1
linux/mm/filemap.c
Jan Kara ec0f163722 readahead: improve heuristic detecting sequential reads
Introduce ra.offset and store in it an offset where the previous read
ended.  This way we can detect whether reads are really sequential (and
thus we should not mark the page as accessed repeatedly) or whether they
are random and just happen to be in the same page (and the page should
really be marked accessed again).

Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: WU Fengguang <wfg@mail.ustc.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-07 12:12:52 -07:00

2470 lines
64 KiB
C

/*
* linux/mm/filemap.c
*
* Copyright (C) 1994-1999 Linus Torvalds
*/
/*
* This file handles the generic file mmap semantics used by
* most "normal" filesystems (but you don't /have/ to use this:
* the NFS filesystem used to do this differently, for example)
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/aio.h>
#include <linux/capability.h>
#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
#include <linux/hash.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/cpuset.h>
#include "filemap.h"
#include "internal.h"
/*
* FIXME: remove all knowledge of the buffer layer from the core VM
*/
#include <linux/buffer_head.h> /* for generic_osync_inode */
#include <asm/mman.h>
static ssize_t
generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
loff_t offset, unsigned long nr_segs);
/*
* Shared mappings implemented 30.11.1994. It's not fully working yet,
* though.
*
* Shared mappings now work. 15.8.1995 Bruno.
*
* finished 'unifying' the page and buffer cache and SMP-threaded the
* page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
*
* SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
*/
/*
* Lock ordering:
*
* ->i_mmap_lock (vmtruncate)
* ->private_lock (__free_pte->__set_page_dirty_buffers)
* ->swap_lock (exclusive_swap_page, others)
* ->mapping->tree_lock
*
* ->i_mutex
* ->i_mmap_lock (truncate->unmap_mapping_range)
*
* ->mmap_sem
* ->i_mmap_lock
* ->page_table_lock or pte_lock (various, mainly in memory.c)
* ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
*
* ->mmap_sem
* ->lock_page (access_process_vm)
*
* ->i_mutex (generic_file_buffered_write)
* ->mmap_sem (fault_in_pages_readable->do_page_fault)
*
* ->i_mutex
* ->i_alloc_sem (various)
*
* ->inode_lock
* ->sb_lock (fs/fs-writeback.c)
* ->mapping->tree_lock (__sync_single_inode)
*
* ->i_mmap_lock
* ->anon_vma.lock (vma_adjust)
*
* ->anon_vma.lock
* ->page_table_lock or pte_lock (anon_vma_prepare and various)
*
* ->page_table_lock or pte_lock
* ->swap_lock (try_to_unmap_one)
* ->private_lock (try_to_unmap_one)
* ->tree_lock (try_to_unmap_one)
* ->zone.lru_lock (follow_page->mark_page_accessed)
* ->zone.lru_lock (check_pte_range->isolate_lru_page)
* ->private_lock (page_remove_rmap->set_page_dirty)
* ->tree_lock (page_remove_rmap->set_page_dirty)
* ->inode_lock (page_remove_rmap->set_page_dirty)
* ->inode_lock (zap_pte_range->set_page_dirty)
* ->private_lock (zap_pte_range->__set_page_dirty_buffers)
*
* ->task->proc_lock
* ->dcache_lock (proc_pid_lookup)
*/
/*
* Remove a page from the page cache and free it. Caller has to make
* sure the page is locked and that nobody else uses it - or that usage
* is safe. The caller must hold a write_lock on the mapping's tree_lock.
*/
void __remove_from_page_cache(struct page *page)
{
struct address_space *mapping = page->mapping;
radix_tree_delete(&mapping->page_tree, page->index);
page->mapping = NULL;
mapping->nrpages--;
__dec_zone_page_state(page, NR_FILE_PAGES);
}
void remove_from_page_cache(struct page *page)
{
struct address_space *mapping = page->mapping;
BUG_ON(!PageLocked(page));
write_lock_irq(&mapping->tree_lock);
__remove_from_page_cache(page);
write_unlock_irq(&mapping->tree_lock);
}
static int sync_page(void *word)
{
struct address_space *mapping;
struct page *page;
page = container_of((unsigned long *)word, struct page, flags);
/*
* page_mapping() is being called without PG_locked held.
* Some knowledge of the state and use of the page is used to
* reduce the requirements down to a memory barrier.
* The danger here is of a stale page_mapping() return value
* indicating a struct address_space different from the one it's
* associated with when it is associated with one.
* After smp_mb(), it's either the correct page_mapping() for
* the page, or an old page_mapping() and the page's own
* page_mapping() has gone NULL.
* The ->sync_page() address_space operation must tolerate
* page_mapping() going NULL. By an amazing coincidence,
* this comes about because none of the users of the page
* in the ->sync_page() methods make essential use of the
* page_mapping(), merely passing the page down to the backing
* device's unplug functions when it's non-NULL, which in turn
* ignore it for all cases but swap, where only page_private(page) is
* of interest. When page_mapping() does go NULL, the entire
* call stack gracefully ignores the page and returns.
* -- wli
*/
smp_mb();
mapping = page_mapping(page);
if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
mapping->a_ops->sync_page(page);
io_schedule();
return 0;
}
/**
* __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
* @mapping: address space structure to write
* @start: offset in bytes where the range starts
* @end: offset in bytes where the range ends (inclusive)
* @sync_mode: enable synchronous operation
*
* Start writeback against all of a mapping's dirty pages that lie
* within the byte offsets <start, end> inclusive.
*
* If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
* opposed to a regular memory cleansing writeback. The difference between
* these two operations is that if a dirty page/buffer is encountered, it must
* be waited upon, and not just skipped over.
*/
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
loff_t end, int sync_mode)
{
int ret;
struct writeback_control wbc = {
.sync_mode = sync_mode,
.nr_to_write = mapping->nrpages * 2,
.range_start = start,
.range_end = end,
};
if (!mapping_cap_writeback_dirty(mapping))
return 0;
ret = do_writepages(mapping, &wbc);
return ret;
}
static inline int __filemap_fdatawrite(struct address_space *mapping,
int sync_mode)
{
return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
}
int filemap_fdatawrite(struct address_space *mapping)
{
return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);
static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
loff_t end)
{
return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
/**
* filemap_flush - mostly a non-blocking flush
* @mapping: target address_space
*
* This is a mostly non-blocking flush. Not suitable for data-integrity
* purposes - I/O may not be started against all dirty pages.
*/
int filemap_flush(struct address_space *mapping)
{
return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);
/**
* wait_on_page_writeback_range - wait for writeback to complete
* @mapping: target address_space
* @start: beginning page index
* @end: ending page index
*
* Wait for writeback to complete against pages indexed by start->end
* inclusive
*/
int wait_on_page_writeback_range(struct address_space *mapping,
pgoff_t start, pgoff_t end)
{
struct pagevec pvec;
int nr_pages;
int ret = 0;
pgoff_t index;
if (end < start)
return 0;
pagevec_init(&pvec, 0);
index = start;
while ((index <= end) &&
(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
PAGECACHE_TAG_WRITEBACK,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
unsigned i;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
/* until radix tree lookup accepts end_index */
if (page->index > end)
continue;
wait_on_page_writeback(page);
if (PageError(page))
ret = -EIO;
}
pagevec_release(&pvec);
cond_resched();
}
/* Check for outstanding write errors */
if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
ret = -ENOSPC;
if (test_and_clear_bit(AS_EIO, &mapping->flags))
ret = -EIO;
return ret;
}
/**
* sync_page_range - write and wait on all pages in the passed range
* @inode: target inode
* @mapping: target address_space
* @pos: beginning offset in pages to write
* @count: number of bytes to write
*
* Write and wait upon all the pages in the passed range. This is a "data
* integrity" operation. It waits upon in-flight writeout before starting and
* waiting upon new writeout. If there was an IO error, return it.
*
* We need to re-take i_mutex during the generic_osync_inode list walk because
* it is otherwise livelockable.
*/
int sync_page_range(struct inode *inode, struct address_space *mapping,
loff_t pos, loff_t count)
{
pgoff_t start = pos >> PAGE_CACHE_SHIFT;
pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
int ret;
if (!mapping_cap_writeback_dirty(mapping) || !count)
return 0;
ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
if (ret == 0) {
mutex_lock(&inode->i_mutex);
ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
mutex_unlock(&inode->i_mutex);
}
if (ret == 0)
ret = wait_on_page_writeback_range(mapping, start, end);
return ret;
}
EXPORT_SYMBOL(sync_page_range);
/**
* sync_page_range_nolock
* @inode: target inode
* @mapping: target address_space
* @pos: beginning offset in pages to write
* @count: number of bytes to write
*
* Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
* as it forces O_SYNC writers to different parts of the same file
* to be serialised right until io completion.
*/
int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
loff_t pos, loff_t count)
{
pgoff_t start = pos >> PAGE_CACHE_SHIFT;
pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
int ret;
if (!mapping_cap_writeback_dirty(mapping) || !count)
return 0;
ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
if (ret == 0)
ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
if (ret == 0)
ret = wait_on_page_writeback_range(mapping, start, end);
return ret;
}
EXPORT_SYMBOL(sync_page_range_nolock);
/**
* filemap_fdatawait - wait for all under-writeback pages to complete
* @mapping: address space structure to wait for
*
* Walk the list of under-writeback pages of the given address space
* and wait for all of them.
*/
int filemap_fdatawait(struct address_space *mapping)
{
loff_t i_size = i_size_read(mapping->host);
if (i_size == 0)
return 0;
return wait_on_page_writeback_range(mapping, 0,
(i_size - 1) >> PAGE_CACHE_SHIFT);
}
EXPORT_SYMBOL(filemap_fdatawait);
int filemap_write_and_wait(struct address_space *mapping)
{
int err = 0;
if (mapping->nrpages) {
err = filemap_fdatawrite(mapping);
/*
* Even if the above returned error, the pages may be
* written partially (e.g. -ENOSPC), so we wait for it.
* But the -EIO is special case, it may indicate the worst
* thing (e.g. bug) happened, so we avoid waiting for it.
*/
if (err != -EIO) {
int err2 = filemap_fdatawait(mapping);
if (!err)
err = err2;
}
}
return err;
}
EXPORT_SYMBOL(filemap_write_and_wait);
/**
* filemap_write_and_wait_range - write out & wait on a file range
* @mapping: the address_space for the pages
* @lstart: offset in bytes where the range starts
* @lend: offset in bytes where the range ends (inclusive)
*
* Write out and wait upon file offsets lstart->lend, inclusive.
*
* Note that `lend' is inclusive (describes the last byte to be written) so
* that this function can be used to write to the very end-of-file (end = -1).
*/
int filemap_write_and_wait_range(struct address_space *mapping,
loff_t lstart, loff_t lend)
{
int err = 0;
if (mapping->nrpages) {
err = __filemap_fdatawrite_range(mapping, lstart, lend,
WB_SYNC_ALL);
/* See comment of filemap_write_and_wait() */
if (err != -EIO) {
int err2 = wait_on_page_writeback_range(mapping,
lstart >> PAGE_CACHE_SHIFT,
lend >> PAGE_CACHE_SHIFT);
if (!err)
err = err2;
}
}
return err;
}
/**
* add_to_page_cache - add newly allocated pagecache pages
* @page: page to add
* @mapping: the page's address_space
* @offset: page index
* @gfp_mask: page allocation mode
*
* This function is used to add newly allocated pagecache pages;
* the page is new, so we can just run SetPageLocked() against it.
* The other page state flags were set by rmqueue().
*
* This function does not add the page to the LRU. The caller must do that.
*/
int add_to_page_cache(struct page *page, struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
{
int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
if (error == 0) {
write_lock_irq(&mapping->tree_lock);
error = radix_tree_insert(&mapping->page_tree, offset, page);
if (!error) {
page_cache_get(page);
SetPageLocked(page);
page->mapping = mapping;
page->index = offset;
mapping->nrpages++;
__inc_zone_page_state(page, NR_FILE_PAGES);
}
write_unlock_irq(&mapping->tree_lock);
radix_tree_preload_end();
}
return error;
}
EXPORT_SYMBOL(add_to_page_cache);
int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
pgoff_t offset, gfp_t gfp_mask)
{
int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
if (ret == 0)
lru_cache_add(page);
return ret;
}
#ifdef CONFIG_NUMA
struct page *__page_cache_alloc(gfp_t gfp)
{
if (cpuset_do_page_mem_spread()) {
int n = cpuset_mem_spread_node();
return alloc_pages_node(n, gfp, 0);
}
return alloc_pages(gfp, 0);
}
EXPORT_SYMBOL(__page_cache_alloc);
#endif
static int __sleep_on_page_lock(void *word)
{
io_schedule();
return 0;
}
/*
* In order to wait for pages to become available there must be
* waitqueues associated with pages. By using a hash table of
* waitqueues where the bucket discipline is to maintain all
* waiters on the same queue and wake all when any of the pages
* become available, and for the woken contexts to check to be
* sure the appropriate page became available, this saves space
* at a cost of "thundering herd" phenomena during rare hash
* collisions.
*/
static wait_queue_head_t *page_waitqueue(struct page *page)
{
const struct zone *zone = page_zone(page);
return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
}
static inline void wake_up_page(struct page *page, int bit)
{
__wake_up_bit(page_waitqueue(page), &page->flags, bit);
}
void fastcall wait_on_page_bit(struct page *page, int bit_nr)
{
DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
if (test_bit(bit_nr, &page->flags))
__wait_on_bit(page_waitqueue(page), &wait, sync_page,
TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_on_page_bit);
/**
* unlock_page - unlock a locked page
* @page: the page
*
* Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
* Also wakes sleepers in wait_on_page_writeback() because the wakeup
* mechananism between PageLocked pages and PageWriteback pages is shared.
* But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
*
* The first mb is necessary to safely close the critical section opened by the
* TestSetPageLocked(), the second mb is necessary to enforce ordering between
* the clear_bit and the read of the waitqueue (to avoid SMP races with a
* parallel wait_on_page_locked()).
*/
void fastcall unlock_page(struct page *page)
{
smp_mb__before_clear_bit();
if (!TestClearPageLocked(page))
BUG();
smp_mb__after_clear_bit();
wake_up_page(page, PG_locked);
}
EXPORT_SYMBOL(unlock_page);
/**
* end_page_writeback - end writeback against a page
* @page: the page
*/
void end_page_writeback(struct page *page)
{
if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
if (!test_clear_page_writeback(page))
BUG();
}
smp_mb__after_clear_bit();
wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);
/**
* __lock_page - get a lock on the page, assuming we need to sleep to get it
* @page: the page to lock
*
* Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
* random driver's requestfn sets TASK_RUNNING, we could busywait. However
* chances are that on the second loop, the block layer's plug list is empty,
* so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
*/
void fastcall __lock_page(struct page *page)
{
DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(__lock_page);
/*
* Variant of lock_page that does not require the caller to hold a reference
* on the page's mapping.
*/
void fastcall __lock_page_nosync(struct page *page)
{
DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
TASK_UNINTERRUPTIBLE);
}
/**
* find_get_page - find and get a page reference
* @mapping: the address_space to search
* @offset: the page index
*
* Is there a pagecache struct page at the given (mapping, offset) tuple?
* If yes, increment its refcount and return it; if no, return NULL.
*/
struct page * find_get_page(struct address_space *mapping, unsigned long offset)
{
struct page *page;
read_lock_irq(&mapping->tree_lock);
page = radix_tree_lookup(&mapping->page_tree, offset);
if (page)
page_cache_get(page);
read_unlock_irq(&mapping->tree_lock);
return page;
}
EXPORT_SYMBOL(find_get_page);
/**
* find_lock_page - locate, pin and lock a pagecache page
* @mapping: the address_space to search
* @offset: the page index
*
* Locates the desired pagecache page, locks it, increments its reference
* count and returns its address.
*
* Returns zero if the page was not present. find_lock_page() may sleep.
*/
struct page *find_lock_page(struct address_space *mapping,
unsigned long offset)
{
struct page *page;
read_lock_irq(&mapping->tree_lock);
repeat:
page = radix_tree_lookup(&mapping->page_tree, offset);
if (page) {
page_cache_get(page);
if (TestSetPageLocked(page)) {
read_unlock_irq(&mapping->tree_lock);
__lock_page(page);
read_lock_irq(&mapping->tree_lock);
/* Has the page been truncated while we slept? */
if (unlikely(page->mapping != mapping ||
page->index != offset)) {
unlock_page(page);
page_cache_release(page);
goto repeat;
}
}
}
read_unlock_irq(&mapping->tree_lock);
return page;
}
EXPORT_SYMBOL(find_lock_page);
/**
* find_or_create_page - locate or add a pagecache page
* @mapping: the page's address_space
* @index: the page's index into the mapping
* @gfp_mask: page allocation mode
*
* Locates a page in the pagecache. If the page is not present, a new page
* is allocated using @gfp_mask and is added to the pagecache and to the VM's
* LRU list. The returned page is locked and has its reference count
* incremented.
*
* find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
* allocation!
*
* find_or_create_page() returns the desired page's address, or zero on
* memory exhaustion.
*/
struct page *find_or_create_page(struct address_space *mapping,
unsigned long index, gfp_t gfp_mask)
{
struct page *page, *cached_page = NULL;
int err;
repeat:
page = find_lock_page(mapping, index);
if (!page) {
if (!cached_page) {
cached_page = alloc_page(gfp_mask);
if (!cached_page)
return NULL;
}
err = add_to_page_cache_lru(cached_page, mapping,
index, gfp_mask);
if (!err) {
page = cached_page;
cached_page = NULL;
} else if (err == -EEXIST)
goto repeat;
}
if (cached_page)
page_cache_release(cached_page);
return page;
}
EXPORT_SYMBOL(find_or_create_page);
/**
* find_get_pages - gang pagecache lookup
* @mapping: The address_space to search
* @start: The starting page index
* @nr_pages: The maximum number of pages
* @pages: Where the resulting pages are placed
*
* find_get_pages() will search for and return a group of up to
* @nr_pages pages in the mapping. The pages are placed at @pages.
* find_get_pages() takes a reference against the returned pages.
*
* The search returns a group of mapping-contiguous pages with ascending
* indexes. There may be holes in the indices due to not-present pages.
*
* find_get_pages() returns the number of pages which were found.
*/
unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
unsigned int nr_pages, struct page **pages)
{
unsigned int i;
unsigned int ret;
read_lock_irq(&mapping->tree_lock);
ret = radix_tree_gang_lookup(&mapping->page_tree,
(void **)pages, start, nr_pages);
for (i = 0; i < ret; i++)
page_cache_get(pages[i]);
read_unlock_irq(&mapping->tree_lock);
return ret;
}
/**
* find_get_pages_contig - gang contiguous pagecache lookup
* @mapping: The address_space to search
* @index: The starting page index
* @nr_pages: The maximum number of pages
* @pages: Where the resulting pages are placed
*
* find_get_pages_contig() works exactly like find_get_pages(), except
* that the returned number of pages are guaranteed to be contiguous.
*
* find_get_pages_contig() returns the number of pages which were found.
*/
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
unsigned int nr_pages, struct page **pages)
{
unsigned int i;
unsigned int ret;
read_lock_irq(&mapping->tree_lock);
ret = radix_tree_gang_lookup(&mapping->page_tree,
(void **)pages, index, nr_pages);
for (i = 0; i < ret; i++) {
if (pages[i]->mapping == NULL || pages[i]->index != index)
break;
page_cache_get(pages[i]);
index++;
}
read_unlock_irq(&mapping->tree_lock);
return i;
}
/**
* find_get_pages_tag - find and return pages that match @tag
* @mapping: the address_space to search
* @index: the starting page index
* @tag: the tag index
* @nr_pages: the maximum number of pages
* @pages: where the resulting pages are placed
*
* Like find_get_pages, except we only return pages which are tagged with
* @tag. We update @index to index the next page for the traversal.
*/
unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
int tag, unsigned int nr_pages, struct page **pages)
{
unsigned int i;
unsigned int ret;
read_lock_irq(&mapping->tree_lock);
ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
(void **)pages, *index, nr_pages, tag);
for (i = 0; i < ret; i++)
page_cache_get(pages[i]);
if (ret)
*index = pages[ret - 1]->index + 1;
read_unlock_irq(&mapping->tree_lock);
return ret;
}
/**
* grab_cache_page_nowait - returns locked page at given index in given cache
* @mapping: target address_space
* @index: the page index
*
* Same as grab_cache_page(), but do not wait if the page is unavailable.
* This is intended for speculative data generators, where the data can
* be regenerated if the page couldn't be grabbed. This routine should
* be safe to call while holding the lock for another page.
*
* Clear __GFP_FS when allocating the page to avoid recursion into the fs
* and deadlock against the caller's locked page.
*/
struct page *
grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
{
struct page *page = find_get_page(mapping, index);
if (page) {
if (!TestSetPageLocked(page))
return page;
page_cache_release(page);
return NULL;
}
page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
page_cache_release(page);
page = NULL;
}
return page;
}
EXPORT_SYMBOL(grab_cache_page_nowait);
/*
* CD/DVDs are error prone. When a medium error occurs, the driver may fail
* a _large_ part of the i/o request. Imagine the worst scenario:
*
* ---R__________________________________________B__________
* ^ reading here ^ bad block(assume 4k)
*
* read(R) => miss => readahead(R...B) => media error => frustrating retries
* => failing the whole request => read(R) => read(R+1) =>
* readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
* readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
* readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
*
* It is going insane. Fix it by quickly scaling down the readahead size.
*/
static void shrink_readahead_size_eio(struct file *filp,
struct file_ra_state *ra)
{
if (!ra->ra_pages)
return;
ra->ra_pages /= 4;
}
/**
* do_generic_mapping_read - generic file read routine
* @mapping: address_space to be read
* @_ra: file's readahead state
* @filp: the file to read
* @ppos: current file position
* @desc: read_descriptor
* @actor: read method
*
* This is a generic file read routine, and uses the
* mapping->a_ops->readpage() function for the actual low-level stuff.
*
* This is really ugly. But the goto's actually try to clarify some
* of the logic when it comes to error handling etc.
*
* Note the struct file* is only passed for the use of readpage.
* It may be NULL.
*/
void do_generic_mapping_read(struct address_space *mapping,
struct file_ra_state *_ra,
struct file *filp,
loff_t *ppos,
read_descriptor_t *desc,
read_actor_t actor)
{
struct inode *inode = mapping->host;
unsigned long index;
unsigned long end_index;
unsigned long offset;
unsigned long last_index;
unsigned long next_index;
unsigned long prev_index;
unsigned int prev_offset;
loff_t isize;
struct page *cached_page;
int error;
struct file_ra_state ra = *_ra;
cached_page = NULL;
index = *ppos >> PAGE_CACHE_SHIFT;
next_index = index;
prev_index = ra.prev_page;
prev_offset = ra.offset;
last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
offset = *ppos & ~PAGE_CACHE_MASK;
isize = i_size_read(inode);
if (!isize)
goto out;
end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
for (;;) {
struct page *page;
unsigned long nr, ret;
/* nr is the maximum number of bytes to copy from this page */
nr = PAGE_CACHE_SIZE;
if (index >= end_index) {
if (index > end_index)
goto out;
nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
if (nr <= offset) {
goto out;
}
}
nr = nr - offset;
cond_resched();
if (index == next_index)
next_index = page_cache_readahead(mapping, &ra, filp,
index, last_index - index);
find_page:
page = find_get_page(mapping, index);
if (unlikely(page == NULL)) {
handle_ra_miss(mapping, &ra, index);
goto no_cached_page;
}
if (!PageUptodate(page))
goto page_not_up_to_date;
page_ok:
/* If users can be writing to this page using arbitrary
* virtual addresses, take care about potential aliasing
* before reading the page on the kernel side.
*/
if (mapping_writably_mapped(mapping))
flush_dcache_page(page);
/*
* When a sequential read accesses a page several times,
* only mark it as accessed the first time.
*/
if (prev_index != index || offset != prev_offset)
mark_page_accessed(page);
prev_index = index;
/*
* Ok, we have the page, and it's up-to-date, so
* now we can copy it to user space...
*
* The actor routine returns how many bytes were actually used..
* NOTE! This may not be the same as how much of a user buffer
* we filled up (we may be padding etc), so we can only update
* "pos" here (the actor routine has to update the user buffer
* pointers and the remaining count).
*/
ret = actor(desc, page, offset, nr);
offset += ret;
index += offset >> PAGE_CACHE_SHIFT;
offset &= ~PAGE_CACHE_MASK;
prev_offset = ra.offset = offset;
page_cache_release(page);
if (ret == nr && desc->count)
continue;
goto out;
page_not_up_to_date:
/* Get exclusive access to the page ... */
lock_page(page);
/* Did it get truncated before we got the lock? */
if (!page->mapping) {
unlock_page(page);
page_cache_release(page);
continue;
}
/* Did somebody else fill it already? */
if (PageUptodate(page)) {
unlock_page(page);
goto page_ok;
}
readpage:
/* Start the actual read. The read will unlock the page. */
error = mapping->a_ops->readpage(filp, page);
if (unlikely(error)) {
if (error == AOP_TRUNCATED_PAGE) {
page_cache_release(page);
goto find_page;
}
goto readpage_error;
}
if (!PageUptodate(page)) {
lock_page(page);
if (!PageUptodate(page)) {
if (page->mapping == NULL) {
/*
* invalidate_inode_pages got it
*/
unlock_page(page);
page_cache_release(page);
goto find_page;
}
unlock_page(page);
error = -EIO;
shrink_readahead_size_eio(filp, &ra);
goto readpage_error;
}
unlock_page(page);
}
/*
* i_size must be checked after we have done ->readpage.
*
* Checking i_size after the readpage allows us to calculate
* the correct value for "nr", which means the zero-filled
* part of the page is not copied back to userspace (unless
* another truncate extends the file - this is desired though).
*/
isize = i_size_read(inode);
end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
if (unlikely(!isize || index > end_index)) {
page_cache_release(page);
goto out;
}
/* nr is the maximum number of bytes to copy from this page */
nr = PAGE_CACHE_SIZE;
if (index == end_index) {
nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
if (nr <= offset) {
page_cache_release(page);
goto out;
}
}
nr = nr - offset;
goto page_ok;
readpage_error:
/* UHHUH! A synchronous read error occurred. Report it */
desc->error = error;
page_cache_release(page);
goto out;
no_cached_page:
/*
* Ok, it wasn't cached, so we need to create a new
* page..
*/
if (!cached_page) {
cached_page = page_cache_alloc_cold(mapping);
if (!cached_page) {
desc->error = -ENOMEM;
goto out;
}
}
error = add_to_page_cache_lru(cached_page, mapping,
index, GFP_KERNEL);
if (error) {
if (error == -EEXIST)
goto find_page;
desc->error = error;
goto out;
}
page = cached_page;
cached_page = NULL;
goto readpage;
}
out:
*_ra = ra;
*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
if (cached_page)
page_cache_release(cached_page);
if (filp)
file_accessed(filp);
}
EXPORT_SYMBOL(do_generic_mapping_read);
int file_read_actor(read_descriptor_t *desc, struct page *page,
unsigned long offset, unsigned long size)
{
char *kaddr;
unsigned long left, count = desc->count;
if (size > count)
size = count;
/*
* Faults on the destination of a read are common, so do it before
* taking the kmap.
*/
if (!fault_in_pages_writeable(desc->arg.buf, size)) {
kaddr = kmap_atomic(page, KM_USER0);
left = __copy_to_user_inatomic(desc->arg.buf,
kaddr + offset, size);
kunmap_atomic(kaddr, KM_USER0);
if (left == 0)
goto success;
}
/* Do it the slow way */
kaddr = kmap(page);
left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
kunmap(page);
if (left) {
size -= left;
desc->error = -EFAULT;
}
success:
desc->count = count - size;
desc->written += size;
desc->arg.buf += size;
return size;
}
/**
* generic_file_aio_read - generic filesystem read routine
* @iocb: kernel I/O control block
* @iov: io vector request
* @nr_segs: number of segments in the iovec
* @pos: current file position
*
* This is the "read()" routine for all filesystems
* that can use the page cache directly.
*/
ssize_t
generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
unsigned long nr_segs, loff_t pos)
{
struct file *filp = iocb->ki_filp;
ssize_t retval;
unsigned long seg;
size_t count;
loff_t *ppos = &iocb->ki_pos;
count = 0;
for (seg = 0; seg < nr_segs; seg++) {
const struct iovec *iv = &iov[seg];
/*
* If any segment has a negative length, or the cumulative
* length ever wraps negative then return -EINVAL.
*/
count += iv->iov_len;
if (unlikely((ssize_t)(count|iv->iov_len) < 0))
return -EINVAL;
if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
continue;
if (seg == 0)
return -EFAULT;
nr_segs = seg;
count -= iv->iov_len; /* This segment is no good */
break;
}
/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
if (filp->f_flags & O_DIRECT) {
loff_t size;
struct address_space *mapping;
struct inode *inode;
mapping = filp->f_mapping;
inode = mapping->host;
retval = 0;
if (!count)
goto out; /* skip atime */
size = i_size_read(inode);
if (pos < size) {
retval = generic_file_direct_IO(READ, iocb,
iov, pos, nr_segs);
if (retval > 0)
*ppos = pos + retval;
}
if (likely(retval != 0)) {
file_accessed(filp);
goto out;
}
}
retval = 0;
if (count) {
for (seg = 0; seg < nr_segs; seg++) {
read_descriptor_t desc;
desc.written = 0;
desc.arg.buf = iov[seg].iov_base;
desc.count = iov[seg].iov_len;
if (desc.count == 0)
continue;
desc.error = 0;
do_generic_file_read(filp,ppos,&desc,file_read_actor);
retval += desc.written;
if (desc.error) {
retval = retval ?: desc.error;
break;
}
}
}
out:
return retval;
}
EXPORT_SYMBOL(generic_file_aio_read);
int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
{
ssize_t written;
unsigned long count = desc->count;
struct file *file = desc->arg.data;
if (size > count)
size = count;
written = file->f_op->sendpage(file, page, offset,
size, &file->f_pos, size<count);
if (written < 0) {
desc->error = written;
written = 0;
}
desc->count = count - written;
desc->written += written;
return written;
}
ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
size_t count, read_actor_t actor, void *target)
{
read_descriptor_t desc;
if (!count)
return 0;
desc.written = 0;
desc.count = count;
desc.arg.data = target;
desc.error = 0;
do_generic_file_read(in_file, ppos, &desc, actor);
if (desc.written)
return desc.written;
return desc.error;
}
EXPORT_SYMBOL(generic_file_sendfile);
static ssize_t
do_readahead(struct address_space *mapping, struct file *filp,
unsigned long index, unsigned long nr)
{
if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
return -EINVAL;
force_page_cache_readahead(mapping, filp, index,
max_sane_readahead(nr));
return 0;
}
asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
{
ssize_t ret;
struct file *file;
ret = -EBADF;
file = fget(fd);
if (file) {
if (file->f_mode & FMODE_READ) {
struct address_space *mapping = file->f_mapping;
unsigned long start = offset >> PAGE_CACHE_SHIFT;
unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
unsigned long len = end - start + 1;
ret = do_readahead(mapping, file, start, len);
}
fput(file);
}
return ret;
}
#ifdef CONFIG_MMU
static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
/**
* page_cache_read - adds requested page to the page cache if not already there
* @file: file to read
* @offset: page index
*
* This adds the requested page to the page cache if it isn't already there,
* and schedules an I/O to read in its contents from disk.
*/
static int fastcall page_cache_read(struct file * file, unsigned long offset)
{
struct address_space *mapping = file->f_mapping;
struct page *page;
int ret;
do {
page = page_cache_alloc_cold(mapping);
if (!page)
return -ENOMEM;
ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
if (ret == 0)
ret = mapping->a_ops->readpage(file, page);
else if (ret == -EEXIST)
ret = 0; /* losing race to add is OK */
page_cache_release(page);
} while (ret == AOP_TRUNCATED_PAGE);
return ret;
}
#define MMAP_LOTSAMISS (100)
/**
* filemap_nopage - read in file data for page fault handling
* @area: the applicable vm_area
* @address: target address to read in
* @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
*
* filemap_nopage() is invoked via the vma operations vector for a
* mapped memory region to read in file data during a page fault.
*
* The goto's are kind of ugly, but this streamlines the normal case of having
* it in the page cache, and handles the special cases reasonably without
* having a lot of duplicated code.
*/
struct page *filemap_nopage(struct vm_area_struct *area,
unsigned long address, int *type)
{
int error;
struct file *file = area->vm_file;
struct address_space *mapping = file->f_mapping;
struct file_ra_state *ra = &file->f_ra;
struct inode *inode = mapping->host;
struct page *page;
unsigned long size, pgoff;
int did_readaround = 0, majmin = VM_FAULT_MINOR;
pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
retry_all:
size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
if (pgoff >= size)
goto outside_data_content;
/* If we don't want any read-ahead, don't bother */
if (VM_RandomReadHint(area))
goto no_cached_page;
/*
* The readahead code wants to be told about each and every page
* so it can build and shrink its windows appropriately
*
* For sequential accesses, we use the generic readahead logic.
*/
if (VM_SequentialReadHint(area))
page_cache_readahead(mapping, ra, file, pgoff, 1);
/*
* Do we have something in the page cache already?
*/
retry_find:
page = find_get_page(mapping, pgoff);
if (!page) {
unsigned long ra_pages;
if (VM_SequentialReadHint(area)) {
handle_ra_miss(mapping, ra, pgoff);
goto no_cached_page;
}
ra->mmap_miss++;
/*
* Do we miss much more than hit in this file? If so,
* stop bothering with read-ahead. It will only hurt.
*/
if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
goto no_cached_page;
/*
* To keep the pgmajfault counter straight, we need to
* check did_readaround, as this is an inner loop.
*/
if (!did_readaround) {
majmin = VM_FAULT_MAJOR;
count_vm_event(PGMAJFAULT);
}
did_readaround = 1;
ra_pages = max_sane_readahead(file->f_ra.ra_pages);
if (ra_pages) {
pgoff_t start = 0;
if (pgoff > ra_pages / 2)
start = pgoff - ra_pages / 2;
do_page_cache_readahead(mapping, file, start, ra_pages);
}
page = find_get_page(mapping, pgoff);
if (!page)
goto no_cached_page;
}
if (!did_readaround)
ra->mmap_hit++;
/*
* Ok, found a page in the page cache, now we need to check
* that it's up-to-date.
*/
if (!PageUptodate(page))
goto page_not_uptodate;
success:
/*
* Found the page and have a reference on it.
*/
mark_page_accessed(page);
if (type)
*type = majmin;
return page;
outside_data_content:
/*
* An external ptracer can access pages that normally aren't
* accessible..
*/
if (area->vm_mm == current->mm)
return NOPAGE_SIGBUS;
/* Fall through to the non-read-ahead case */
no_cached_page:
/*
* We're only likely to ever get here if MADV_RANDOM is in
* effect.
*/
error = page_cache_read(file, pgoff);
/*
* The page we want has now been added to the page cache.
* In the unlikely event that someone removed it in the
* meantime, we'll just come back here and read it again.
*/
if (error >= 0)
goto retry_find;
/*
* An error return from page_cache_read can result if the
* system is low on memory, or a problem occurs while trying
* to schedule I/O.
*/
if (error == -ENOMEM)
return NOPAGE_OOM;
return NOPAGE_SIGBUS;
page_not_uptodate:
if (!did_readaround) {
majmin = VM_FAULT_MAJOR;
count_vm_event(PGMAJFAULT);
}
/*
* Umm, take care of errors if the page isn't up-to-date.
* Try to re-read it _once_. We do this synchronously,
* because there really aren't any performance issues here
* and we need to check for errors.
*/
lock_page(page);
/* Somebody truncated the page on us? */
if (!page->mapping) {
unlock_page(page);
page_cache_release(page);
goto retry_all;
}
/* Somebody else successfully read it in? */
if (PageUptodate(page)) {
unlock_page(page);
goto success;
}
ClearPageError(page);
error = mapping->a_ops->readpage(file, page);
if (!error) {
wait_on_page_locked(page);
if (PageUptodate(page))
goto success;
} else if (error == AOP_TRUNCATED_PAGE) {
page_cache_release(page);
goto retry_find;
}
/*
* Things didn't work out. Return zero to tell the
* mm layer so, possibly freeing the page cache page first.
*/
shrink_readahead_size_eio(file, ra);
page_cache_release(page);
return NOPAGE_SIGBUS;
}
EXPORT_SYMBOL(filemap_nopage);
static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
int nonblock)
{
struct address_space *mapping = file->f_mapping;
struct page *page;
int error;
/*
* Do we have something in the page cache already?
*/
retry_find:
page = find_get_page(mapping, pgoff);
if (!page) {
if (nonblock)
return NULL;
goto no_cached_page;
}
/*
* Ok, found a page in the page cache, now we need to check
* that it's up-to-date.
*/
if (!PageUptodate(page)) {
if (nonblock) {
page_cache_release(page);
return NULL;
}
goto page_not_uptodate;
}
success:
/*
* Found the page and have a reference on it.
*/
mark_page_accessed(page);
return page;
no_cached_page:
error = page_cache_read(file, pgoff);
/*
* The page we want has now been added to the page cache.
* In the unlikely event that someone removed it in the
* meantime, we'll just come back here and read it again.
*/
if (error >= 0)
goto retry_find;
/*
* An error return from page_cache_read can result if the
* system is low on memory, or a problem occurs while trying
* to schedule I/O.
*/
return NULL;
page_not_uptodate:
lock_page(page);
/* Did it get truncated while we waited for it? */
if (!page->mapping) {
unlock_page(page);
goto err;
}
/* Did somebody else get it up-to-date? */
if (PageUptodate(page)) {
unlock_page(page);
goto success;
}
error = mapping->a_ops->readpage(file, page);
if (!error) {
wait_on_page_locked(page);
if (PageUptodate(page))
goto success;
} else if (error == AOP_TRUNCATED_PAGE) {
page_cache_release(page);
goto retry_find;
}
/*
* Umm, take care of errors if the page isn't up-to-date.
* Try to re-read it _once_. We do this synchronously,
* because there really aren't any performance issues here
* and we need to check for errors.
*/
lock_page(page);
/* Somebody truncated the page on us? */
if (!page->mapping) {
unlock_page(page);
goto err;
}
/* Somebody else successfully read it in? */
if (PageUptodate(page)) {
unlock_page(page);
goto success;
}
ClearPageError(page);
error = mapping->a_ops->readpage(file, page);
if (!error) {
wait_on_page_locked(page);
if (PageUptodate(page))
goto success;
} else if (error == AOP_TRUNCATED_PAGE) {
page_cache_release(page);
goto retry_find;
}
/*
* Things didn't work out. Return zero to tell the
* mm layer so, possibly freeing the page cache page first.
*/
err:
page_cache_release(page);
return NULL;
}
int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
unsigned long len, pgprot_t prot, unsigned long pgoff,
int nonblock)
{
struct file *file = vma->vm_file;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
unsigned long size;
struct mm_struct *mm = vma->vm_mm;
struct page *page;
int err;
if (!nonblock)
force_page_cache_readahead(mapping, vma->vm_file,
pgoff, len >> PAGE_CACHE_SHIFT);
repeat:
size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
return -EINVAL;
page = filemap_getpage(file, pgoff, nonblock);
/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
* done in shmem_populate calling shmem_getpage */
if (!page && !nonblock)
return -ENOMEM;
if (page) {
err = install_page(mm, vma, addr, page, prot);
if (err) {
page_cache_release(page);
return err;
}
} else if (vma->vm_flags & VM_NONLINEAR) {
/* No page was found just because we can't read it in now (being
* here implies nonblock != 0), but the page may exist, so set
* the PTE to fault it in later. */
err = install_file_pte(mm, vma, addr, pgoff, prot);
if (err)
return err;
}
len -= PAGE_SIZE;
addr += PAGE_SIZE;
pgoff++;
if (len)
goto repeat;
return 0;
}
EXPORT_SYMBOL(filemap_populate);
struct vm_operations_struct generic_file_vm_ops = {
.nopage = filemap_nopage,
.populate = filemap_populate,
};
/* This is used for a general mmap of a disk file */
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
struct address_space *mapping = file->f_mapping;
if (!mapping->a_ops->readpage)
return -ENOEXEC;
file_accessed(file);
vma->vm_ops = &generic_file_vm_ops;
return 0;
}
/*
* This is for filesystems which do not implement ->writepage.
*/
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
return -EINVAL;
return generic_file_mmap(file, vma);
}
#else
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
return -ENOSYS;
}
#endif /* CONFIG_MMU */
EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);
static struct page *__read_cache_page(struct address_space *mapping,
unsigned long index,
int (*filler)(void *,struct page*),
void *data)
{
struct page *page, *cached_page = NULL;
int err;
repeat:
page = find_get_page(mapping, index);
if (!page) {
if (!cached_page) {
cached_page = page_cache_alloc_cold(mapping);
if (!cached_page)
return ERR_PTR(-ENOMEM);
}
err = add_to_page_cache_lru(cached_page, mapping,
index, GFP_KERNEL);
if (err == -EEXIST)
goto repeat;
if (err < 0) {
/* Presumably ENOMEM for radix tree node */
page_cache_release(cached_page);
return ERR_PTR(err);
}
page = cached_page;
cached_page = NULL;
err = filler(data, page);
if (err < 0) {
page_cache_release(page);
page = ERR_PTR(err);
}
}
if (cached_page)
page_cache_release(cached_page);
return page;
}
/*
* Same as read_cache_page, but don't wait for page to become unlocked
* after submitting it to the filler.
*/
struct page *read_cache_page_async(struct address_space *mapping,
unsigned long index,
int (*filler)(void *,struct page*),
void *data)
{
struct page *page;
int err;
retry:
page = __read_cache_page(mapping, index, filler, data);
if (IS_ERR(page))
goto out;
mark_page_accessed(page);
if (PageUptodate(page))
goto out;
lock_page(page);
if (!page->mapping) {
unlock_page(page);
page_cache_release(page);
goto retry;
}
if (PageUptodate(page)) {
unlock_page(page);
goto out;
}
err = filler(data, page);
if (err < 0) {
page_cache_release(page);
page = ERR_PTR(err);
}
out:
mark_page_accessed(page);
return page;
}
EXPORT_SYMBOL(read_cache_page_async);
/**
* read_cache_page - read into page cache, fill it if needed
* @mapping: the page's address_space
* @index: the page index
* @filler: function to perform the read
* @data: destination for read data
*
* Read into the page cache. If a page already exists, and PageUptodate() is
* not set, try to fill the page then wait for it to become unlocked.
*
* If the page does not get brought uptodate, return -EIO.
*/
struct page *read_cache_page(struct address_space *mapping,
unsigned long index,
int (*filler)(void *,struct page*),
void *data)
{
struct page *page;
page = read_cache_page_async(mapping, index, filler, data);
if (IS_ERR(page))
goto out;
wait_on_page_locked(page);
if (!PageUptodate(page)) {
page_cache_release(page);
page = ERR_PTR(-EIO);
}
out:
return page;
}
EXPORT_SYMBOL(read_cache_page);
/*
* If the page was newly created, increment its refcount and add it to the
* caller's lru-buffering pagevec. This function is specifically for
* generic_file_write().
*/
static inline struct page *
__grab_cache_page(struct address_space *mapping, unsigned long index,
struct page **cached_page, struct pagevec *lru_pvec)
{
int err;
struct page *page;
repeat:
page = find_lock_page(mapping, index);
if (!page) {
if (!*cached_page) {
*cached_page = page_cache_alloc(mapping);
if (!*cached_page)
return NULL;
}
err = add_to_page_cache(*cached_page, mapping,
index, GFP_KERNEL);
if (err == -EEXIST)
goto repeat;
if (err == 0) {
page = *cached_page;
page_cache_get(page);
if (!pagevec_add(lru_pvec, page))
__pagevec_lru_add(lru_pvec);
*cached_page = NULL;
}
}
return page;
}
/*
* The logic we want is
*
* if suid or (sgid and xgrp)
* remove privs
*/
int should_remove_suid(struct dentry *dentry)
{
mode_t mode = dentry->d_inode->i_mode;
int kill = 0;
/* suid always must be killed */
if (unlikely(mode & S_ISUID))
kill = ATTR_KILL_SUID;
/*
* sgid without any exec bits is just a mandatory locking mark; leave
* it alone. If some exec bits are set, it's a real sgid; kill it.
*/
if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
kill |= ATTR_KILL_SGID;
if (unlikely(kill && !capable(CAP_FSETID)))
return kill;
return 0;
}
EXPORT_SYMBOL(should_remove_suid);
int __remove_suid(struct dentry *dentry, int kill)
{
struct iattr newattrs;
newattrs.ia_valid = ATTR_FORCE | kill;
return notify_change(dentry, &newattrs);
}
int remove_suid(struct dentry *dentry)
{
int kill = should_remove_suid(dentry);
if (unlikely(kill))
return __remove_suid(dentry, kill);
return 0;
}
EXPORT_SYMBOL(remove_suid);
size_t
__filemap_copy_from_user_iovec_inatomic(char *vaddr,
const struct iovec *iov, size_t base, size_t bytes)
{
size_t copied = 0, left = 0;
while (bytes) {
char __user *buf = iov->iov_base + base;
int copy = min(bytes, iov->iov_len - base);
base = 0;
left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
copied += copy;
bytes -= copy;
vaddr += copy;
iov++;
if (unlikely(left))
break;
}
return copied - left;
}
/*
* Performs necessary checks before doing a write
*
* Can adjust writing position or amount of bytes to write.
* Returns appropriate error code that caller should return or
* zero in case that write should be allowed.
*/
inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
{
struct inode *inode = file->f_mapping->host;
unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
if (unlikely(*pos < 0))
return -EINVAL;
if (!isblk) {
/* FIXME: this is for backwards compatibility with 2.4 */
if (file->f_flags & O_APPEND)
*pos = i_size_read(inode);
if (limit != RLIM_INFINITY) {
if (*pos >= limit) {
send_sig(SIGXFSZ, current, 0);
return -EFBIG;
}
if (*count > limit - (typeof(limit))*pos) {
*count = limit - (typeof(limit))*pos;
}
}
}
/*
* LFS rule
*/
if (unlikely(*pos + *count > MAX_NON_LFS &&
!(file->f_flags & O_LARGEFILE))) {
if (*pos >= MAX_NON_LFS) {
send_sig(SIGXFSZ, current, 0);
return -EFBIG;
}
if (*count > MAX_NON_LFS - (unsigned long)*pos) {
*count = MAX_NON_LFS - (unsigned long)*pos;
}
}
/*
* Are we about to exceed the fs block limit ?
*
* If we have written data it becomes a short write. If we have
* exceeded without writing data we send a signal and return EFBIG.
* Linus frestrict idea will clean these up nicely..
*/
if (likely(!isblk)) {
if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
if (*count || *pos > inode->i_sb->s_maxbytes) {
send_sig(SIGXFSZ, current, 0);
return -EFBIG;
}
/* zero-length writes at ->s_maxbytes are OK */
}
if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
*count = inode->i_sb->s_maxbytes - *pos;
} else {
#ifdef CONFIG_BLOCK
loff_t isize;
if (bdev_read_only(I_BDEV(inode)))
return -EPERM;
isize = i_size_read(inode);
if (*pos >= isize) {
if (*count || *pos > isize)
return -ENOSPC;
}
if (*pos + *count > isize)
*count = isize - *pos;
#else
return -EPERM;
#endif
}
return 0;
}
EXPORT_SYMBOL(generic_write_checks);
ssize_t
generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
unsigned long *nr_segs, loff_t pos, loff_t *ppos,
size_t count, size_t ocount)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
ssize_t written;
if (count != ocount)
*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
if (written > 0) {
loff_t end = pos + written;
if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
i_size_write(inode, end);
mark_inode_dirty(inode);
}
*ppos = end;
}
/*
* Sync the fs metadata but not the minor inode changes and
* of course not the data as we did direct DMA for the IO.
* i_mutex is held, which protects generic_osync_inode() from
* livelocking. AIO O_DIRECT ops attempt to sync metadata here.
*/
if ((written >= 0 || written == -EIOCBQUEUED) &&
((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
if (err < 0)
written = err;
}
return written;
}
EXPORT_SYMBOL(generic_file_direct_write);
ssize_t
generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
unsigned long nr_segs, loff_t pos, loff_t *ppos,
size_t count, ssize_t written)
{
struct file *file = iocb->ki_filp;
struct address_space * mapping = file->f_mapping;
const struct address_space_operations *a_ops = mapping->a_ops;
struct inode *inode = mapping->host;
long status = 0;
struct page *page;
struct page *cached_page = NULL;
size_t bytes;
struct pagevec lru_pvec;
const struct iovec *cur_iov = iov; /* current iovec */
size_t iov_base = 0; /* offset in the current iovec */
char __user *buf;
pagevec_init(&lru_pvec, 0);
/*
* handle partial DIO write. Adjust cur_iov if needed.
*/
if (likely(nr_segs == 1))
buf = iov->iov_base + written;
else {
filemap_set_next_iovec(&cur_iov, &iov_base, written);
buf = cur_iov->iov_base + iov_base;
}
do {
unsigned long index;
unsigned long offset;
size_t copied;
offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
index = pos >> PAGE_CACHE_SHIFT;
bytes = PAGE_CACHE_SIZE - offset;
/* Limit the size of the copy to the caller's write size */
bytes = min(bytes, count);
/* We only need to worry about prefaulting when writes are from
* user-space. NFSd uses vfs_writev with several non-aligned
* segments in the vector, and limiting to one segment a time is
* a noticeable performance for re-write
*/
if (!segment_eq(get_fs(), KERNEL_DS)) {
/*
* Limit the size of the copy to that of the current
* segment, because fault_in_pages_readable() doesn't
* know how to walk segments.
*/
bytes = min(bytes, cur_iov->iov_len - iov_base);
/*
* Bring in the user page that we will copy from
* _first_. Otherwise there's a nasty deadlock on
* copying from the same page as we're writing to,
* without it being marked up-to-date.
*/
fault_in_pages_readable(buf, bytes);
}
page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
if (!page) {
status = -ENOMEM;
break;
}
if (unlikely(bytes == 0)) {
status = 0;
copied = 0;
goto zero_length_segment;
}
status = a_ops->prepare_write(file, page, offset, offset+bytes);
if (unlikely(status)) {
loff_t isize = i_size_read(inode);
if (status != AOP_TRUNCATED_PAGE)
unlock_page(page);
page_cache_release(page);
if (status == AOP_TRUNCATED_PAGE)
continue;
/*
* prepare_write() may have instantiated a few blocks
* outside i_size. Trim these off again.
*/
if (pos + bytes > isize)
vmtruncate(inode, isize);
break;
}
if (likely(nr_segs == 1))
copied = filemap_copy_from_user(page, offset,
buf, bytes);
else
copied = filemap_copy_from_user_iovec(page, offset,
cur_iov, iov_base, bytes);
flush_dcache_page(page);
status = a_ops->commit_write(file, page, offset, offset+bytes);
if (status == AOP_TRUNCATED_PAGE) {
page_cache_release(page);
continue;
}
zero_length_segment:
if (likely(copied >= 0)) {
if (!status)
status = copied;
if (status >= 0) {
written += status;
count -= status;
pos += status;
buf += status;
if (unlikely(nr_segs > 1)) {
filemap_set_next_iovec(&cur_iov,
&iov_base, status);
if (count)
buf = cur_iov->iov_base +
iov_base;
} else {
iov_base += status;
}
}
}
if (unlikely(copied != bytes))
if (status >= 0)
status = -EFAULT;
unlock_page(page);
mark_page_accessed(page);
page_cache_release(page);
if (status < 0)
break;
balance_dirty_pages_ratelimited(mapping);
cond_resched();
} while (count);
*ppos = pos;
if (cached_page)
page_cache_release(cached_page);
/*
* For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
*/
if (likely(status >= 0)) {
if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
if (!a_ops->writepage || !is_sync_kiocb(iocb))
status = generic_osync_inode(inode, mapping,
OSYNC_METADATA|OSYNC_DATA);
}
}
/*
* If we get here for O_DIRECT writes then we must have fallen through
* to buffered writes (block instantiation inside i_size). So we sync
* the file data here, to try to honour O_DIRECT expectations.
*/
if (unlikely(file->f_flags & O_DIRECT) && written)
status = filemap_write_and_wait(mapping);
pagevec_lru_add(&lru_pvec);
return written ? written : status;
}
EXPORT_SYMBOL(generic_file_buffered_write);
static ssize_t
__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
unsigned long nr_segs, loff_t *ppos)
{
struct file *file = iocb->ki_filp;
struct address_space * mapping = file->f_mapping;
size_t ocount; /* original count */
size_t count; /* after file limit checks */
struct inode *inode = mapping->host;
unsigned long seg;
loff_t pos;
ssize_t written;
ssize_t err;
ocount = 0;
for (seg = 0; seg < nr_segs; seg++) {
const struct iovec *iv = &iov[seg];
/*
* If any segment has a negative length, or the cumulative
* length ever wraps negative then return -EINVAL.
*/
ocount += iv->iov_len;
if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
return -EINVAL;
if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
continue;
if (seg == 0)
return -EFAULT;
nr_segs = seg;
ocount -= iv->iov_len; /* This segment is no good */
break;
}
count = ocount;
pos = *ppos;
vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
/* We can write back this queue in page reclaim */
current->backing_dev_info = mapping->backing_dev_info;
written = 0;
err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
if (err)
goto out;
if (count == 0)
goto out;
err = remove_suid(file->f_path.dentry);
if (err)
goto out;
file_update_time(file);
/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
if (unlikely(file->f_flags & O_DIRECT)) {
loff_t endbyte;
ssize_t written_buffered;
written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
ppos, count, ocount);
if (written < 0 || written == count)
goto out;
/*
* direct-io write to a hole: fall through to buffered I/O
* for completing the rest of the request.
*/
pos += written;
count -= written;
written_buffered = generic_file_buffered_write(iocb, iov,
nr_segs, pos, ppos, count,
written);
/*
* If generic_file_buffered_write() retuned a synchronous error
* then we want to return the number of bytes which were
* direct-written, or the error code if that was zero. Note
* that this differs from normal direct-io semantics, which
* will return -EFOO even if some bytes were written.
*/
if (written_buffered < 0) {
err = written_buffered;
goto out;
}
/*
* We need to ensure that the page cache pages are written to
* disk and invalidated to preserve the expected O_DIRECT
* semantics.
*/
endbyte = pos + written_buffered - written - 1;
err = do_sync_file_range(file, pos, endbyte,
SYNC_FILE_RANGE_WAIT_BEFORE|
SYNC_FILE_RANGE_WRITE|
SYNC_FILE_RANGE_WAIT_AFTER);
if (err == 0) {
written = written_buffered;
invalidate_mapping_pages(mapping,
pos >> PAGE_CACHE_SHIFT,
endbyte >> PAGE_CACHE_SHIFT);
} else {
/*
* We don't know how much we wrote, so just return
* the number of bytes which were direct-written
*/
}
} else {
written = generic_file_buffered_write(iocb, iov, nr_segs,
pos, ppos, count, written);
}
out:
current->backing_dev_info = NULL;
return written ? written : err;
}
ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
const struct iovec *iov, unsigned long nr_segs, loff_t pos)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
ssize_t ret;
BUG_ON(iocb->ki_pos != pos);
ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
&iocb->ki_pos);
if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
ssize_t err;
err = sync_page_range_nolock(inode, mapping, pos, ret);
if (err < 0)
ret = err;
}
return ret;
}
EXPORT_SYMBOL(generic_file_aio_write_nolock);
ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
unsigned long nr_segs, loff_t pos)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
ssize_t ret;
BUG_ON(iocb->ki_pos != pos);
mutex_lock(&inode->i_mutex);
ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
&iocb->ki_pos);
mutex_unlock(&inode->i_mutex);
if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
ssize_t err;
err = sync_page_range(inode, mapping, pos, ret);
if (err < 0)
ret = err;
}
return ret;
}
EXPORT_SYMBOL(generic_file_aio_write);
/*
* Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
* went wrong during pagecache shootdown.
*/
static ssize_t
generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
loff_t offset, unsigned long nr_segs)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
ssize_t retval;
size_t write_len;
pgoff_t end = 0; /* silence gcc */
/*
* If it's a write, unmap all mmappings of the file up-front. This
* will cause any pte dirty bits to be propagated into the pageframes
* for the subsequent filemap_write_and_wait().
*/
if (rw == WRITE) {
write_len = iov_length(iov, nr_segs);
end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
if (mapping_mapped(mapping))
unmap_mapping_range(mapping, offset, write_len, 0);
}
retval = filemap_write_and_wait(mapping);
if (retval)
goto out;
/*
* After a write we want buffered reads to be sure to go to disk to get
* the new data. We invalidate clean cached page from the region we're
* about to write. We do this *before* the write so that we can return
* -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
*/
if (rw == WRITE && mapping->nrpages) {
retval = invalidate_inode_pages2_range(mapping,
offset >> PAGE_CACHE_SHIFT, end);
if (retval)
goto out;
}
retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
if (retval)
goto out;
/*
* Finally, try again to invalidate clean pages which might have been
* faulted in by get_user_pages() if the source of the write was an
* mmap()ed region of the file we're writing. That's a pretty crazy
* thing to do, so we don't support it 100%. If this invalidation
* fails and we have -EIOCBQUEUED we ignore the failure.
*/
if (rw == WRITE && mapping->nrpages) {
int err = invalidate_inode_pages2_range(mapping,
offset >> PAGE_CACHE_SHIFT, end);
if (err && retval >= 0)
retval = err;
}
out:
return retval;
}
/**
* try_to_release_page() - release old fs-specific metadata on a page
*
* @page: the page which the kernel is trying to free
* @gfp_mask: memory allocation flags (and I/O mode)
*
* The address_space is to try to release any data against the page
* (presumably at page->private). If the release was successful, return `1'.
* Otherwise return zero.
*
* The @gfp_mask argument specifies whether I/O may be performed to release
* this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
*
* NOTE: @gfp_mask may go away, and this function may become non-blocking.
*/
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
struct address_space * const mapping = page->mapping;
BUG_ON(!PageLocked(page));
if (PageWriteback(page))
return 0;
if (mapping && mapping->a_ops->releasepage)
return mapping->a_ops->releasepage(page, gfp_mask);
return try_to_free_buffers(page);
}
EXPORT_SYMBOL(try_to_release_page);