set_task_comm(struct task_struct *tsk, char *buf)
{
task_lock(tsk);
/*
* Threads may access current->comm without holding
* the task lock, so write the string carefully.
* Readers without a lock may see incomplete new
* names but are safe from non-terminating string reads.
*/
memset(tsk->comm, 0, TASK_COMM_LEN);
wmb();
strlcpy(tsk->comm, buf, sizeof(tsk->comm));
task_unlock(tsk);
perf_event_comm(tsk);
}
int flush_old_exec(struct linux_binprm * bprm)
{
int retval;
/*
* Make sure we have a private signal table and that
* we are unassociated from the previous thread group.
*/
retval = de_thread(current);
if (retval)
goto out;
set_mm_exe_file(bprm->mm, bprm->file);
/*
* Release all of the old mmap stuff
*/
retval = exec_mmap(bprm->mm);
if (retval)
goto out;
bprm->mm = NULL; /* We're using it now */
current->flags &= ~PF_RANDOMIZE;
flush_thread();
current->personality &= ~bprm->per_clear;
return 0;
out:
return retval;
}
EXPORT_SYMBOL(flush_old_exec);
void setup_new_exec(struct linux_binprm * bprm)
{
int i, ch;
char * name;
char tcomm[sizeof(current->comm)];
arch_pick_mmap_layout(current->mm);
/* This is the point of no return */
current->sas_ss_sp = current->sas_ss_size = 0;
if (current_euid() == current_uid() && current_egid() == current_gid())
set_dumpable(current->mm, 1);
else
set_dumpable(current->mm, suid_dumpable);
name = bprm->filename;
/* Copies the binary name from after last slash */
for (i=0; (ch = *(name++)) != '\0';) {
if (ch == '/')
i = 0; /* overwrite what we wrote */
else
if (i < (sizeof(tcomm) - 1))
tcomm[i++] = ch;
}
tcomm[i] = '\0';
set_task_comm(current, tcomm);
/* Set the new mm task size. We have to do that late because it may
* depend on TIF_32BIT which is only updated in flush_thread() on
* some architectures like powerpc
*/
current->mm->task_size = TASK_SIZE;
/* install the new credentials */
if (bprm->cred->uid != current_euid() ||
bprm->cred->gid != current_egid()) {
current->pdeath_signal = 0;
} else if (file_permission(bprm->file, MAY_READ) ||
bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
set_dumpable(current->mm, suid_dumpable);
}
/*
* Flush performance counters when crossing a
* security domain:
*/
if (!get_dumpable(current->mm))
perf_event_exit_task(current);
/* An exec changes our domain. We are no longer part of the thread
group */
current->self_exec_id++;
flush_signal_handlers(current, 0);
flush_old_files(current->files);
}
EXPORT_SYMBOL(setup_new_exec);
/*
* Prepare credentials and lock ->cred_guard_mutex.
* install_exec_creds() commits the new creds and drops the lock.
* Or, if exec fails before, free_bprm() should release ->cred and
* and unlock.
*/
int prepare_bprm_creds(struct linux_binprm *bprm)
{
if (mutex_lock_interruptible(&current->cred_guard_mutex))
return -ERESTARTNOINTR;
bprm->cred = prepare_exec_creds();
if (likely(bprm->cred))
return 0;
mutex_unlock(&current->cred_guard_mutex);
return -ENOMEM;
}
void free_bprm(struct linux_binprm *bprm)
{
free_arg_pages(bprm);
if (bprm->cred) {
mutex_unlock(&current->cred_guard_mutex);
abort_creds(bprm->cred);
}
kfree(bprm);
}
/*
* install the new credentials for this executable
*/
void install_exec_creds(struct linux_binprm *bprm)
{
security_bprm_committing_creds(bprm);
commit_creds(bprm->cred);
bprm->cred = NULL;
/*
* cred_guard_mutex must be held at least to this point to prevent
* ptrace_attach() from altering our determination of the task's
* credentials; any time after this it may be unlocked.
*/
security_bprm_committed_creds(bprm);
mutex_unlock(&current->cred_guard_mutex);
}
EXPORT_SYMBOL(install_exec_creds);
/*
* determine how safe it is to execute the proposed program
* - the caller must hold current->cred_guard_mutex to protect against
* PTRACE_ATTACH
*/
int check_unsafe_exec(struct linux_binprm *bprm)
{
struct task_struct *p = current, *t;
unsigned n_fs;
int res = 0;
bprm->unsafe = tracehook_unsafe_exec(p);
n_fs = 1;
write_lock(&p->fs->lock);
rcu_read_lock();
for (t = next_thread(p); t != p; t = next_thread(t)) {
if (t->fs == p->fs)
n_fs++;
}
rcu_read_unlock();
if (p->fs->users > n_fs) {
bprm->unsafe |= LSM_UNSAFE_SHARE;
} else {
res = -EAGAIN;
if (!p->fs->in_exec) {
p->fs->in_exec = 1;
res = 1;
}
}
write_unlock(&p->fs->lock);
return res;
}
/*
* Fill the binprm structure from the inode.
* Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
*
* This may be called multiple times for binary chains (scripts for example).
*/
int prepare_binprm(struct linux_binprm *bprm)
{
umode_t mode;
struct inode * inode = bprm->file->f_path.dentry->d_inode;
int retval;
mode = inode->i_mode;
if (bprm->file->f_op == NULL)
return -EACCES;
/* clear any previous set[ug]id data from a previous binary */
bprm->cred->euid = current_euid();
bprm->cred->egid = current_egid();
if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
/* Set-uid? */
if (mode & S_ISUID) {
bprm->per_clear |= PER_CLEAR_ON_SETID;
bprm->cred->euid = inode->i_uid;
}
/* Set-gid? */
/*
* If setgid is set but no group execute bit then this
* is a candidate for mandatory locking, not a setgid
* executable.
*/
if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
bprm->per_clear |= PER_CLEAR_ON_SETID;
bprm->cred->egid = inode->i_gid;
}
}
/* fill in binprm security blob */
retval = security_bprm_set_creds(bprm);
if (retval)
return retval;
bprm->cred_prepared = 1;
memset(bprm->buf, 0, BINPRM_BUF_SIZE);
return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
}
EXPORT_SYMBOL(prepare_binprm);
/*
* Arguments are '\0' separated strings found at the location bprm->p
* points to; chop off the first by relocating brpm->p to right after
* the first '\0' encountered.
*/
int remove_arg_zero(struct linux_binprm *bprm)
{
int ret = 0;
unsigned long offset;
char *kaddr;
struct page *page;
if (!bprm->argc)
return 0;
do {
offset = bprm->p & ~PAGE_MASK;
page = get_arg_page(bprm, bprm->p, 0);
if (!page) {
ret = -EFAULT;
goto out;
}
kaddr = kmap_atomic(page, KM_USER0);
for (; offset < PAGE_SIZE && kaddr[offset];
offset++, bprm->p++)
;
kunmap_atomic(kaddr, KM_USER0);
put_arg_page(page);
if (offset == PAGE_SIZE)
free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
} while (offset == PAGE_SIZE);
bprm->p++;
bprm->argc--;
ret = 0;
out:
return ret;
}
EXPORT_SYMBOL(remove_arg_zero);
/*
* cycle the list of binary formats handler, until one recognizes the image
*/
int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
{
unsigned int depth = bprm->recursion_depth;
int try,retval;
struct linux_binfmt *fmt;
retval = security_bprm_check(bprm);
if (retval)
return retval;
/* kernel module loader fixup */
/* so we don't try to load run modprobe in kernel space. */
set_fs(USER_DS);
retval = audit_bprm(bprm);
if (retval)
return retval;
retval = -ENOENT;
for (try=0; try<2; try++) {
read_lock(&binfmt_lock);
list_for_each_entry(fmt, &formats, lh) {
int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
if (!fn)
continue;
if (!try_module_get(fmt->module))
continue;
read_unlock(&binfmt_lock);
retval = fn(bprm, regs);
/*
* Restore the depth counter to its starting value
* in this call, so we don't have to rely on every
* load_binary function to restore it on return.
*/
bprm->recursion_depth = depth;
if (retval >= 0) {
if (depth == 0)
tracehook_report_exec(fmt, bprm, regs);
put_binfmt(fmt);
allow_write_access(bprm->file);
if (bprm->file)
fput(bprm->file);
bprm->file = NULL;
current->did_exec = 1;
proc_exec_connector(current);
return retval;
}
read_lock(&binfmt_lock);
put_binfmt(fmt);
if (retval != -ENOEXEC || bprm->mm == NULL)
break;
if (!bprm->file) {
read_unlock(&binfmt_lock);
return retval;
}
}
read_unlock(&binfmt_lock);
if (retval != -ENOEXEC || bprm->mm == NULL) {
break;
#ifdef CONFIG_MODULES
} else {
#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
if (printable(bprm->buf[0]) &&
printable(bprm->buf[1]) &&
printable(bprm->buf[2]) &&
printable(bprm->buf[3]))
break; /* -ENOEXEC */
request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
#endif
}
}
return retval;
}
EXPORT_SYMBOL(search_binary_handler);
/*
* sys_execve() executes a new program.
*/
int do_execve(char * filename,
char __user *__user *argv,
char __user *__user *envp,
struct pt_regs * regs)
{
struct linux_binprm *bprm;
struct file *file;
struct files_struct *displaced;
bool clear_in_exec;
int retval;
retval = unshare_files(&displaced);
if (retval)
goto out_ret;
retval = -ENOMEM;
bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
if (!bprm)
goto out_files;
retval = prepare_bprm_creds(bprm);
if (retval)
goto out_free;
retval = check_unsafe_exec(bprm);
if (retval < 0)
goto out_free;
clear_in_exec = retval;
current->in_execve = 1;
file = open_exec(filename);
retval = PTR_ERR(file);
if (IS_ERR(file))
goto out_unmark;
sched_exec();
bprm->file = file;
bprm->filename = filename;
bprm->interp = filename;
retval = bprm_mm_init(bprm);
if (retval)
goto out_file;
bprm->argc = count(argv, MAX_ARG_STRINGS);
if ((retval = bprm->argc) < 0)
goto out;
bprm->envc = count(envp, MAX_ARG_STRINGS);
if ((retval = bprm->envc) < 0)
goto out;
retval = prepare_binprm(bprm);
if (retval < 0)
goto out;
retval = copy_strings_kernel(1, &bprm->filename, bprm);
if (retval < 0)
goto out;
bprm->exec = bprm->p;
retval = copy_strings(bprm->envc, envp, bprm);
if (retval < 0)
goto out;
retval = copy_strings(bprm->argc, argv, bprm);
if (retval < 0)
goto out;
current->flags &= ~PF_KTHREAD;
retval = search_binary_handler(bprm,regs);
if (retval < 0)
goto out;
current->stack_start = current->mm->start_stack;
/* execve succeeded */
current->fs->in_exec = 0;
current->in_execve = 0;
acct_update_integrals(current);
free_bprm(bprm);
if (displaced)
put_files_struct(displaced);
return retval;
out:
if (bprm->mm)
mmput (bprm->mm);
out_file:
if (bprm->file) {
allow_write_access(bprm->file);
fput(bprm->file);
}
out_unmark:
if (clear_in_exec)
current->fs->in_exec = 0;
current->in_execve = 0;
out_free:
free_bprm(bprm);
out_files:
if (displaced)
reset_files_struct(displaced);
out_ret:
return retval;
}
void set_binfmt(struct linux_binfmt *new)
{
struct mm_struct *mm = current->mm;
if (mm->binfmt)
module_put(mm->binfmt->module);
mm->binfmt = new;
if (new)
__module_get(new->module);
}
EXPORT_SYMBOL(set_binfmt);
/* format_corename will inspect the pattern parameter, and output a
* name into corename, which must have space for at least
* CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
*/
static int format_corename(char *corename, long signr)
{
const struct cred *cred = current_cred();
const char *pat_ptr = core_pattern;
int ispipe = (*pat_ptr == '|');
char *out_ptr = corename;
char *const out_end = corename + CORENAME_MAX_SIZE;
int rc;
int pid_in_pattern = 0;
/* Repeat as long as we have more pattern to process and more output
space */
while (*pat_ptr) {
if (*pat_ptr != '%') {
if (out_ptr == out_end)
goto out;
*out_ptr++ = *pat_ptr++;
} else {
switch (*++pat_ptr) {
case 0:
goto out;
/* Double percent, output one percent */
case '%':
if (out_ptr == out_end)
goto out;
*out_ptr++ = '%';
break;
/* pid */
case 'p':
pid_in_pattern = 1;
rc = snprintf(out_ptr, out_end - out_ptr,
"%d", task_tgid_vnr(current));
if (rc > out_end - out_ptr)
goto out;
out_ptr += rc;
break;
/* uid */
case 'u':
rc = snprintf(out_ptr, out_end - out_ptr,
"%d", cred->uid);
if (rc > out_end - out_ptr)
goto out;
out_ptr += rc;
break;
/* gid */
case 'g':
rc = snprintf(out_ptr, out_end - out_ptr,
"%d", cred->gid);
if (rc > out_end - out_ptr)
goto out;
out_ptr += rc;
break;
/* signal that caused the coredump */
case 's':
rc = snprintf(out_ptr, out_end - out_ptr,
"%ld", signr);
if (rc > out_end - out_ptr)
goto out;
out_ptr += rc;
break;
/* UNIX time of coredump */
case 't': {
struct timeval tv;
do_gettimeofday(&tv);
rc = snprintf(out_ptr, out_end - out_ptr,
"%lu", tv.tv_sec);
if (rc > out_end - out_ptr)
goto out;
out_ptr += rc;
break;
}
/* hostname */
case 'h':
down_read(&uts_sem);
rc = snprintf(out_ptr, out_end - out_ptr,
"%s", utsname()->nodename);
up_read(&uts_sem);
if (rc > out_end - out_ptr)
goto out;
out_ptr += rc;
break;
/* executable */
case 'e':
rc = snprintf(out_ptr, out_end - out_ptr,
"%s", current->comm);
if (rc > out_end - out_ptr)
goto out;
out_ptr += rc;
break;
/* core limit size */
case 'c':
rc = snprintf(out_ptr, out_end - out_ptr,
"%lu", rlimit(RLIMIT_CORE));
if (rc > out_end - out_ptr)
goto out;
out_ptr += rc;
break;
default:
break;
}
++pat_ptr;
}
}
/* Backward compatibility with core_uses_pid:
*
* If core_pattern does not include a %p (as is the default)
* and core_uses_pid is set, then .%pid will be appended to
* the filename. Do not do this for piped commands. */
if (!ispipe && !pid_in_pattern && core_uses_pid) {
rc = snprintf(out_ptr, out_end - out_ptr,
".%d", task_tgid_vnr(current));
if (rc > out_end - out_ptr)
goto out;
out_ptr += rc;
}
out:
*out_ptr = 0;
return ispipe;
}
static int zap_process(struct task_struct *start, int exit_code)
{
struct task_struct *t;
int nr = 0;
start->signal->flags = SIGNAL_GROUP_EXIT;
start->signal->group_exit_code = exit_code;
start->signal->group_stop_count = 0;
t = start;
do {
if (t != current && t->mm) {
sigaddset(&t->pending.signal, SIGKILL);
signal_wake_up(t, 1);
nr++;
}
} while_each_thread(start, t);
return nr;
}
static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
struct core_state *core_state, int exit_code)
{
struct task_struct *g, *p;
unsigned long flags;
int nr = -EAGAIN;
spin_lock_irq(&tsk->sighand->siglock);
if (!signal_group_exit(tsk->signal)) {
mm->core_state = core_state;
nr = zap_process(tsk, exit_code);
}
spin_unlock_irq(&tsk->sighand->siglock);
if (unlikely(nr < 0))
return nr;
if (atomic_read(&mm->mm_users) == nr + 1)
goto done;
/*
* We should find and kill all tasks which use this mm, and we should
* count them correctly into ->nr_threads. We don't take tasklist
* lock, but this is safe wrt:
*
* fork:
* None of sub-threads can fork after zap_process(leader). All
* processes which were created before this point should be
* visible to zap_threads() because copy_process() adds the new
* process to the tail of init_task.tasks list, and lock/unlock
* of ->siglock provides a memory barrier.
*
* do_exit:
* The caller holds mm->mmap_sem. This means that the task which
* uses this mm can't pass exit_mm(), so it can't exit or clear
* its ->mm.
*
* de_thread:
* It does list_replace_rcu(&leader->tasks, &current->tasks),
* we must see either old or new leader, this does not matter.
* However, it can change p->sighand, so lock_task_sighand(p)
* must be used. Since p->mm != NULL and we hold ->mmap_sem
* it can't fail.
*
* Note also that "g" can be the old leader with ->mm == NULL
* and already unhashed and thus removed from ->thread_group.
* This is OK, __unhash_process()->list_del_rcu() does not
* clear the ->next pointer, we will find the new leader via
* next_thread().
*/
rcu_read_lock();
for_each_process(g) {
if (g == tsk->group_leader)
continue;
if (g->flags & PF_KTHREAD)
continue;
p = g;
do {
if (p->mm) {
if (unlikely(p->mm == mm)) {
lock_task_sighand(p, &flags);
nr += zap_process(p, exit_code);
unlock_task_sighand(p, &flags);
}
break;
}
} while_each_thread(g, p);
}
rcu_read_unlock();
done:
atomic_set(&core_state->nr_threads, nr);
return nr;
}
static int coredump_wait(int exit_code, struct core_state *core_state)
{
struct task_struct *tsk = current;
struct mm_struct *mm = tsk->mm;
struct completion *vfork_done;
int core_waiters;
init_completion(&core_state->startup);
core_state->dumper.task = tsk;
core_state->dumper.next = NULL;
core_waiters = zap_threads(tsk, mm, core_state, exit_code);
up_write(&mm->mmap_sem);
if (unlikely(core_waiters < 0))
goto fail;
/*
* Make sure nobody is waiting for us to release the VM,
* otherwise we can deadlock when we wait on each other
*/
vfork_done = tsk->vfork_done;
if (vfork_done) {
tsk->vfork_done = NULL;
complete(vfork_done);
}
if (core_waiters)
wait_for_completion(&core_state->startup);
fail:
return core_waiters;
}
static void coredump_finish(struct mm_struct *mm)
{
struct core_thread *curr, *next;
struct task_struct *task;
next = mm->core_state->dumper.next;
while ((curr = next) != NULL) {
next = curr->next;
task = curr->task;
/*
* see exit_mm(), curr->task must not see
* ->task == NULL before we read ->next.
*/
smp_mb();
curr->task = NULL;
wake_up_process(task);
}
mm->core_state = NULL;
}
/*
* set_dumpable converts traditional three-value dumpable to two flags and
* stores them into mm->flags. It modifies lower two bits of mm->flags, but
* these bits are not changed atomically. So get_dumpable can observe the
* intermediate state. To avoid doing unexpected behavior, get get_dumpable
* return either old dumpable or new one by paying attention to the order of
* modifying the bits.
*
* dumpable | mm->flags (binary)
* old new | initial interim final
* ---------+-----------------------
* 0 1 | 00 01 01
* 0 2 | 00 10(*) 11
* 1 0 | 01 00 00
* 1 2 | 01 11 11
* 2 0 | 11 10(*) 00
* 2 1 | 11 11 01
*
* (*) get_dumpable regards interim value of 10 as 11.
*/
void set_dumpable(struct mm_struct *mm, int value)
{
switch (value) {
case 0:
clear_bit(MMF_DUMPABLE, &mm->flags);
smp_wmb();
clear_bit(MMF_DUMP_SECURELY, &mm->flags);
break;
case 1:
set_bit(MMF_DUMPABLE, &mm->flags);
smp_wmb();
clear_bit(MMF_DUMP_SECURELY, &mm->flags);
break;
case 2:
set_bit(MMF_DUMP_SECURELY, &mm->flags);
smp_wmb();
set_bit(MMF_DUMPABLE, &mm->flags);
break;
}
}
static int __get_dumpable(unsigned long mm_flags)
{
int ret;
ret = mm_flags & MMF_DUMPABLE_MASK;
return (ret >= 2) ? 2 : ret;
}
int get_dumpable(struct mm_struct *mm)
{
return __get_dumpable(mm->flags);
}
static void wait_for_dump_helpers(struct file *file)
{
struct pipe_inode_info *pipe;
pipe = file->f_path.dentry->d_inode->i_pipe;
pipe_lock(pipe);
pipe->readers++;
pipe->writers--;
while ((pipe->readers > 1) && (!signal_pending(current))) {
wake_up_interruptible_sync(&pipe->wait);
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
pipe_wait(pipe);
}
pipe->readers--;
pipe->writers++;
pipe_unlock(pipe);
}
void do_coredump(long signr, int exit_code, struct pt_regs *regs)
{
struct core_state core_state;
char corename[CORENAME_MAX_SIZE + 1];
struct mm_struct *mm = current->mm;
struct linux_binfmt * binfmt;
struct inode * inode;
const struct cred *old_cred;
struct cred *cred;
int retval = 0;
int flag = 0;
int ispipe = 0;
char **helper_argv = NULL;
int helper_argc = 0;
int dump_count = 0;
static atomic_t core_dump_count = ATOMIC_INIT(0);
struct coredump_params cprm = {
.signr = signr,
.regs = regs,
.limit = rlimit(RLIMIT_CORE),
/*
* We must use the same mm->flags while dumping core to avoid
* inconsistency of bit flags, since this flag is not protected
* by any locks.
*/
.mm_flags = mm->flags,
};
audit_core_dumps(signr);
binfmt = mm->binfmt;
if (!binfmt || !binfmt->core_dump)
goto fail;
cred = prepare_creds();
if (!cred) {
retval = -ENOMEM;
goto fail;
}
down_write(&mm->mmap_sem);
/*
* If another thread got here first, or we are not dumpable, bail out.
*/
if (mm->core_state || !__get_dumpable(cprm.mm_flags)) {
up_write(&mm->mmap_sem);
put_cred(cred);
goto fail;
}
/*
* We cannot trust fsuid as being the "true" uid of the
* process nor do we know its entire history. We only know it
* was tainted so we dump it as root in mode 2.
*/
if (__get_dumpable(cprm.mm_flags) == 2) {
/* Setuid core dump mode */
flag = O_EXCL; /* Stop rewrite attacks */
cred->fsuid = 0; /* Dump root private */
}
retval = coredump_wait(exit_code, &core_state);
if (retval < 0) {
put_cred(cred);
goto fail;
}
old_cred = override_creds(cred);
/*
* Clear any false indication of pending signals that might
* be seen by the filesystem code called to write the core file.
*/
clear_thread_flag(TIF_SIGPENDING);
/*
* lock_kernel() because format_corename() is controlled by sysctl, which
* uses lock_kernel()
*/
lock_kernel();
ispipe = format_corename(corename, signr);
unlock_kernel();
if ((!ispipe) && (cprm.limit < binfmt->min_coredump))
goto fail_unlock;
if (ispipe) {
if (cprm.limit == 0) {
/*
* Normally core limits are irrelevant to pipes, since
* we're not writing to the file system, but we use
* cprm.limit of 0 here as a speacial value. Any
* non-zero limit gets set to RLIM_INFINITY below, but
* a limit of 0 skips the dump. This is a consistent
* way to catch recursive crashes. We can still crash
* if the core_pattern binary sets RLIM_CORE = !0
* but it runs as root, and can do lots of stupid things
* Note that we use task_tgid_vnr here to grab the pid
* of the process group leader. That way we get the
* right pid if a thread in a multi-threaded
* core_pattern process dies.
*/
printk(KERN_WARNING
"Process %d(%s) has RLIMIT_CORE set to 0\n",
task_tgid_vnr(current), current->comm);
printk(KERN_WARNING "Aborting core\n");
goto fail_unlock;
}
dump_count = atomic_inc_return(&core_dump_count);
if (core_pipe_limit && (core_pipe_limit < dump_count)) {
printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
task_tgid_vnr(current), current->comm);
printk(KERN_WARNING "Skipping core dump\n");
goto fail_dropcount;
}
helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
if (!helper_argv) {
printk(KERN_WARNING "%s failed to allocate memory\n",
__func__);
goto fail_dropcount;
}
cprm.limit = RLIM_INFINITY;
/* SIGPIPE can happen, but it's just never processed */
if (call_usermodehelper_pipe(helper_argv[0], helper_argv, NULL,
&cprm.file)) {
printk(KERN_INFO "Core dump to %s pipe failed\n",
corename);
goto fail_dropcount;
}
} else
cprm.file = filp_open(corename,
O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
0600);
if (IS_ERR(cprm.file))
goto fail_dropcount;
inode = cprm.file->f_path.dentry->d_inode;
if (inode->i_nlink > 1)
goto close_fail; /* multiple links - don't dump */
if (!ispipe && d_unhashed(cprm.file->f_path.dentry))
goto close_fail;
/* AK: actually i see no reason to not allow this for named pipes etc.,
but keep the previous behaviour for now. */
if (!ispipe && !S_ISREG(inode->i_mode))
goto close_fail;
/*
* Dont allow local users get cute and trick others to coredump
* into their pre-created files:
* Note, this is not relevant for pipes
*/
if (!ispipe && (inode->i_uid != current_fsuid()))
goto close_fail;
if (!cprm.file->f_op)
goto close_fail;
if (!cprm.file->f_op->write)
goto close_fail;
if (!ispipe &&
do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file) != 0)
goto close_fail;
retval = binfmt->core_dump(&cprm);
if (retval)
current->signal->group_exit_code |= 0x80;
close_fail:
if (ispipe && core_pipe_limit)
wait_for_dump_helpers(cprm.file);
filp_close(cprm.file, NULL);
fail_dropcount:
if (dump_count)
atomic_dec(&core_dump_count);
fail_unlock:
if (helper_argv)
argv_free(helper_argv);
revert_creds(old_cred);
put_cred(cred);
coredump_finish(mm);
fail:
return;
}