1
linux/drivers/net/acenic.h
FUJITA Tomonori 430e55b11e acenic: use the dma state API instead of the pci equivalents
The DMA API is preferred.

Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-04-01 18:38:33 -07:00

797 lines
16 KiB
C

#ifndef _ACENIC_H_
#define _ACENIC_H_
/*
* Generate TX index update each time, when TX ring is closed.
* Normally, this is not useful, because results in more dma (and irqs
* without TX_COAL_INTS_ONLY).
*/
#define USE_TX_COAL_NOW 0
/*
* Addressing:
*
* The Tigon uses 64-bit host addresses, regardless of their actual
* length, and it expects a big-endian format. For 32 bit systems the
* upper 32 bits of the address are simply ignored (zero), however for
* little endian 64 bit systems (Alpha) this looks strange with the
* two parts of the address word being swapped.
*
* The addresses are split in two 32 bit words for all architectures
* as some of them are in PCI shared memory and it is necessary to use
* readl/writel to access them.
*
* The addressing code is derived from Pete Wyckoff's work, but
* modified to deal properly with readl/writel usage.
*/
struct ace_regs {
u32 pad0[16]; /* PCI control registers */
u32 HostCtrl; /* 0x40 */
u32 LocalCtrl;
u32 pad1[2];
u32 MiscCfg; /* 0x50 */
u32 pad2[2];
u32 PciState;
u32 pad3[2]; /* 0x60 */
u32 WinBase;
u32 WinData;
u32 pad4[12]; /* 0x70 */
u32 DmaWriteState; /* 0xa0 */
u32 pad5[3];
u32 DmaReadState; /* 0xb0 */
u32 pad6[26];
u32 AssistState;
u32 pad7[8]; /* 0x120 */
u32 CpuCtrl; /* 0x140 */
u32 Pc;
u32 pad8[3];
u32 SramAddr; /* 0x154 */
u32 SramData;
u32 pad9[49];
u32 MacRxState; /* 0x220 */
u32 pad10[7];
u32 CpuBCtrl; /* 0x240 */
u32 PcB;
u32 pad11[3];
u32 SramBAddr; /* 0x254 */
u32 SramBData;
u32 pad12[105];
u32 pad13[32]; /* 0x400 */
u32 Stats[32];
u32 Mb0Hi; /* 0x500 */
u32 Mb0Lo;
u32 Mb1Hi;
u32 CmdPrd;
u32 Mb2Hi;
u32 TxPrd;
u32 Mb3Hi;
u32 RxStdPrd;
u32 Mb4Hi;
u32 RxJumboPrd;
u32 Mb5Hi;
u32 RxMiniPrd;
u32 Mb6Hi;
u32 Mb6Lo;
u32 Mb7Hi;
u32 Mb7Lo;
u32 Mb8Hi;
u32 Mb8Lo;
u32 Mb9Hi;
u32 Mb9Lo;
u32 MbAHi;
u32 MbALo;
u32 MbBHi;
u32 MbBLo;
u32 MbCHi;
u32 MbCLo;
u32 MbDHi;
u32 MbDLo;
u32 MbEHi;
u32 MbELo;
u32 MbFHi;
u32 MbFLo;
u32 pad14[32];
u32 MacAddrHi; /* 0x600 */
u32 MacAddrLo;
u32 InfoPtrHi;
u32 InfoPtrLo;
u32 MultiCastHi; /* 0x610 */
u32 MultiCastLo;
u32 ModeStat;
u32 DmaReadCfg;
u32 DmaWriteCfg; /* 0x620 */
u32 TxBufRat;
u32 EvtCsm;
u32 CmdCsm;
u32 TuneRxCoalTicks;/* 0x630 */
u32 TuneTxCoalTicks;
u32 TuneStatTicks;
u32 TuneMaxTxDesc;
u32 TuneMaxRxDesc; /* 0x640 */
u32 TuneTrace;
u32 TuneLink;
u32 TuneFastLink;
u32 TracePtr; /* 0x650 */
u32 TraceStrt;
u32 TraceLen;
u32 IfIdx;
u32 IfMtu; /* 0x660 */
u32 MaskInt;
u32 GigLnkState;
u32 FastLnkState;
u32 pad16[4]; /* 0x670 */
u32 RxRetCsm; /* 0x680 */
u32 pad17[31];
u32 CmdRng[64]; /* 0x700 */
u32 Window[0x200];
};
typedef struct {
u32 addrhi;
u32 addrlo;
} aceaddr;
#define ACE_WINDOW_SIZE 0x800
#define ACE_JUMBO_MTU 9000
#define ACE_STD_MTU 1500
#define ACE_TRACE_SIZE 0x8000
/*
* Host control register bits.
*/
#define IN_INT 0x01
#define CLR_INT 0x02
#define HW_RESET 0x08
#define BYTE_SWAP 0x10
#define WORD_SWAP 0x20
#define MASK_INTS 0x40
/*
* Local control register bits.
*/
#define EEPROM_DATA_IN 0x800000
#define EEPROM_DATA_OUT 0x400000
#define EEPROM_WRITE_ENABLE 0x200000
#define EEPROM_CLK_OUT 0x100000
#define EEPROM_BASE 0xa0000000
#define EEPROM_WRITE_SELECT 0xa0
#define EEPROM_READ_SELECT 0xa1
#define SRAM_BANK_512K 0x200
/*
* udelay() values for when clocking the eeprom
*/
#define ACE_SHORT_DELAY 2
#define ACE_LONG_DELAY 4
/*
* Misc Config bits
*/
#define SYNC_SRAM_TIMING 0x100000
/*
* CPU state bits.
*/
#define CPU_RESET 0x01
#define CPU_TRACE 0x02
#define CPU_PROM_FAILED 0x10
#define CPU_HALT 0x00010000
#define CPU_HALTED 0xffff0000
/*
* PCI State bits.
*/
#define DMA_READ_MAX_4 0x04
#define DMA_READ_MAX_16 0x08
#define DMA_READ_MAX_32 0x0c
#define DMA_READ_MAX_64 0x10
#define DMA_READ_MAX_128 0x14
#define DMA_READ_MAX_256 0x18
#define DMA_READ_MAX_1K 0x1c
#define DMA_WRITE_MAX_4 0x20
#define DMA_WRITE_MAX_16 0x40
#define DMA_WRITE_MAX_32 0x60
#define DMA_WRITE_MAX_64 0x80
#define DMA_WRITE_MAX_128 0xa0
#define DMA_WRITE_MAX_256 0xc0
#define DMA_WRITE_MAX_1K 0xe0
#define DMA_READ_WRITE_MASK 0xfc
#define MEM_READ_MULTIPLE 0x00020000
#define PCI_66MHZ 0x00080000
#define PCI_32BIT 0x00100000
#define DMA_WRITE_ALL_ALIGN 0x00800000
#define READ_CMD_MEM 0x06000000
#define WRITE_CMD_MEM 0x70000000
/*
* Mode status
*/
#define ACE_BYTE_SWAP_BD 0x02
#define ACE_WORD_SWAP_BD 0x04 /* not actually used */
#define ACE_WARN 0x08
#define ACE_BYTE_SWAP_DMA 0x10
#define ACE_NO_JUMBO_FRAG 0x200
#define ACE_FATAL 0x40000000
/*
* DMA config
*/
#define DMA_THRESH_1W 0x10
#define DMA_THRESH_2W 0x20
#define DMA_THRESH_4W 0x40
#define DMA_THRESH_8W 0x80
#define DMA_THRESH_16W 0x100
#define DMA_THRESH_32W 0x0 /* not described in doc, but exists. */
/*
* Tuning parameters
*/
#define TICKS_PER_SEC 1000000
/*
* Link bits
*/
#define LNK_PREF 0x00008000
#define LNK_10MB 0x00010000
#define LNK_100MB 0x00020000
#define LNK_1000MB 0x00040000
#define LNK_FULL_DUPLEX 0x00080000
#define LNK_HALF_DUPLEX 0x00100000
#define LNK_TX_FLOW_CTL_Y 0x00200000
#define LNK_NEG_ADVANCED 0x00400000
#define LNK_RX_FLOW_CTL_Y 0x00800000
#define LNK_NIC 0x01000000
#define LNK_JAM 0x02000000
#define LNK_JUMBO 0x04000000
#define LNK_ALTEON 0x08000000
#define LNK_NEG_FCTL 0x10000000
#define LNK_NEGOTIATE 0x20000000
#define LNK_ENABLE 0x40000000
#define LNK_UP 0x80000000
/*
* Event definitions
*/
#define EVT_RING_ENTRIES 256
#define EVT_RING_SIZE (EVT_RING_ENTRIES * sizeof(struct event))
struct event {
#ifdef __LITTLE_ENDIAN_BITFIELD
u32 idx:12;
u32 code:12;
u32 evt:8;
#else
u32 evt:8;
u32 code:12;
u32 idx:12;
#endif
u32 pad;
};
/*
* Events
*/
#define E_FW_RUNNING 0x01
#define E_STATS_UPDATED 0x04
#define E_STATS_UPDATE 0x04
#define E_LNK_STATE 0x06
#define E_C_LINK_UP 0x01
#define E_C_LINK_DOWN 0x02
#define E_C_LINK_10_100 0x03
#define E_ERROR 0x07
#define E_C_ERR_INVAL_CMD 0x01
#define E_C_ERR_UNIMP_CMD 0x02
#define E_C_ERR_BAD_CFG 0x03
#define E_MCAST_LIST 0x08
#define E_C_MCAST_ADDR_ADD 0x01
#define E_C_MCAST_ADDR_DEL 0x02
#define E_RESET_JUMBO_RNG 0x09
/*
* Commands
*/
#define CMD_RING_ENTRIES 64
struct cmd {
#ifdef __LITTLE_ENDIAN_BITFIELD
u32 idx:12;
u32 code:12;
u32 evt:8;
#else
u32 evt:8;
u32 code:12;
u32 idx:12;
#endif
};
#define C_HOST_STATE 0x01
#define C_C_STACK_UP 0x01
#define C_C_STACK_DOWN 0x02
#define C_FDR_FILTERING 0x02
#define C_C_FDR_FILT_ENABLE 0x01
#define C_C_FDR_FILT_DISABLE 0x02
#define C_SET_RX_PRD_IDX 0x03
#define C_UPDATE_STATS 0x04
#define C_RESET_JUMBO_RNG 0x05
#define C_ADD_MULTICAST_ADDR 0x08
#define C_DEL_MULTICAST_ADDR 0x09
#define C_SET_PROMISC_MODE 0x0a
#define C_C_PROMISC_ENABLE 0x01
#define C_C_PROMISC_DISABLE 0x02
#define C_LNK_NEGOTIATION 0x0b
#define C_C_NEGOTIATE_BOTH 0x00
#define C_C_NEGOTIATE_GIG 0x01
#define C_C_NEGOTIATE_10_100 0x02
#define C_SET_MAC_ADDR 0x0c
#define C_CLEAR_PROFILE 0x0d
#define C_SET_MULTICAST_MODE 0x0e
#define C_C_MCAST_ENABLE 0x01
#define C_C_MCAST_DISABLE 0x02
#define C_CLEAR_STATS 0x0f
#define C_SET_RX_JUMBO_PRD_IDX 0x10
#define C_REFRESH_STATS 0x11
/*
* Descriptor flags
*/
#define BD_FLG_TCP_UDP_SUM 0x01
#define BD_FLG_IP_SUM 0x02
#define BD_FLG_END 0x04
#define BD_FLG_MORE 0x08
#define BD_FLG_JUMBO 0x10
#define BD_FLG_UCAST 0x20
#define BD_FLG_MCAST 0x40
#define BD_FLG_BCAST 0x60
#define BD_FLG_TYP_MASK 0x60
#define BD_FLG_IP_FRAG 0x80
#define BD_FLG_IP_FRAG_END 0x100
#define BD_FLG_VLAN_TAG 0x200
#define BD_FLG_FRAME_ERROR 0x400
#define BD_FLG_COAL_NOW 0x800
#define BD_FLG_MINI 0x1000
/*
* Ring Control block flags
*/
#define RCB_FLG_TCP_UDP_SUM 0x01
#define RCB_FLG_IP_SUM 0x02
#define RCB_FLG_NO_PSEUDO_HDR 0x08
#define RCB_FLG_VLAN_ASSIST 0x10
#define RCB_FLG_COAL_INT_ONLY 0x20
#define RCB_FLG_TX_HOST_RING 0x40
#define RCB_FLG_IEEE_SNAP_SUM 0x80
#define RCB_FLG_EXT_RX_BD 0x100
#define RCB_FLG_RNG_DISABLE 0x200
/*
* TX ring - maximum TX ring entries for Tigon I's is 128
*/
#define MAX_TX_RING_ENTRIES 256
#define TIGON_I_TX_RING_ENTRIES 128
#define TX_RING_SIZE (MAX_TX_RING_ENTRIES * sizeof(struct tx_desc))
#define TX_RING_BASE 0x3800
struct tx_desc{
aceaddr addr;
u32 flagsize;
#if 0
/*
* This is in PCI shared mem and must be accessed with readl/writel
* real layout is:
*/
#if __LITTLE_ENDIAN
u16 flags;
u16 size;
u16 vlan;
u16 reserved;
#else
u16 size;
u16 flags;
u16 reserved;
u16 vlan;
#endif
#endif
u32 vlanres;
};
#define RX_STD_RING_ENTRIES 512
#define RX_STD_RING_SIZE (RX_STD_RING_ENTRIES * sizeof(struct rx_desc))
#define RX_JUMBO_RING_ENTRIES 256
#define RX_JUMBO_RING_SIZE (RX_JUMBO_RING_ENTRIES *sizeof(struct rx_desc))
#define RX_MINI_RING_ENTRIES 1024
#define RX_MINI_RING_SIZE (RX_MINI_RING_ENTRIES *sizeof(struct rx_desc))
#define RX_RETURN_RING_ENTRIES 2048
#define RX_RETURN_RING_SIZE (RX_MAX_RETURN_RING_ENTRIES * \
sizeof(struct rx_desc))
struct rx_desc{
aceaddr addr;
#ifdef __LITTLE_ENDIAN
u16 size;
u16 idx;
#else
u16 idx;
u16 size;
#endif
#ifdef __LITTLE_ENDIAN
u16 flags;
u16 type;
#else
u16 type;
u16 flags;
#endif
#ifdef __LITTLE_ENDIAN
u16 tcp_udp_csum;
u16 ip_csum;
#else
u16 ip_csum;
u16 tcp_udp_csum;
#endif
#ifdef __LITTLE_ENDIAN
u16 vlan;
u16 err_flags;
#else
u16 err_flags;
u16 vlan;
#endif
u32 reserved;
u32 opague;
};
/*
* This struct is shared with the NIC firmware.
*/
struct ring_ctrl {
aceaddr rngptr;
#ifdef __LITTLE_ENDIAN
u16 flags;
u16 max_len;
#else
u16 max_len;
u16 flags;
#endif
u32 pad;
};
struct ace_mac_stats {
u32 excess_colls;
u32 coll_1;
u32 coll_2;
u32 coll_3;
u32 coll_4;
u32 coll_5;
u32 coll_6;
u32 coll_7;
u32 coll_8;
u32 coll_9;
u32 coll_10;
u32 coll_11;
u32 coll_12;
u32 coll_13;
u32 coll_14;
u32 coll_15;
u32 late_coll;
u32 defers;
u32 crc_err;
u32 underrun;
u32 crs_err;
u32 pad[3];
u32 drop_ula;
u32 drop_mc;
u32 drop_fc;
u32 drop_space;
u32 coll;
u32 kept_bc;
u32 kept_mc;
u32 kept_uc;
};
struct ace_info {
union {
u32 stats[256];
} s;
struct ring_ctrl evt_ctrl;
struct ring_ctrl cmd_ctrl;
struct ring_ctrl tx_ctrl;
struct ring_ctrl rx_std_ctrl;
struct ring_ctrl rx_jumbo_ctrl;
struct ring_ctrl rx_mini_ctrl;
struct ring_ctrl rx_return_ctrl;
aceaddr evt_prd_ptr;
aceaddr rx_ret_prd_ptr;
aceaddr tx_csm_ptr;
aceaddr stats2_ptr;
};
struct ring_info {
struct sk_buff *skb;
DEFINE_DMA_UNMAP_ADDR(mapping);
};
/*
* Funny... As soon as we add maplen on alpha, it starts to work
* much slower. Hmm... is it because struct does not fit to one cacheline?
* So, split tx_ring_info.
*/
struct tx_ring_info {
struct sk_buff *skb;
DEFINE_DMA_UNMAP_ADDR(mapping);
DEFINE_DMA_UNMAP_LEN(maplen);
};
/*
* struct ace_skb holding the rings of skb's. This is an awful lot of
* pointers, but I don't see any other smart mode to do this in an
* efficient manner ;-(
*/
struct ace_skb
{
struct tx_ring_info tx_skbuff[MAX_TX_RING_ENTRIES];
struct ring_info rx_std_skbuff[RX_STD_RING_ENTRIES];
struct ring_info rx_mini_skbuff[RX_MINI_RING_ENTRIES];
struct ring_info rx_jumbo_skbuff[RX_JUMBO_RING_ENTRIES];
};
/*
* Struct private for the AceNIC.
*
* Elements are grouped so variables used by the tx handling goes
* together, and will go into the same cache lines etc. in order to
* avoid cache line contention between the rx and tx handling on SMP.
*
* Frequently accessed variables are put at the beginning of the
* struct to help the compiler generate better/shorter code.
*/
struct ace_private
{
struct ace_info *info;
struct ace_regs __iomem *regs; /* register base */
struct ace_skb *skb;
dma_addr_t info_dma; /* 32/64 bit */
int version, link;
int promisc, mcast_all;
/*
* TX elements
*/
struct tx_desc *tx_ring;
u32 tx_prd;
volatile u32 tx_ret_csm;
int tx_ring_entries;
/*
* RX elements
*/
unsigned long std_refill_busy
__attribute__ ((aligned (SMP_CACHE_BYTES)));
unsigned long mini_refill_busy, jumbo_refill_busy;
atomic_t cur_rx_bufs;
atomic_t cur_mini_bufs;
atomic_t cur_jumbo_bufs;
u32 rx_std_skbprd, rx_mini_skbprd, rx_jumbo_skbprd;
u32 cur_rx;
struct rx_desc *rx_std_ring;
struct rx_desc *rx_jumbo_ring;
struct rx_desc *rx_mini_ring;
struct rx_desc *rx_return_ring;
#if ACENIC_DO_VLAN
struct vlan_group *vlgrp;
#endif
int tasklet_pending, jumbo;
struct tasklet_struct ace_tasklet;
struct event *evt_ring;
volatile u32 *evt_prd, *rx_ret_prd, *tx_csm;
dma_addr_t tx_ring_dma; /* 32/64 bit */
dma_addr_t rx_ring_base_dma;
dma_addr_t evt_ring_dma;
dma_addr_t evt_prd_dma, rx_ret_prd_dma, tx_csm_dma;
unsigned char *trace_buf;
struct pci_dev *pdev;
struct net_device *next;
volatile int fw_running;
int board_idx;
u16 pci_command;
u8 pci_latency;
const char *name;
#ifdef INDEX_DEBUG
spinlock_t debug_lock
__attribute__ ((aligned (SMP_CACHE_BYTES)));
u32 last_tx, last_std_rx, last_mini_rx;
#endif
int pci_using_dac;
u8 firmware_major;
u8 firmware_minor;
u8 firmware_fix;
u32 firmware_start;
};
#define TX_RESERVED MAX_SKB_FRAGS
static inline int tx_space (struct ace_private *ap, u32 csm, u32 prd)
{
return (csm - prd - 1) & (ACE_TX_RING_ENTRIES(ap) - 1);
}
#define tx_free(ap) tx_space((ap)->tx_ret_csm, (ap)->tx_prd, ap)
#define tx_ring_full(ap, csm, prd) (tx_space(ap, csm, prd) <= TX_RESERVED)
static inline void set_aceaddr(aceaddr *aa, dma_addr_t addr)
{
u64 baddr = (u64) addr;
aa->addrlo = baddr & 0xffffffff;
aa->addrhi = baddr >> 32;
wmb();
}
static inline void ace_set_txprd(struct ace_regs __iomem *regs,
struct ace_private *ap, u32 value)
{
#ifdef INDEX_DEBUG
unsigned long flags;
spin_lock_irqsave(&ap->debug_lock, flags);
writel(value, &regs->TxPrd);
if (value == ap->last_tx)
printk(KERN_ERR "AceNIC RACE ALERT! writing identical value "
"to tx producer (%i)\n", value);
ap->last_tx = value;
spin_unlock_irqrestore(&ap->debug_lock, flags);
#else
writel(value, &regs->TxPrd);
#endif
wmb();
}
static inline void ace_mask_irq(struct net_device *dev)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
if (ACE_IS_TIGON_I(ap))
writel(1, &regs->MaskInt);
else
writel(readl(&regs->HostCtrl) | MASK_INTS, &regs->HostCtrl);
ace_sync_irq(dev->irq);
}
static inline void ace_unmask_irq(struct net_device *dev)
{
struct ace_private *ap = netdev_priv(dev);
struct ace_regs __iomem *regs = ap->regs;
if (ACE_IS_TIGON_I(ap))
writel(0, &regs->MaskInt);
else
writel(readl(&regs->HostCtrl) & ~MASK_INTS, &regs->HostCtrl);
}
/*
* Prototypes
*/
static int ace_init(struct net_device *dev);
static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs);
static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs);
static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs);
static irqreturn_t ace_interrupt(int irq, void *dev_id);
static int ace_load_firmware(struct net_device *dev);
static int ace_open(struct net_device *dev);
static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
struct net_device *dev);
static int ace_close(struct net_device *dev);
static void ace_tasklet(unsigned long dev);
static void ace_dump_trace(struct ace_private *ap);
static void ace_set_multicast_list(struct net_device *dev);
static int ace_change_mtu(struct net_device *dev, int new_mtu);
static int ace_set_mac_addr(struct net_device *dev, void *p);
static void ace_set_rxtx_parms(struct net_device *dev, int jumbo);
static int ace_allocate_descriptors(struct net_device *dev);
static void ace_free_descriptors(struct net_device *dev);
static void ace_init_cleanup(struct net_device *dev);
static struct net_device_stats *ace_get_stats(struct net_device *dev);
static int read_eeprom_byte(struct net_device *dev, unsigned long offset);
#if ACENIC_DO_VLAN
static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp);
#endif
#endif /* _ACENIC_H_ */