1
linux/fs/ocfs2/alloc.c
Mark Fasheh 5b6a3a2b4a ocfs2: Write support for directories with inline data
Create all new directories with OCFS2_INLINE_DATA_FL and the inline data
bytes formatted as an empty directory. Inode size field reflects the actual
amount of inline data available, which makes searching for dirent space
very similar to the regular directory search.

Inline-data directories are automatically pushed out to extents on any
insert request which is too large for the available space.

Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Reviewed-by: Joel Becker <joel.becker@oracle.com>
2007-10-12 11:54:41 -07:00

6318 lines
158 KiB
C

/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* alloc.c
*
* Extent allocs and frees
*
* Copyright (C) 2002, 2004 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/swap.h>
#define MLOG_MASK_PREFIX ML_DISK_ALLOC
#include <cluster/masklog.h>
#include "ocfs2.h"
#include "alloc.h"
#include "aops.h"
#include "dlmglue.h"
#include "extent_map.h"
#include "inode.h"
#include "journal.h"
#include "localalloc.h"
#include "suballoc.h"
#include "sysfile.h"
#include "file.h"
#include "super.h"
#include "uptodate.h"
#include "buffer_head_io.h"
static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
struct ocfs2_extent_block *eb);
/*
* Structures which describe a path through a btree, and functions to
* manipulate them.
*
* The idea here is to be as generic as possible with the tree
* manipulation code.
*/
struct ocfs2_path_item {
struct buffer_head *bh;
struct ocfs2_extent_list *el;
};
#define OCFS2_MAX_PATH_DEPTH 5
struct ocfs2_path {
int p_tree_depth;
struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH];
};
#define path_root_bh(_path) ((_path)->p_node[0].bh)
#define path_root_el(_path) ((_path)->p_node[0].el)
#define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
#define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
#define path_num_items(_path) ((_path)->p_tree_depth + 1)
/*
* Reset the actual path elements so that we can re-use the structure
* to build another path. Generally, this involves freeing the buffer
* heads.
*/
static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
{
int i, start = 0, depth = 0;
struct ocfs2_path_item *node;
if (keep_root)
start = 1;
for(i = start; i < path_num_items(path); i++) {
node = &path->p_node[i];
brelse(node->bh);
node->bh = NULL;
node->el = NULL;
}
/*
* Tree depth may change during truncate, or insert. If we're
* keeping the root extent list, then make sure that our path
* structure reflects the proper depth.
*/
if (keep_root)
depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
path->p_tree_depth = depth;
}
static void ocfs2_free_path(struct ocfs2_path *path)
{
if (path) {
ocfs2_reinit_path(path, 0);
kfree(path);
}
}
/*
* All the elements of src into dest. After this call, src could be freed
* without affecting dest.
*
* Both paths should have the same root. Any non-root elements of dest
* will be freed.
*/
static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
{
int i;
BUG_ON(path_root_bh(dest) != path_root_bh(src));
BUG_ON(path_root_el(dest) != path_root_el(src));
ocfs2_reinit_path(dest, 1);
for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
dest->p_node[i].bh = src->p_node[i].bh;
dest->p_node[i].el = src->p_node[i].el;
if (dest->p_node[i].bh)
get_bh(dest->p_node[i].bh);
}
}
/*
* Make the *dest path the same as src and re-initialize src path to
* have a root only.
*/
static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
{
int i;
BUG_ON(path_root_bh(dest) != path_root_bh(src));
for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
brelse(dest->p_node[i].bh);
dest->p_node[i].bh = src->p_node[i].bh;
dest->p_node[i].el = src->p_node[i].el;
src->p_node[i].bh = NULL;
src->p_node[i].el = NULL;
}
}
/*
* Insert an extent block at given index.
*
* This will not take an additional reference on eb_bh.
*/
static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
struct buffer_head *eb_bh)
{
struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
/*
* Right now, no root bh is an extent block, so this helps
* catch code errors with dinode trees. The assertion can be
* safely removed if we ever need to insert extent block
* structures at the root.
*/
BUG_ON(index == 0);
path->p_node[index].bh = eb_bh;
path->p_node[index].el = &eb->h_list;
}
static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
struct ocfs2_extent_list *root_el)
{
struct ocfs2_path *path;
BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
path = kzalloc(sizeof(*path), GFP_NOFS);
if (path) {
path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
get_bh(root_bh);
path_root_bh(path) = root_bh;
path_root_el(path) = root_el;
}
return path;
}
/*
* Allocate and initialize a new path based on a disk inode tree.
*/
static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
{
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
struct ocfs2_extent_list *el = &di->id2.i_list;
return ocfs2_new_path(di_bh, el);
}
/*
* Convenience function to journal all components in a path.
*/
static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
struct ocfs2_path *path)
{
int i, ret = 0;
if (!path)
goto out;
for(i = 0; i < path_num_items(path); i++) {
ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
}
out:
return ret;
}
/*
* Return the index of the extent record which contains cluster #v_cluster.
* -1 is returned if it was not found.
*
* Should work fine on interior and exterior nodes.
*/
int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
{
int ret = -1;
int i;
struct ocfs2_extent_rec *rec;
u32 rec_end, rec_start, clusters;
for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
rec = &el->l_recs[i];
rec_start = le32_to_cpu(rec->e_cpos);
clusters = ocfs2_rec_clusters(el, rec);
rec_end = rec_start + clusters;
if (v_cluster >= rec_start && v_cluster < rec_end) {
ret = i;
break;
}
}
return ret;
}
enum ocfs2_contig_type {
CONTIG_NONE = 0,
CONTIG_LEFT,
CONTIG_RIGHT,
CONTIG_LEFTRIGHT,
};
/*
* NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
* ocfs2_extent_contig only work properly against leaf nodes!
*/
static int ocfs2_block_extent_contig(struct super_block *sb,
struct ocfs2_extent_rec *ext,
u64 blkno)
{
u64 blk_end = le64_to_cpu(ext->e_blkno);
blk_end += ocfs2_clusters_to_blocks(sb,
le16_to_cpu(ext->e_leaf_clusters));
return blkno == blk_end;
}
static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
struct ocfs2_extent_rec *right)
{
u32 left_range;
left_range = le32_to_cpu(left->e_cpos) +
le16_to_cpu(left->e_leaf_clusters);
return (left_range == le32_to_cpu(right->e_cpos));
}
static enum ocfs2_contig_type
ocfs2_extent_contig(struct inode *inode,
struct ocfs2_extent_rec *ext,
struct ocfs2_extent_rec *insert_rec)
{
u64 blkno = le64_to_cpu(insert_rec->e_blkno);
/*
* Refuse to coalesce extent records with different flag
* fields - we don't want to mix unwritten extents with user
* data.
*/
if (ext->e_flags != insert_rec->e_flags)
return CONTIG_NONE;
if (ocfs2_extents_adjacent(ext, insert_rec) &&
ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
return CONTIG_RIGHT;
blkno = le64_to_cpu(ext->e_blkno);
if (ocfs2_extents_adjacent(insert_rec, ext) &&
ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
return CONTIG_LEFT;
return CONTIG_NONE;
}
/*
* NOTE: We can have pretty much any combination of contiguousness and
* appending.
*
* The usefulness of APPEND_TAIL is more in that it lets us know that
* we'll have to update the path to that leaf.
*/
enum ocfs2_append_type {
APPEND_NONE = 0,
APPEND_TAIL,
};
enum ocfs2_split_type {
SPLIT_NONE = 0,
SPLIT_LEFT,
SPLIT_RIGHT,
};
struct ocfs2_insert_type {
enum ocfs2_split_type ins_split;
enum ocfs2_append_type ins_appending;
enum ocfs2_contig_type ins_contig;
int ins_contig_index;
int ins_tree_depth;
};
struct ocfs2_merge_ctxt {
enum ocfs2_contig_type c_contig_type;
int c_has_empty_extent;
int c_split_covers_rec;
};
/*
* How many free extents have we got before we need more meta data?
*/
int ocfs2_num_free_extents(struct ocfs2_super *osb,
struct inode *inode,
struct ocfs2_dinode *fe)
{
int retval;
struct ocfs2_extent_list *el;
struct ocfs2_extent_block *eb;
struct buffer_head *eb_bh = NULL;
mlog_entry_void();
if (!OCFS2_IS_VALID_DINODE(fe)) {
OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
retval = -EIO;
goto bail;
}
if (fe->i_last_eb_blk) {
retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
&eb_bh, OCFS2_BH_CACHED, inode);
if (retval < 0) {
mlog_errno(retval);
goto bail;
}
eb = (struct ocfs2_extent_block *) eb_bh->b_data;
el = &eb->h_list;
} else
el = &fe->id2.i_list;
BUG_ON(el->l_tree_depth != 0);
retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
bail:
if (eb_bh)
brelse(eb_bh);
mlog_exit(retval);
return retval;
}
/* expects array to already be allocated
*
* sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
* l_count for you
*/
static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
handle_t *handle,
struct inode *inode,
int wanted,
struct ocfs2_alloc_context *meta_ac,
struct buffer_head *bhs[])
{
int count, status, i;
u16 suballoc_bit_start;
u32 num_got;
u64 first_blkno;
struct ocfs2_extent_block *eb;
mlog_entry_void();
count = 0;
while (count < wanted) {
status = ocfs2_claim_metadata(osb,
handle,
meta_ac,
wanted - count,
&suballoc_bit_start,
&num_got,
&first_blkno);
if (status < 0) {
mlog_errno(status);
goto bail;
}
for(i = count; i < (num_got + count); i++) {
bhs[i] = sb_getblk(osb->sb, first_blkno);
if (bhs[i] == NULL) {
status = -EIO;
mlog_errno(status);
goto bail;
}
ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
status = ocfs2_journal_access(handle, inode, bhs[i],
OCFS2_JOURNAL_ACCESS_CREATE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
/* Ok, setup the minimal stuff here. */
strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
eb->h_blkno = cpu_to_le64(first_blkno);
eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
eb->h_list.l_count =
cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
suballoc_bit_start++;
first_blkno++;
/* We'll also be dirtied by the caller, so
* this isn't absolutely necessary. */
status = ocfs2_journal_dirty(handle, bhs[i]);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
count += num_got;
}
status = 0;
bail:
if (status < 0) {
for(i = 0; i < wanted; i++) {
if (bhs[i])
brelse(bhs[i]);
bhs[i] = NULL;
}
}
mlog_exit(status);
return status;
}
/*
* Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
*
* Returns the sum of the rightmost extent rec logical offset and
* cluster count.
*
* ocfs2_add_branch() uses this to determine what logical cluster
* value should be populated into the leftmost new branch records.
*
* ocfs2_shift_tree_depth() uses this to determine the # clusters
* value for the new topmost tree record.
*/
static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
{
int i;
i = le16_to_cpu(el->l_next_free_rec) - 1;
return le32_to_cpu(el->l_recs[i].e_cpos) +
ocfs2_rec_clusters(el, &el->l_recs[i]);
}
/*
* Add an entire tree branch to our inode. eb_bh is the extent block
* to start at, if we don't want to start the branch at the dinode
* structure.
*
* last_eb_bh is required as we have to update it's next_leaf pointer
* for the new last extent block.
*
* the new branch will be 'empty' in the sense that every block will
* contain a single record with cluster count == 0.
*/
static int ocfs2_add_branch(struct ocfs2_super *osb,
handle_t *handle,
struct inode *inode,
struct buffer_head *fe_bh,
struct buffer_head *eb_bh,
struct buffer_head **last_eb_bh,
struct ocfs2_alloc_context *meta_ac)
{
int status, new_blocks, i;
u64 next_blkno, new_last_eb_blk;
struct buffer_head *bh;
struct buffer_head **new_eb_bhs = NULL;
struct ocfs2_dinode *fe;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *eb_el;
struct ocfs2_extent_list *el;
u32 new_cpos;
mlog_entry_void();
BUG_ON(!last_eb_bh || !*last_eb_bh);
fe = (struct ocfs2_dinode *) fe_bh->b_data;
if (eb_bh) {
eb = (struct ocfs2_extent_block *) eb_bh->b_data;
el = &eb->h_list;
} else
el = &fe->id2.i_list;
/* we never add a branch to a leaf. */
BUG_ON(!el->l_tree_depth);
new_blocks = le16_to_cpu(el->l_tree_depth);
/* allocate the number of new eb blocks we need */
new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
GFP_KERNEL);
if (!new_eb_bhs) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
meta_ac, new_eb_bhs);
if (status < 0) {
mlog_errno(status);
goto bail;
}
eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
/* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
* linked with the rest of the tree.
* conversly, new_eb_bhs[0] is the new bottommost leaf.
*
* when we leave the loop, new_last_eb_blk will point to the
* newest leaf, and next_blkno will point to the topmost extent
* block. */
next_blkno = new_last_eb_blk = 0;
for(i = 0; i < new_blocks; i++) {
bh = new_eb_bhs[i];
eb = (struct ocfs2_extent_block *) bh->b_data;
if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
status = -EIO;
goto bail;
}
eb_el = &eb->h_list;
status = ocfs2_journal_access(handle, inode, bh,
OCFS2_JOURNAL_ACCESS_CREATE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
eb->h_next_leaf_blk = 0;
eb_el->l_tree_depth = cpu_to_le16(i);
eb_el->l_next_free_rec = cpu_to_le16(1);
/*
* This actually counts as an empty extent as
* c_clusters == 0
*/
eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
/*
* eb_el isn't always an interior node, but even leaf
* nodes want a zero'd flags and reserved field so
* this gets the whole 32 bits regardless of use.
*/
eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
if (!eb_el->l_tree_depth)
new_last_eb_blk = le64_to_cpu(eb->h_blkno);
status = ocfs2_journal_dirty(handle, bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
next_blkno = le64_to_cpu(eb->h_blkno);
}
/* This is a bit hairy. We want to update up to three blocks
* here without leaving any of them in an inconsistent state
* in case of error. We don't have to worry about
* journal_dirty erroring as it won't unless we've aborted the
* handle (in which case we would never be here) so reserving
* the write with journal_access is all we need to do. */
status = ocfs2_journal_access(handle, inode, *last_eb_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
status = ocfs2_journal_access(handle, inode, fe_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
if (eb_bh) {
status = ocfs2_journal_access(handle, inode, eb_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
/* Link the new branch into the rest of the tree (el will
* either be on the fe, or the extent block passed in. */
i = le16_to_cpu(el->l_next_free_rec);
el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
el->l_recs[i].e_int_clusters = 0;
le16_add_cpu(&el->l_next_free_rec, 1);
/* fe needs a new last extent block pointer, as does the
* next_leaf on the previously last-extent-block. */
fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
status = ocfs2_journal_dirty(handle, *last_eb_bh);
if (status < 0)
mlog_errno(status);
status = ocfs2_journal_dirty(handle, fe_bh);
if (status < 0)
mlog_errno(status);
if (eb_bh) {
status = ocfs2_journal_dirty(handle, eb_bh);
if (status < 0)
mlog_errno(status);
}
/*
* Some callers want to track the rightmost leaf so pass it
* back here.
*/
brelse(*last_eb_bh);
get_bh(new_eb_bhs[0]);
*last_eb_bh = new_eb_bhs[0];
status = 0;
bail:
if (new_eb_bhs) {
for (i = 0; i < new_blocks; i++)
if (new_eb_bhs[i])
brelse(new_eb_bhs[i]);
kfree(new_eb_bhs);
}
mlog_exit(status);
return status;
}
/*
* adds another level to the allocation tree.
* returns back the new extent block so you can add a branch to it
* after this call.
*/
static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
handle_t *handle,
struct inode *inode,
struct buffer_head *fe_bh,
struct ocfs2_alloc_context *meta_ac,
struct buffer_head **ret_new_eb_bh)
{
int status, i;
u32 new_clusters;
struct buffer_head *new_eb_bh = NULL;
struct ocfs2_dinode *fe;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *fe_el;
struct ocfs2_extent_list *eb_el;
mlog_entry_void();
status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
&new_eb_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
status = -EIO;
goto bail;
}
eb_el = &eb->h_list;
fe = (struct ocfs2_dinode *) fe_bh->b_data;
fe_el = &fe->id2.i_list;
status = ocfs2_journal_access(handle, inode, new_eb_bh,
OCFS2_JOURNAL_ACCESS_CREATE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
/* copy the fe data into the new extent block */
eb_el->l_tree_depth = fe_el->l_tree_depth;
eb_el->l_next_free_rec = fe_el->l_next_free_rec;
for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
eb_el->l_recs[i] = fe_el->l_recs[i];
status = ocfs2_journal_dirty(handle, new_eb_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
status = ocfs2_journal_access(handle, inode, fe_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
new_clusters = ocfs2_sum_rightmost_rec(eb_el);
/* update fe now */
le16_add_cpu(&fe_el->l_tree_depth, 1);
fe_el->l_recs[0].e_cpos = 0;
fe_el->l_recs[0].e_blkno = eb->h_blkno;
fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
fe_el->l_next_free_rec = cpu_to_le16(1);
/* If this is our 1st tree depth shift, then last_eb_blk
* becomes the allocated extent block */
if (fe_el->l_tree_depth == cpu_to_le16(1))
fe->i_last_eb_blk = eb->h_blkno;
status = ocfs2_journal_dirty(handle, fe_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
*ret_new_eb_bh = new_eb_bh;
new_eb_bh = NULL;
status = 0;
bail:
if (new_eb_bh)
brelse(new_eb_bh);
mlog_exit(status);
return status;
}
/*
* Should only be called when there is no space left in any of the
* leaf nodes. What we want to do is find the lowest tree depth
* non-leaf extent block with room for new records. There are three
* valid results of this search:
*
* 1) a lowest extent block is found, then we pass it back in
* *lowest_eb_bh and return '0'
*
* 2) the search fails to find anything, but the dinode has room. We
* pass NULL back in *lowest_eb_bh, but still return '0'
*
* 3) the search fails to find anything AND the dinode is full, in
* which case we return > 0
*
* return status < 0 indicates an error.
*/
static int ocfs2_find_branch_target(struct ocfs2_super *osb,
struct inode *inode,
struct buffer_head *fe_bh,
struct buffer_head **target_bh)
{
int status = 0, i;
u64 blkno;
struct ocfs2_dinode *fe;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *el;
struct buffer_head *bh = NULL;
struct buffer_head *lowest_bh = NULL;
mlog_entry_void();
*target_bh = NULL;
fe = (struct ocfs2_dinode *) fe_bh->b_data;
el = &fe->id2.i_list;
while(le16_to_cpu(el->l_tree_depth) > 1) {
if (le16_to_cpu(el->l_next_free_rec) == 0) {
ocfs2_error(inode->i_sb, "Dinode %llu has empty "
"extent list (next_free_rec == 0)",
(unsigned long long)OCFS2_I(inode)->ip_blkno);
status = -EIO;
goto bail;
}
i = le16_to_cpu(el->l_next_free_rec) - 1;
blkno = le64_to_cpu(el->l_recs[i].e_blkno);
if (!blkno) {
ocfs2_error(inode->i_sb, "Dinode %llu has extent "
"list where extent # %d has no physical "
"block start",
(unsigned long long)OCFS2_I(inode)->ip_blkno, i);
status = -EIO;
goto bail;
}
if (bh) {
brelse(bh);
bh = NULL;
}
status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
inode);
if (status < 0) {
mlog_errno(status);
goto bail;
}
eb = (struct ocfs2_extent_block *) bh->b_data;
if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
status = -EIO;
goto bail;
}
el = &eb->h_list;
if (le16_to_cpu(el->l_next_free_rec) <
le16_to_cpu(el->l_count)) {
if (lowest_bh)
brelse(lowest_bh);
lowest_bh = bh;
get_bh(lowest_bh);
}
}
/* If we didn't find one and the fe doesn't have any room,
* then return '1' */
if (!lowest_bh
&& (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
status = 1;
*target_bh = lowest_bh;
bail:
if (bh)
brelse(bh);
mlog_exit(status);
return status;
}
/*
* Grow a b-tree so that it has more records.
*
* We might shift the tree depth in which case existing paths should
* be considered invalid.
*
* Tree depth after the grow is returned via *final_depth.
*
* *last_eb_bh will be updated by ocfs2_add_branch().
*/
static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
struct buffer_head *di_bh, int *final_depth,
struct buffer_head **last_eb_bh,
struct ocfs2_alloc_context *meta_ac)
{
int ret, shift;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct buffer_head *bh = NULL;
BUG_ON(meta_ac == NULL);
shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
if (shift < 0) {
ret = shift;
mlog_errno(ret);
goto out;
}
/* We traveled all the way to the bottom of the allocation tree
* and didn't find room for any more extents - we need to add
* another tree level */
if (shift) {
BUG_ON(bh);
mlog(0, "need to shift tree depth (current = %d)\n", depth);
/* ocfs2_shift_tree_depth will return us a buffer with
* the new extent block (so we can pass that to
* ocfs2_add_branch). */
ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
meta_ac, &bh);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
depth++;
if (depth == 1) {
/*
* Special case: we have room now if we shifted from
* tree_depth 0, so no more work needs to be done.
*
* We won't be calling add_branch, so pass
* back *last_eb_bh as the new leaf. At depth
* zero, it should always be null so there's
* no reason to brelse.
*/
BUG_ON(*last_eb_bh);
get_bh(bh);
*last_eb_bh = bh;
goto out;
}
}
/* call ocfs2_add_branch to add the final part of the tree with
* the new data. */
mlog(0, "add branch. bh = %p\n", bh);
ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
meta_ac);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
out:
if (final_depth)
*final_depth = depth;
brelse(bh);
return ret;
}
/*
* This is only valid for leaf nodes, which are the only ones that can
* have empty extents anyway.
*/
static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
{
return !rec->e_leaf_clusters;
}
/*
* This function will discard the rightmost extent record.
*/
static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
{
int next_free = le16_to_cpu(el->l_next_free_rec);
int count = le16_to_cpu(el->l_count);
unsigned int num_bytes;
BUG_ON(!next_free);
/* This will cause us to go off the end of our extent list. */
BUG_ON(next_free >= count);
num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
}
static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
struct ocfs2_extent_rec *insert_rec)
{
int i, insert_index, next_free, has_empty, num_bytes;
u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
struct ocfs2_extent_rec *rec;
next_free = le16_to_cpu(el->l_next_free_rec);
has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
BUG_ON(!next_free);
/* The tree code before us didn't allow enough room in the leaf. */
if (el->l_next_free_rec == el->l_count && !has_empty)
BUG();
/*
* The easiest way to approach this is to just remove the
* empty extent and temporarily decrement next_free.
*/
if (has_empty) {
/*
* If next_free was 1 (only an empty extent), this
* loop won't execute, which is fine. We still want
* the decrement above to happen.
*/
for(i = 0; i < (next_free - 1); i++)
el->l_recs[i] = el->l_recs[i+1];
next_free--;
}
/*
* Figure out what the new record index should be.
*/
for(i = 0; i < next_free; i++) {
rec = &el->l_recs[i];
if (insert_cpos < le32_to_cpu(rec->e_cpos))
break;
}
insert_index = i;
mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
BUG_ON(insert_index < 0);
BUG_ON(insert_index >= le16_to_cpu(el->l_count));
BUG_ON(insert_index > next_free);
/*
* No need to memmove if we're just adding to the tail.
*/
if (insert_index != next_free) {
BUG_ON(next_free >= le16_to_cpu(el->l_count));
num_bytes = next_free - insert_index;
num_bytes *= sizeof(struct ocfs2_extent_rec);
memmove(&el->l_recs[insert_index + 1],
&el->l_recs[insert_index],
num_bytes);
}
/*
* Either we had an empty extent, and need to re-increment or
* there was no empty extent on a non full rightmost leaf node,
* in which case we still need to increment.
*/
next_free++;
el->l_next_free_rec = cpu_to_le16(next_free);
/*
* Make sure none of the math above just messed up our tree.
*/
BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
el->l_recs[insert_index] = *insert_rec;
}
static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
{
int size, num_recs = le16_to_cpu(el->l_next_free_rec);
BUG_ON(num_recs == 0);
if (ocfs2_is_empty_extent(&el->l_recs[0])) {
num_recs--;
size = num_recs * sizeof(struct ocfs2_extent_rec);
memmove(&el->l_recs[0], &el->l_recs[1], size);
memset(&el->l_recs[num_recs], 0,
sizeof(struct ocfs2_extent_rec));
el->l_next_free_rec = cpu_to_le16(num_recs);
}
}
/*
* Create an empty extent record .
*
* l_next_free_rec may be updated.
*
* If an empty extent already exists do nothing.
*/
static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
{
int next_free = le16_to_cpu(el->l_next_free_rec);
BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
if (next_free == 0)
goto set_and_inc;
if (ocfs2_is_empty_extent(&el->l_recs[0]))
return;
mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
"Asked to create an empty extent in a full list:\n"
"count = %u, tree depth = %u",
le16_to_cpu(el->l_count),
le16_to_cpu(el->l_tree_depth));
ocfs2_shift_records_right(el);
set_and_inc:
le16_add_cpu(&el->l_next_free_rec, 1);
memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
}
/*
* For a rotation which involves two leaf nodes, the "root node" is
* the lowest level tree node which contains a path to both leafs. This
* resulting set of information can be used to form a complete "subtree"
*
* This function is passed two full paths from the dinode down to a
* pair of adjacent leaves. It's task is to figure out which path
* index contains the subtree root - this can be the root index itself
* in a worst-case rotation.
*
* The array index of the subtree root is passed back.
*/
static int ocfs2_find_subtree_root(struct inode *inode,
struct ocfs2_path *left,
struct ocfs2_path *right)
{
int i = 0;
/*
* Check that the caller passed in two paths from the same tree.
*/
BUG_ON(path_root_bh(left) != path_root_bh(right));
do {
i++;
/*
* The caller didn't pass two adjacent paths.
*/
mlog_bug_on_msg(i > left->p_tree_depth,
"Inode %lu, left depth %u, right depth %u\n"
"left leaf blk %llu, right leaf blk %llu\n",
inode->i_ino, left->p_tree_depth,
right->p_tree_depth,
(unsigned long long)path_leaf_bh(left)->b_blocknr,
(unsigned long long)path_leaf_bh(right)->b_blocknr);
} while (left->p_node[i].bh->b_blocknr ==
right->p_node[i].bh->b_blocknr);
return i - 1;
}
typedef void (path_insert_t)(void *, struct buffer_head *);
/*
* Traverse a btree path in search of cpos, starting at root_el.
*
* This code can be called with a cpos larger than the tree, in which
* case it will return the rightmost path.
*/
static int __ocfs2_find_path(struct inode *inode,
struct ocfs2_extent_list *root_el, u32 cpos,
path_insert_t *func, void *data)
{
int i, ret = 0;
u32 range;
u64 blkno;
struct buffer_head *bh = NULL;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *el;
struct ocfs2_extent_rec *rec;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
el = root_el;
while (el->l_tree_depth) {
if (le16_to_cpu(el->l_next_free_rec) == 0) {
ocfs2_error(inode->i_sb,
"Inode %llu has empty extent list at "
"depth %u\n",
(unsigned long long)oi->ip_blkno,
le16_to_cpu(el->l_tree_depth));
ret = -EROFS;
goto out;
}
for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
rec = &el->l_recs[i];
/*
* In the case that cpos is off the allocation
* tree, this should just wind up returning the
* rightmost record.
*/
range = le32_to_cpu(rec->e_cpos) +
ocfs2_rec_clusters(el, rec);
if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
break;
}
blkno = le64_to_cpu(el->l_recs[i].e_blkno);
if (blkno == 0) {
ocfs2_error(inode->i_sb,
"Inode %llu has bad blkno in extent list "
"at depth %u (index %d)\n",
(unsigned long long)oi->ip_blkno,
le16_to_cpu(el->l_tree_depth), i);
ret = -EROFS;
goto out;
}
brelse(bh);
bh = NULL;
ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
&bh, OCFS2_BH_CACHED, inode);
if (ret) {
mlog_errno(ret);
goto out;
}
eb = (struct ocfs2_extent_block *) bh->b_data;
el = &eb->h_list;
if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
ret = -EIO;
goto out;
}
if (le16_to_cpu(el->l_next_free_rec) >
le16_to_cpu(el->l_count)) {
ocfs2_error(inode->i_sb,
"Inode %llu has bad count in extent list "
"at block %llu (next free=%u, count=%u)\n",
(unsigned long long)oi->ip_blkno,
(unsigned long long)bh->b_blocknr,
le16_to_cpu(el->l_next_free_rec),
le16_to_cpu(el->l_count));
ret = -EROFS;
goto out;
}
if (func)
func(data, bh);
}
out:
/*
* Catch any trailing bh that the loop didn't handle.
*/
brelse(bh);
return ret;
}
/*
* Given an initialized path (that is, it has a valid root extent
* list), this function will traverse the btree in search of the path
* which would contain cpos.
*
* The path traveled is recorded in the path structure.
*
* Note that this will not do any comparisons on leaf node extent
* records, so it will work fine in the case that we just added a tree
* branch.
*/
struct find_path_data {
int index;
struct ocfs2_path *path;
};
static void find_path_ins(void *data, struct buffer_head *bh)
{
struct find_path_data *fp = data;
get_bh(bh);
ocfs2_path_insert_eb(fp->path, fp->index, bh);
fp->index++;
}
static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
u32 cpos)
{
struct find_path_data data;
data.index = 1;
data.path = path;
return __ocfs2_find_path(inode, path_root_el(path), cpos,
find_path_ins, &data);
}
static void find_leaf_ins(void *data, struct buffer_head *bh)
{
struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
struct ocfs2_extent_list *el = &eb->h_list;
struct buffer_head **ret = data;
/* We want to retain only the leaf block. */
if (le16_to_cpu(el->l_tree_depth) == 0) {
get_bh(bh);
*ret = bh;
}
}
/*
* Find the leaf block in the tree which would contain cpos. No
* checking of the actual leaf is done.
*
* Some paths want to call this instead of allocating a path structure
* and calling ocfs2_find_path().
*
* This function doesn't handle non btree extent lists.
*/
int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
u32 cpos, struct buffer_head **leaf_bh)
{
int ret;
struct buffer_head *bh = NULL;
ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
if (ret) {
mlog_errno(ret);
goto out;
}
*leaf_bh = bh;
out:
return ret;
}
/*
* Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
*
* Basically, we've moved stuff around at the bottom of the tree and
* we need to fix up the extent records above the changes to reflect
* the new changes.
*
* left_rec: the record on the left.
* left_child_el: is the child list pointed to by left_rec
* right_rec: the record to the right of left_rec
* right_child_el: is the child list pointed to by right_rec
*
* By definition, this only works on interior nodes.
*/
static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
struct ocfs2_extent_list *left_child_el,
struct ocfs2_extent_rec *right_rec,
struct ocfs2_extent_list *right_child_el)
{
u32 left_clusters, right_end;
/*
* Interior nodes never have holes. Their cpos is the cpos of
* the leftmost record in their child list. Their cluster
* count covers the full theoretical range of their child list
* - the range between their cpos and the cpos of the record
* immediately to their right.
*/
left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
}
left_clusters -= le32_to_cpu(left_rec->e_cpos);
left_rec->e_int_clusters = cpu_to_le32(left_clusters);
/*
* Calculate the rightmost cluster count boundary before
* moving cpos - we will need to adjust clusters after
* updating e_cpos to keep the same highest cluster count.
*/
right_end = le32_to_cpu(right_rec->e_cpos);
right_end += le32_to_cpu(right_rec->e_int_clusters);
right_rec->e_cpos = left_rec->e_cpos;
le32_add_cpu(&right_rec->e_cpos, left_clusters);
right_end -= le32_to_cpu(right_rec->e_cpos);
right_rec->e_int_clusters = cpu_to_le32(right_end);
}
/*
* Adjust the adjacent root node records involved in a
* rotation. left_el_blkno is passed in as a key so that we can easily
* find it's index in the root list.
*/
static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
struct ocfs2_extent_list *left_el,
struct ocfs2_extent_list *right_el,
u64 left_el_blkno)
{
int i;
BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
le16_to_cpu(left_el->l_tree_depth));
for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
break;
}
/*
* The path walking code should have never returned a root and
* two paths which are not adjacent.
*/
BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
&root_el->l_recs[i + 1], right_el);
}
/*
* We've changed a leaf block (in right_path) and need to reflect that
* change back up the subtree.
*
* This happens in multiple places:
* - When we've moved an extent record from the left path leaf to the right
* path leaf to make room for an empty extent in the left path leaf.
* - When our insert into the right path leaf is at the leftmost edge
* and requires an update of the path immediately to it's left. This
* can occur at the end of some types of rotation and appending inserts.
*/
static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
struct ocfs2_path *left_path,
struct ocfs2_path *right_path,
int subtree_index)
{
int ret, i, idx;
struct ocfs2_extent_list *el, *left_el, *right_el;
struct ocfs2_extent_rec *left_rec, *right_rec;
struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
/*
* Update the counts and position values within all the
* interior nodes to reflect the leaf rotation we just did.
*
* The root node is handled below the loop.
*
* We begin the loop with right_el and left_el pointing to the
* leaf lists and work our way up.
*
* NOTE: within this loop, left_el and right_el always refer
* to the *child* lists.
*/
left_el = path_leaf_el(left_path);
right_el = path_leaf_el(right_path);
for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
mlog(0, "Adjust records at index %u\n", i);
/*
* One nice property of knowing that all of these
* nodes are below the root is that we only deal with
* the leftmost right node record and the rightmost
* left node record.
*/
el = left_path->p_node[i].el;
idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
left_rec = &el->l_recs[idx];
el = right_path->p_node[i].el;
right_rec = &el->l_recs[0];
ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
right_el);
ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
if (ret)
mlog_errno(ret);
ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
if (ret)
mlog_errno(ret);
/*
* Setup our list pointers now so that the current
* parents become children in the next iteration.
*/
left_el = left_path->p_node[i].el;
right_el = right_path->p_node[i].el;
}
/*
* At the root node, adjust the two adjacent records which
* begin our path to the leaves.
*/
el = left_path->p_node[subtree_index].el;
left_el = left_path->p_node[subtree_index + 1].el;
right_el = right_path->p_node[subtree_index + 1].el;
ocfs2_adjust_root_records(el, left_el, right_el,
left_path->p_node[subtree_index + 1].bh->b_blocknr);
root_bh = left_path->p_node[subtree_index].bh;
ret = ocfs2_journal_dirty(handle, root_bh);
if (ret)
mlog_errno(ret);
}
static int ocfs2_rotate_subtree_right(struct inode *inode,
handle_t *handle,
struct ocfs2_path *left_path,
struct ocfs2_path *right_path,
int subtree_index)
{
int ret, i;
struct buffer_head *right_leaf_bh;
struct buffer_head *left_leaf_bh = NULL;
struct buffer_head *root_bh;
struct ocfs2_extent_list *right_el, *left_el;
struct ocfs2_extent_rec move_rec;
left_leaf_bh = path_leaf_bh(left_path);
left_el = path_leaf_el(left_path);
if (left_el->l_next_free_rec != left_el->l_count) {
ocfs2_error(inode->i_sb,
"Inode %llu has non-full interior leaf node %llu"
"(next free = %u)",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)left_leaf_bh->b_blocknr,
le16_to_cpu(left_el->l_next_free_rec));
return -EROFS;
}
/*
* This extent block may already have an empty record, so we
* return early if so.
*/
if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
return 0;
root_bh = left_path->p_node[subtree_index].bh;
BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
ret = ocfs2_journal_access(handle, inode, root_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
ret = ocfs2_journal_access(handle, inode,
right_path->p_node[i].bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access(handle, inode,
left_path->p_node[i].bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
}
right_leaf_bh = path_leaf_bh(right_path);
right_el = path_leaf_el(right_path);
/* This is a code error, not a disk corruption. */
mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
"because rightmost leaf block %llu is empty\n",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)right_leaf_bh->b_blocknr);
ocfs2_create_empty_extent(right_el);
ret = ocfs2_journal_dirty(handle, right_leaf_bh);
if (ret) {
mlog_errno(ret);
goto out;
}
/* Do the copy now. */
i = le16_to_cpu(left_el->l_next_free_rec) - 1;
move_rec = left_el->l_recs[i];
right_el->l_recs[0] = move_rec;
/*
* Clear out the record we just copied and shift everything
* over, leaving an empty extent in the left leaf.
*
* We temporarily subtract from next_free_rec so that the
* shift will lose the tail record (which is now defunct).
*/
le16_add_cpu(&left_el->l_next_free_rec, -1);
ocfs2_shift_records_right(left_el);
memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
le16_add_cpu(&left_el->l_next_free_rec, 1);
ret = ocfs2_journal_dirty(handle, left_leaf_bh);
if (ret) {
mlog_errno(ret);
goto out;
}
ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
subtree_index);
out:
return ret;
}
/*
* Given a full path, determine what cpos value would return us a path
* containing the leaf immediately to the left of the current one.
*
* Will return zero if the path passed in is already the leftmost path.
*/
static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
struct ocfs2_path *path, u32 *cpos)
{
int i, j, ret = 0;
u64 blkno;
struct ocfs2_extent_list *el;
BUG_ON(path->p_tree_depth == 0);
*cpos = 0;
blkno = path_leaf_bh(path)->b_blocknr;
/* Start at the tree node just above the leaf and work our way up. */
i = path->p_tree_depth - 1;
while (i >= 0) {
el = path->p_node[i].el;
/*
* Find the extent record just before the one in our
* path.
*/
for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
if (j == 0) {
if (i == 0) {
/*
* We've determined that the
* path specified is already
* the leftmost one - return a
* cpos of zero.
*/
goto out;
}
/*
* The leftmost record points to our
* leaf - we need to travel up the
* tree one level.
*/
goto next_node;
}
*cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
*cpos = *cpos + ocfs2_rec_clusters(el,
&el->l_recs[j - 1]);
*cpos = *cpos - 1;
goto out;
}
}
/*
* If we got here, we never found a valid node where
* the tree indicated one should be.
*/
ocfs2_error(sb,
"Invalid extent tree at extent block %llu\n",
(unsigned long long)blkno);
ret = -EROFS;
goto out;
next_node:
blkno = path->p_node[i].bh->b_blocknr;
i--;
}
out:
return ret;
}
/*
* Extend the transaction by enough credits to complete the rotation,
* and still leave at least the original number of credits allocated
* to this transaction.
*/
static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
int op_credits,
struct ocfs2_path *path)
{
int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
if (handle->h_buffer_credits < credits)
return ocfs2_extend_trans(handle, credits);
return 0;
}
/*
* Trap the case where we're inserting into the theoretical range past
* the _actual_ left leaf range. Otherwise, we'll rotate a record
* whose cpos is less than ours into the right leaf.
*
* It's only necessary to look at the rightmost record of the left
* leaf because the logic that calls us should ensure that the
* theoretical ranges in the path components above the leaves are
* correct.
*/
static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
u32 insert_cpos)
{
struct ocfs2_extent_list *left_el;
struct ocfs2_extent_rec *rec;
int next_free;
left_el = path_leaf_el(left_path);
next_free = le16_to_cpu(left_el->l_next_free_rec);
rec = &left_el->l_recs[next_free - 1];
if (insert_cpos > le32_to_cpu(rec->e_cpos))
return 1;
return 0;
}
static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
{
int next_free = le16_to_cpu(el->l_next_free_rec);
unsigned int range;
struct ocfs2_extent_rec *rec;
if (next_free == 0)
return 0;
rec = &el->l_recs[0];
if (ocfs2_is_empty_extent(rec)) {
/* Empty list. */
if (next_free == 1)
return 0;
rec = &el->l_recs[1];
}
range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
return 1;
return 0;
}
/*
* Rotate all the records in a btree right one record, starting at insert_cpos.
*
* The path to the rightmost leaf should be passed in.
*
* The array is assumed to be large enough to hold an entire path (tree depth).
*
* Upon succesful return from this function:
*
* - The 'right_path' array will contain a path to the leaf block
* whose range contains e_cpos.
* - That leaf block will have a single empty extent in list index 0.
* - In the case that the rotation requires a post-insert update,
* *ret_left_path will contain a valid path which can be passed to
* ocfs2_insert_path().
*/
static int ocfs2_rotate_tree_right(struct inode *inode,
handle_t *handle,
enum ocfs2_split_type split,
u32 insert_cpos,
struct ocfs2_path *right_path,
struct ocfs2_path **ret_left_path)
{
int ret, start, orig_credits = handle->h_buffer_credits;
u32 cpos;
struct ocfs2_path *left_path = NULL;
*ret_left_path = NULL;
left_path = ocfs2_new_path(path_root_bh(right_path),
path_root_el(right_path));
if (!left_path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
/*
* What we want to do here is:
*
* 1) Start with the rightmost path.
*
* 2) Determine a path to the leaf block directly to the left
* of that leaf.
*
* 3) Determine the 'subtree root' - the lowest level tree node
* which contains a path to both leaves.
*
* 4) Rotate the subtree.
*
* 5) Find the next subtree by considering the left path to be
* the new right path.
*
* The check at the top of this while loop also accepts
* insert_cpos == cpos because cpos is only a _theoretical_
* value to get us the left path - insert_cpos might very well
* be filling that hole.
*
* Stop at a cpos of '0' because we either started at the
* leftmost branch (i.e., a tree with one branch and a
* rotation inside of it), or we've gone as far as we can in
* rotating subtrees.
*/
while (cpos && insert_cpos <= cpos) {
mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
insert_cpos, cpos);
ret = ocfs2_find_path(inode, left_path, cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
mlog_bug_on_msg(path_leaf_bh(left_path) ==
path_leaf_bh(right_path),
"Inode %lu: error during insert of %u "
"(left path cpos %u) results in two identical "
"paths ending at %llu\n",
inode->i_ino, insert_cpos, cpos,
(unsigned long long)
path_leaf_bh(left_path)->b_blocknr);
if (split == SPLIT_NONE &&
ocfs2_rotate_requires_path_adjustment(left_path,
insert_cpos)) {
/*
* We've rotated the tree as much as we
* should. The rest is up to
* ocfs2_insert_path() to complete, after the
* record insertion. We indicate this
* situation by returning the left path.
*
* The reason we don't adjust the records here
* before the record insert is that an error
* later might break the rule where a parent
* record e_cpos will reflect the actual
* e_cpos of the 1st nonempty record of the
* child list.
*/
*ret_left_path = left_path;
goto out_ret_path;
}
start = ocfs2_find_subtree_root(inode, left_path, right_path);
mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
start,
(unsigned long long) right_path->p_node[start].bh->b_blocknr,
right_path->p_tree_depth);
ret = ocfs2_extend_rotate_transaction(handle, start,
orig_credits, right_path);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
right_path, start);
if (ret) {
mlog_errno(ret);
goto out;
}
if (split != SPLIT_NONE &&
ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
insert_cpos)) {
/*
* A rotate moves the rightmost left leaf
* record over to the leftmost right leaf
* slot. If we're doing an extent split
* instead of a real insert, then we have to
* check that the extent to be split wasn't
* just moved over. If it was, then we can
* exit here, passing left_path back -
* ocfs2_split_extent() is smart enough to
* search both leaves.
*/
*ret_left_path = left_path;
goto out_ret_path;
}
/*
* There is no need to re-read the next right path
* as we know that it'll be our current left
* path. Optimize by copying values instead.
*/
ocfs2_mv_path(right_path, left_path);
ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
&cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
}
out:
ocfs2_free_path(left_path);
out_ret_path:
return ret;
}
static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
struct ocfs2_path *path)
{
int i, idx;
struct ocfs2_extent_rec *rec;
struct ocfs2_extent_list *el;
struct ocfs2_extent_block *eb;
u32 range;
/* Path should always be rightmost. */
eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
BUG_ON(eb->h_next_leaf_blk != 0ULL);
el = &eb->h_list;
BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
idx = le16_to_cpu(el->l_next_free_rec) - 1;
rec = &el->l_recs[idx];
range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
for (i = 0; i < path->p_tree_depth; i++) {
el = path->p_node[i].el;
idx = le16_to_cpu(el->l_next_free_rec) - 1;
rec = &el->l_recs[idx];
rec->e_int_clusters = cpu_to_le32(range);
le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
ocfs2_journal_dirty(handle, path->p_node[i].bh);
}
}
static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
struct ocfs2_cached_dealloc_ctxt *dealloc,
struct ocfs2_path *path, int unlink_start)
{
int ret, i;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *el;
struct buffer_head *bh;
for(i = unlink_start; i < path_num_items(path); i++) {
bh = path->p_node[i].bh;
eb = (struct ocfs2_extent_block *)bh->b_data;
/*
* Not all nodes might have had their final count
* decremented by the caller - handle this here.
*/
el = &eb->h_list;
if (le16_to_cpu(el->l_next_free_rec) > 1) {
mlog(ML_ERROR,
"Inode %llu, attempted to remove extent block "
"%llu with %u records\n",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)le64_to_cpu(eb->h_blkno),
le16_to_cpu(el->l_next_free_rec));
ocfs2_journal_dirty(handle, bh);
ocfs2_remove_from_cache(inode, bh);
continue;
}
el->l_next_free_rec = 0;
memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
ocfs2_journal_dirty(handle, bh);
ret = ocfs2_cache_extent_block_free(dealloc, eb);
if (ret)
mlog_errno(ret);
ocfs2_remove_from_cache(inode, bh);
}
}
static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
struct ocfs2_path *left_path,
struct ocfs2_path *right_path,
int subtree_index,
struct ocfs2_cached_dealloc_ctxt *dealloc)
{
int i;
struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
struct ocfs2_extent_list *el;
struct ocfs2_extent_block *eb;
el = path_leaf_el(left_path);
eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
if (root_el->l_recs[i].e_blkno == eb->h_blkno)
break;
BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
le16_add_cpu(&root_el->l_next_free_rec, -1);
eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
eb->h_next_leaf_blk = 0;
ocfs2_journal_dirty(handle, root_bh);
ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
ocfs2_unlink_path(inode, handle, dealloc, right_path,
subtree_index + 1);
}
static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
struct ocfs2_path *left_path,
struct ocfs2_path *right_path,
int subtree_index,
struct ocfs2_cached_dealloc_ctxt *dealloc,
int *deleted)
{
int ret, i, del_right_subtree = 0, right_has_empty = 0;
struct buffer_head *root_bh, *di_bh = path_root_bh(right_path);
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
struct ocfs2_extent_block *eb;
*deleted = 0;
right_leaf_el = path_leaf_el(right_path);
left_leaf_el = path_leaf_el(left_path);
root_bh = left_path->p_node[subtree_index].bh;
BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
return 0;
eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
/*
* It's legal for us to proceed if the right leaf is
* the rightmost one and it has an empty extent. There
* are two cases to handle - whether the leaf will be
* empty after removal or not. If the leaf isn't empty
* then just remove the empty extent up front. The
* next block will handle empty leaves by flagging
* them for unlink.
*
* Non rightmost leaves will throw -EAGAIN and the
* caller can manually move the subtree and retry.
*/
if (eb->h_next_leaf_blk != 0ULL)
return -EAGAIN;
if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
ret = ocfs2_journal_access(handle, inode,
path_leaf_bh(right_path),
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
ocfs2_remove_empty_extent(right_leaf_el);
} else
right_has_empty = 1;
}
if (eb->h_next_leaf_blk == 0ULL &&
le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
/*
* We have to update i_last_eb_blk during the meta
* data delete.
*/
ret = ocfs2_journal_access(handle, inode, di_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
del_right_subtree = 1;
}
/*
* Getting here with an empty extent in the right path implies
* that it's the rightmost path and will be deleted.
*/
BUG_ON(right_has_empty && !del_right_subtree);
ret = ocfs2_journal_access(handle, inode, root_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
ret = ocfs2_journal_access(handle, inode,
right_path->p_node[i].bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access(handle, inode,
left_path->p_node[i].bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
}
if (!right_has_empty) {
/*
* Only do this if we're moving a real
* record. Otherwise, the action is delayed until
* after removal of the right path in which case we
* can do a simple shift to remove the empty extent.
*/
ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
memset(&right_leaf_el->l_recs[0], 0,
sizeof(struct ocfs2_extent_rec));
}
if (eb->h_next_leaf_blk == 0ULL) {
/*
* Move recs over to get rid of empty extent, decrease
* next_free. This is allowed to remove the last
* extent in our leaf (setting l_next_free_rec to
* zero) - the delete code below won't care.
*/
ocfs2_remove_empty_extent(right_leaf_el);
}
ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
if (ret)
mlog_errno(ret);
ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
if (ret)
mlog_errno(ret);
if (del_right_subtree) {
ocfs2_unlink_subtree(inode, handle, left_path, right_path,
subtree_index, dealloc);
ocfs2_update_edge_lengths(inode, handle, left_path);
eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
di->i_last_eb_blk = eb->h_blkno;
/*
* Removal of the extent in the left leaf was skipped
* above so we could delete the right path
* 1st.
*/
if (right_has_empty)
ocfs2_remove_empty_extent(left_leaf_el);
ret = ocfs2_journal_dirty(handle, di_bh);
if (ret)
mlog_errno(ret);
*deleted = 1;
} else
ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
subtree_index);
out:
return ret;
}
/*
* Given a full path, determine what cpos value would return us a path
* containing the leaf immediately to the right of the current one.
*
* Will return zero if the path passed in is already the rightmost path.
*
* This looks similar, but is subtly different to
* ocfs2_find_cpos_for_left_leaf().
*/
static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
struct ocfs2_path *path, u32 *cpos)
{
int i, j, ret = 0;
u64 blkno;
struct ocfs2_extent_list *el;
*cpos = 0;
if (path->p_tree_depth == 0)
return 0;
blkno = path_leaf_bh(path)->b_blocknr;
/* Start at the tree node just above the leaf and work our way up. */
i = path->p_tree_depth - 1;
while (i >= 0) {
int next_free;
el = path->p_node[i].el;
/*
* Find the extent record just after the one in our
* path.
*/
next_free = le16_to_cpu(el->l_next_free_rec);
for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
if (j == (next_free - 1)) {
if (i == 0) {
/*
* We've determined that the
* path specified is already
* the rightmost one - return a
* cpos of zero.
*/
goto out;
}
/*
* The rightmost record points to our
* leaf - we need to travel up the
* tree one level.
*/
goto next_node;
}
*cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
goto out;
}
}
/*
* If we got here, we never found a valid node where
* the tree indicated one should be.
*/
ocfs2_error(sb,
"Invalid extent tree at extent block %llu\n",
(unsigned long long)blkno);
ret = -EROFS;
goto out;
next_node:
blkno = path->p_node[i].bh->b_blocknr;
i--;
}
out:
return ret;
}
static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
handle_t *handle,
struct buffer_head *bh,
struct ocfs2_extent_list *el)
{
int ret;
if (!ocfs2_is_empty_extent(&el->l_recs[0]))
return 0;
ret = ocfs2_journal_access(handle, inode, bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
ocfs2_remove_empty_extent(el);
ret = ocfs2_journal_dirty(handle, bh);
if (ret)
mlog_errno(ret);
out:
return ret;
}
static int __ocfs2_rotate_tree_left(struct inode *inode,
handle_t *handle, int orig_credits,
struct ocfs2_path *path,
struct ocfs2_cached_dealloc_ctxt *dealloc,
struct ocfs2_path **empty_extent_path)
{
int ret, subtree_root, deleted;
u32 right_cpos;
struct ocfs2_path *left_path = NULL;
struct ocfs2_path *right_path = NULL;
BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
*empty_extent_path = NULL;
ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
&right_cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
left_path = ocfs2_new_path(path_root_bh(path),
path_root_el(path));
if (!left_path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ocfs2_cp_path(left_path, path);
right_path = ocfs2_new_path(path_root_bh(path),
path_root_el(path));
if (!right_path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
while (right_cpos) {
ret = ocfs2_find_path(inode, right_path, right_cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
subtree_root = ocfs2_find_subtree_root(inode, left_path,
right_path);
mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
subtree_root,
(unsigned long long)
right_path->p_node[subtree_root].bh->b_blocknr,
right_path->p_tree_depth);
ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
orig_credits, left_path);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
right_path, subtree_root,
dealloc, &deleted);
if (ret == -EAGAIN) {
/*
* The rotation has to temporarily stop due to
* the right subtree having an empty
* extent. Pass it back to the caller for a
* fixup.
*/
*empty_extent_path = right_path;
right_path = NULL;
goto out;
}
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* The subtree rotate might have removed records on
* the rightmost edge. If so, then rotation is
* complete.
*/
if (deleted)
break;
ocfs2_mv_path(left_path, right_path);
ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
&right_cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
}
out:
ocfs2_free_path(right_path);
ocfs2_free_path(left_path);
return ret;
}
static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
struct ocfs2_path *path,
struct ocfs2_cached_dealloc_ctxt *dealloc)
{
int ret, subtree_index;
u32 cpos;
struct ocfs2_path *left_path = NULL;
struct ocfs2_dinode *di;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *el;
/*
* XXX: This code assumes that the root is an inode, which is
* true for now but may change as tree code gets generic.
*/
di = (struct ocfs2_dinode *)path_root_bh(path)->b_data;
if (!OCFS2_IS_VALID_DINODE(di)) {
ret = -EIO;
ocfs2_error(inode->i_sb,
"Inode %llu has invalid path root",
(unsigned long long)OCFS2_I(inode)->ip_blkno);
goto out;
}
/*
* There's two ways we handle this depending on
* whether path is the only existing one.
*/
ret = ocfs2_extend_rotate_transaction(handle, 0,
handle->h_buffer_credits,
path);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_path(inode, handle, path);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
if (cpos) {
/*
* We have a path to the left of this one - it needs
* an update too.
*/
left_path = ocfs2_new_path(path_root_bh(path),
path_root_el(path));
if (!left_path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_find_path(inode, left_path, cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_path(inode, handle, left_path);
if (ret) {
mlog_errno(ret);
goto out;
}
subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
ocfs2_unlink_subtree(inode, handle, left_path, path,
subtree_index, dealloc);
ocfs2_update_edge_lengths(inode, handle, left_path);
eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
di->i_last_eb_blk = eb->h_blkno;
} else {
/*
* 'path' is also the leftmost path which
* means it must be the only one. This gets
* handled differently because we want to
* revert the inode back to having extents
* in-line.
*/
ocfs2_unlink_path(inode, handle, dealloc, path, 1);
el = &di->id2.i_list;
el->l_tree_depth = 0;
el->l_next_free_rec = 0;
memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
di->i_last_eb_blk = 0;
}
ocfs2_journal_dirty(handle, path_root_bh(path));
out:
ocfs2_free_path(left_path);
return ret;
}
/*
* Left rotation of btree records.
*
* In many ways, this is (unsurprisingly) the opposite of right
* rotation. We start at some non-rightmost path containing an empty
* extent in the leaf block. The code works its way to the rightmost
* path by rotating records to the left in every subtree.
*
* This is used by any code which reduces the number of extent records
* in a leaf. After removal, an empty record should be placed in the
* leftmost list position.
*
* This won't handle a length update of the rightmost path records if
* the rightmost tree leaf record is removed so the caller is
* responsible for detecting and correcting that.
*/
static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
struct ocfs2_path *path,
struct ocfs2_cached_dealloc_ctxt *dealloc)
{
int ret, orig_credits = handle->h_buffer_credits;
struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *el;
el = path_leaf_el(path);
if (!ocfs2_is_empty_extent(&el->l_recs[0]))
return 0;
if (path->p_tree_depth == 0) {
rightmost_no_delete:
/*
* In-inode extents. This is trivially handled, so do
* it up front.
*/
ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
path_leaf_bh(path),
path_leaf_el(path));
if (ret)
mlog_errno(ret);
goto out;
}
/*
* Handle rightmost branch now. There's several cases:
* 1) simple rotation leaving records in there. That's trivial.
* 2) rotation requiring a branch delete - there's no more
* records left. Two cases of this:
* a) There are branches to the left.
* b) This is also the leftmost (the only) branch.
*
* 1) is handled via ocfs2_rotate_rightmost_leaf_left()
* 2a) we need the left branch so that we can update it with the unlink
* 2b) we need to bring the inode back to inline extents.
*/
eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
el = &eb->h_list;
if (eb->h_next_leaf_blk == 0) {
/*
* This gets a bit tricky if we're going to delete the
* rightmost path. Get the other cases out of the way
* 1st.
*/
if (le16_to_cpu(el->l_next_free_rec) > 1)
goto rightmost_no_delete;
if (le16_to_cpu(el->l_next_free_rec) == 0) {
ret = -EIO;
ocfs2_error(inode->i_sb,
"Inode %llu has empty extent block at %llu",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)le64_to_cpu(eb->h_blkno));
goto out;
}
/*
* XXX: The caller can not trust "path" any more after
* this as it will have been deleted. What do we do?
*
* In theory the rotate-for-merge code will never get
* here because it'll always ask for a rotate in a
* nonempty list.
*/
ret = ocfs2_remove_rightmost_path(inode, handle, path,
dealloc);
if (ret)
mlog_errno(ret);
goto out;
}
/*
* Now we can loop, remembering the path we get from -EAGAIN
* and restarting from there.
*/
try_rotate:
ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
dealloc, &restart_path);
if (ret && ret != -EAGAIN) {
mlog_errno(ret);
goto out;
}
while (ret == -EAGAIN) {
tmp_path = restart_path;
restart_path = NULL;
ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
tmp_path, dealloc,
&restart_path);
if (ret && ret != -EAGAIN) {
mlog_errno(ret);
goto out;
}
ocfs2_free_path(tmp_path);
tmp_path = NULL;
if (ret == 0)
goto try_rotate;
}
out:
ocfs2_free_path(tmp_path);
ocfs2_free_path(restart_path);
return ret;
}
static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
int index)
{
struct ocfs2_extent_rec *rec = &el->l_recs[index];
unsigned int size;
if (rec->e_leaf_clusters == 0) {
/*
* We consumed all of the merged-from record. An empty
* extent cannot exist anywhere but the 1st array
* position, so move things over if the merged-from
* record doesn't occupy that position.
*
* This creates a new empty extent so the caller
* should be smart enough to have removed any existing
* ones.
*/
if (index > 0) {
BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
size = index * sizeof(struct ocfs2_extent_rec);
memmove(&el->l_recs[1], &el->l_recs[0], size);
}
/*
* Always memset - the caller doesn't check whether it
* created an empty extent, so there could be junk in
* the other fields.
*/
memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
}
}
/*
* Remove split_rec clusters from the record at index and merge them
* onto the beginning of the record at index + 1.
*/
static int ocfs2_merge_rec_right(struct inode *inode, struct buffer_head *bh,
handle_t *handle,
struct ocfs2_extent_rec *split_rec,
struct ocfs2_extent_list *el, int index)
{
int ret;
unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
struct ocfs2_extent_rec *left_rec;
struct ocfs2_extent_rec *right_rec;
BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
left_rec = &el->l_recs[index];
right_rec = &el->l_recs[index + 1];
ret = ocfs2_journal_access(handle, inode, bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
le32_add_cpu(&right_rec->e_cpos, -split_clusters);
le64_add_cpu(&right_rec->e_blkno,
-ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
ocfs2_cleanup_merge(el, index);
ret = ocfs2_journal_dirty(handle, bh);
if (ret)
mlog_errno(ret);
out:
return ret;
}
/*
* Remove split_rec clusters from the record at index and merge them
* onto the tail of the record at index - 1.
*/
static int ocfs2_merge_rec_left(struct inode *inode, struct buffer_head *bh,
handle_t *handle,
struct ocfs2_extent_rec *split_rec,
struct ocfs2_extent_list *el, int index)
{
int ret, has_empty_extent = 0;
unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
struct ocfs2_extent_rec *left_rec;
struct ocfs2_extent_rec *right_rec;
BUG_ON(index <= 0);
left_rec = &el->l_recs[index - 1];
right_rec = &el->l_recs[index];
if (ocfs2_is_empty_extent(&el->l_recs[0]))
has_empty_extent = 1;
ret = ocfs2_journal_access(handle, inode, bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
if (has_empty_extent && index == 1) {
/*
* The easy case - we can just plop the record right in.
*/
*left_rec = *split_rec;
has_empty_extent = 0;
} else {
le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
}
le32_add_cpu(&right_rec->e_cpos, split_clusters);
le64_add_cpu(&right_rec->e_blkno,
ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
ocfs2_cleanup_merge(el, index);
ret = ocfs2_journal_dirty(handle, bh);
if (ret)
mlog_errno(ret);
out:
return ret;
}
static int ocfs2_try_to_merge_extent(struct inode *inode,
handle_t *handle,
struct ocfs2_path *left_path,
int split_index,
struct ocfs2_extent_rec *split_rec,
struct ocfs2_cached_dealloc_ctxt *dealloc,
struct ocfs2_merge_ctxt *ctxt)
{
int ret = 0;
struct ocfs2_extent_list *el = path_leaf_el(left_path);
struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
/*
* The merge code will need to create an empty
* extent to take the place of the newly
* emptied slot. Remove any pre-existing empty
* extents - having more than one in a leaf is
* illegal.
*/
ret = ocfs2_rotate_tree_left(inode, handle, left_path,
dealloc);
if (ret) {
mlog_errno(ret);
goto out;
}
split_index--;
rec = &el->l_recs[split_index];
}
if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
/*
* Left-right contig implies this.
*/
BUG_ON(!ctxt->c_split_covers_rec);
BUG_ON(split_index == 0);
/*
* Since the leftright insert always covers the entire
* extent, this call will delete the insert record
* entirely, resulting in an empty extent record added to
* the extent block.
*
* Since the adding of an empty extent shifts
* everything back to the right, there's no need to
* update split_index here.
*/
ret = ocfs2_merge_rec_left(inode, path_leaf_bh(left_path),
handle, split_rec, el, split_index);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* We can only get this from logic error above.
*/
BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
/*
* The left merge left us with an empty extent, remove
* it.
*/
ret = ocfs2_rotate_tree_left(inode, handle, left_path, dealloc);
if (ret) {
mlog_errno(ret);
goto out;
}
split_index--;
rec = &el->l_recs[split_index];
/*
* Note that we don't pass split_rec here on purpose -
* we've merged it into the left side.
*/
ret = ocfs2_merge_rec_right(inode, path_leaf_bh(left_path),
handle, rec, el, split_index);
if (ret) {
mlog_errno(ret);
goto out;
}
BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
ret = ocfs2_rotate_tree_left(inode, handle, left_path,
dealloc);
/*
* Error from this last rotate is not critical, so
* print but don't bubble it up.
*/
if (ret)
mlog_errno(ret);
ret = 0;
} else {
/*
* Merge a record to the left or right.
*
* 'contig_type' is relative to the existing record,
* so for example, if we're "right contig", it's to
* the record on the left (hence the left merge).
*/
if (ctxt->c_contig_type == CONTIG_RIGHT) {
ret = ocfs2_merge_rec_left(inode,
path_leaf_bh(left_path),
handle, split_rec, el,
split_index);
if (ret) {
mlog_errno(ret);
goto out;
}
} else {
ret = ocfs2_merge_rec_right(inode,
path_leaf_bh(left_path),
handle, split_rec, el,
split_index);
if (ret) {
mlog_errno(ret);
goto out;
}
}
if (ctxt->c_split_covers_rec) {
/*
* The merge may have left an empty extent in
* our leaf. Try to rotate it away.
*/
ret = ocfs2_rotate_tree_left(inode, handle, left_path,
dealloc);
if (ret)
mlog_errno(ret);
ret = 0;
}
}
out:
return ret;
}
static void ocfs2_subtract_from_rec(struct super_block *sb,
enum ocfs2_split_type split,
struct ocfs2_extent_rec *rec,
struct ocfs2_extent_rec *split_rec)
{
u64 len_blocks;
len_blocks = ocfs2_clusters_to_blocks(sb,
le16_to_cpu(split_rec->e_leaf_clusters));
if (split == SPLIT_LEFT) {
/*
* Region is on the left edge of the existing
* record.
*/
le32_add_cpu(&rec->e_cpos,
le16_to_cpu(split_rec->e_leaf_clusters));
le64_add_cpu(&rec->e_blkno, len_blocks);
le16_add_cpu(&rec->e_leaf_clusters,
-le16_to_cpu(split_rec->e_leaf_clusters));
} else {
/*
* Region is on the right edge of the existing
* record.
*/
le16_add_cpu(&rec->e_leaf_clusters,
-le16_to_cpu(split_rec->e_leaf_clusters));
}
}
/*
* Do the final bits of extent record insertion at the target leaf
* list. If this leaf is part of an allocation tree, it is assumed
* that the tree above has been prepared.
*/
static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
struct ocfs2_extent_list *el,
struct ocfs2_insert_type *insert,
struct inode *inode)
{
int i = insert->ins_contig_index;
unsigned int range;
struct ocfs2_extent_rec *rec;
BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
if (insert->ins_split != SPLIT_NONE) {
i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
BUG_ON(i == -1);
rec = &el->l_recs[i];
ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
insert_rec);
goto rotate;
}
/*
* Contiguous insert - either left or right.
*/
if (insert->ins_contig != CONTIG_NONE) {
rec = &el->l_recs[i];
if (insert->ins_contig == CONTIG_LEFT) {
rec->e_blkno = insert_rec->e_blkno;
rec->e_cpos = insert_rec->e_cpos;
}
le16_add_cpu(&rec->e_leaf_clusters,
le16_to_cpu(insert_rec->e_leaf_clusters));
return;
}
/*
* Handle insert into an empty leaf.
*/
if (le16_to_cpu(el->l_next_free_rec) == 0 ||
((le16_to_cpu(el->l_next_free_rec) == 1) &&
ocfs2_is_empty_extent(&el->l_recs[0]))) {
el->l_recs[0] = *insert_rec;
el->l_next_free_rec = cpu_to_le16(1);
return;
}
/*
* Appending insert.
*/
if (insert->ins_appending == APPEND_TAIL) {
i = le16_to_cpu(el->l_next_free_rec) - 1;
rec = &el->l_recs[i];
range = le32_to_cpu(rec->e_cpos)
+ le16_to_cpu(rec->e_leaf_clusters);
BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
le16_to_cpu(el->l_count),
"inode %lu, depth %u, count %u, next free %u, "
"rec.cpos %u, rec.clusters %u, "
"insert.cpos %u, insert.clusters %u\n",
inode->i_ino,
le16_to_cpu(el->l_tree_depth),
le16_to_cpu(el->l_count),
le16_to_cpu(el->l_next_free_rec),
le32_to_cpu(el->l_recs[i].e_cpos),
le16_to_cpu(el->l_recs[i].e_leaf_clusters),
le32_to_cpu(insert_rec->e_cpos),
le16_to_cpu(insert_rec->e_leaf_clusters));
i++;
el->l_recs[i] = *insert_rec;
le16_add_cpu(&el->l_next_free_rec, 1);
return;
}
rotate:
/*
* Ok, we have to rotate.
*
* At this point, it is safe to assume that inserting into an
* empty leaf and appending to a leaf have both been handled
* above.
*
* This leaf needs to have space, either by the empty 1st
* extent record, or by virtue of an l_next_rec < l_count.
*/
ocfs2_rotate_leaf(el, insert_rec);
}
static inline void ocfs2_update_dinode_clusters(struct inode *inode,
struct ocfs2_dinode *di,
u32 clusters)
{
le32_add_cpu(&di->i_clusters, clusters);
spin_lock(&OCFS2_I(inode)->ip_lock);
OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
spin_unlock(&OCFS2_I(inode)->ip_lock);
}
static void ocfs2_adjust_rightmost_records(struct inode *inode,
handle_t *handle,
struct ocfs2_path *path,
struct ocfs2_extent_rec *insert_rec)
{
int ret, i, next_free;
struct buffer_head *bh;
struct ocfs2_extent_list *el;
struct ocfs2_extent_rec *rec;
/*
* Update everything except the leaf block.
*/
for (i = 0; i < path->p_tree_depth; i++) {
bh = path->p_node[i].bh;
el = path->p_node[i].el;
next_free = le16_to_cpu(el->l_next_free_rec);
if (next_free == 0) {
ocfs2_error(inode->i_sb,
"Dinode %llu has a bad extent list",
(unsigned long long)OCFS2_I(inode)->ip_blkno);
ret = -EIO;
return;
}
rec = &el->l_recs[next_free - 1];
rec->e_int_clusters = insert_rec->e_cpos;
le32_add_cpu(&rec->e_int_clusters,
le16_to_cpu(insert_rec->e_leaf_clusters));
le32_add_cpu(&rec->e_int_clusters,
-le32_to_cpu(rec->e_cpos));
ret = ocfs2_journal_dirty(handle, bh);
if (ret)
mlog_errno(ret);
}
}
static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
struct ocfs2_extent_rec *insert_rec,
struct ocfs2_path *right_path,
struct ocfs2_path **ret_left_path)
{
int ret, next_free;
struct ocfs2_extent_list *el;
struct ocfs2_path *left_path = NULL;
*ret_left_path = NULL;
/*
* This shouldn't happen for non-trees. The extent rec cluster
* count manipulation below only works for interior nodes.
*/
BUG_ON(right_path->p_tree_depth == 0);
/*
* If our appending insert is at the leftmost edge of a leaf,
* then we might need to update the rightmost records of the
* neighboring path.
*/
el = path_leaf_el(right_path);
next_free = le16_to_cpu(el->l_next_free_rec);
if (next_free == 0 ||
(next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
u32 left_cpos;
ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
&left_cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
mlog(0, "Append may need a left path update. cpos: %u, "
"left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
left_cpos);
/*
* No need to worry if the append is already in the
* leftmost leaf.
*/
if (left_cpos) {
left_path = ocfs2_new_path(path_root_bh(right_path),
path_root_el(right_path));
if (!left_path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_find_path(inode, left_path, left_cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* ocfs2_insert_path() will pass the left_path to the
* journal for us.
*/
}
}
ret = ocfs2_journal_access_path(inode, handle, right_path);
if (ret) {
mlog_errno(ret);
goto out;
}
ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
*ret_left_path = left_path;
ret = 0;
out:
if (ret != 0)
ocfs2_free_path(left_path);
return ret;
}
static void ocfs2_split_record(struct inode *inode,
struct ocfs2_path *left_path,
struct ocfs2_path *right_path,
struct ocfs2_extent_rec *split_rec,
enum ocfs2_split_type split)
{
int index;
u32 cpos = le32_to_cpu(split_rec->e_cpos);
struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
struct ocfs2_extent_rec *rec, *tmprec;
right_el = path_leaf_el(right_path);;
if (left_path)
left_el = path_leaf_el(left_path);
el = right_el;
insert_el = right_el;
index = ocfs2_search_extent_list(el, cpos);
if (index != -1) {
if (index == 0 && left_path) {
BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
/*
* This typically means that the record
* started in the left path but moved to the
* right as a result of rotation. We either
* move the existing record to the left, or we
* do the later insert there.
*
* In this case, the left path should always
* exist as the rotate code will have passed
* it back for a post-insert update.
*/
if (split == SPLIT_LEFT) {
/*
* It's a left split. Since we know
* that the rotate code gave us an
* empty extent in the left path, we
* can just do the insert there.
*/
insert_el = left_el;
} else {
/*
* Right split - we have to move the
* existing record over to the left
* leaf. The insert will be into the
* newly created empty extent in the
* right leaf.
*/
tmprec = &right_el->l_recs[index];
ocfs2_rotate_leaf(left_el, tmprec);
el = left_el;
memset(tmprec, 0, sizeof(*tmprec));
index = ocfs2_search_extent_list(left_el, cpos);
BUG_ON(index == -1);
}
}
} else {
BUG_ON(!left_path);
BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
/*
* Left path is easy - we can just allow the insert to
* happen.
*/
el = left_el;
insert_el = left_el;
index = ocfs2_search_extent_list(el, cpos);
BUG_ON(index == -1);
}
rec = &el->l_recs[index];
ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
ocfs2_rotate_leaf(insert_el, split_rec);
}
/*
* This function only does inserts on an allocation b-tree. For dinode
* lists, ocfs2_insert_at_leaf() is called directly.
*
* right_path is the path we want to do the actual insert
* in. left_path should only be passed in if we need to update that
* portion of the tree after an edge insert.
*/
static int ocfs2_insert_path(struct inode *inode,
handle_t *handle,
struct ocfs2_path *left_path,
struct ocfs2_path *right_path,
struct ocfs2_extent_rec *insert_rec,
struct ocfs2_insert_type *insert)
{
int ret, subtree_index;
struct buffer_head *leaf_bh = path_leaf_bh(right_path);
/*
* Pass both paths to the journal. The majority of inserts
* will be touching all components anyway.
*/
ret = ocfs2_journal_access_path(inode, handle, right_path);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
if (left_path) {
int credits = handle->h_buffer_credits;
/*
* There's a chance that left_path got passed back to
* us without being accounted for in the
* journal. Extend our transaction here to be sure we
* can change those blocks.
*/
credits += left_path->p_tree_depth;
ret = ocfs2_extend_trans(handle, credits);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_path(inode, handle, left_path);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
}
if (insert->ins_split != SPLIT_NONE) {
/*
* We could call ocfs2_insert_at_leaf() for some types
* of splits, but it's easier to just let one seperate
* function sort it all out.
*/
ocfs2_split_record(inode, left_path, right_path,
insert_rec, insert->ins_split);
} else
ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
insert, inode);
ret = ocfs2_journal_dirty(handle, leaf_bh);
if (ret)
mlog_errno(ret);
if (left_path) {
/*
* The rotate code has indicated that we need to fix
* up portions of the tree after the insert.
*
* XXX: Should we extend the transaction here?
*/
subtree_index = ocfs2_find_subtree_root(inode, left_path,
right_path);
ocfs2_complete_edge_insert(inode, handle, left_path,
right_path, subtree_index);
}
ret = 0;
out:
return ret;
}
static int ocfs2_do_insert_extent(struct inode *inode,
handle_t *handle,
struct buffer_head *di_bh,
struct ocfs2_extent_rec *insert_rec,
struct ocfs2_insert_type *type)
{
int ret, rotate = 0;
u32 cpos;
struct ocfs2_path *right_path = NULL;
struct ocfs2_path *left_path = NULL;
struct ocfs2_dinode *di;
struct ocfs2_extent_list *el;
di = (struct ocfs2_dinode *) di_bh->b_data;
el = &di->id2.i_list;
ret = ocfs2_journal_access(handle, inode, di_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
if (le16_to_cpu(el->l_tree_depth) == 0) {
ocfs2_insert_at_leaf(insert_rec, el, type, inode);
goto out_update_clusters;
}
right_path = ocfs2_new_inode_path(di_bh);
if (!right_path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
/*
* Determine the path to start with. Rotations need the
* rightmost path, everything else can go directly to the
* target leaf.
*/
cpos = le32_to_cpu(insert_rec->e_cpos);
if (type->ins_appending == APPEND_NONE &&
type->ins_contig == CONTIG_NONE) {
rotate = 1;
cpos = UINT_MAX;
}
ret = ocfs2_find_path(inode, right_path, cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* Rotations and appends need special treatment - they modify
* parts of the tree's above them.
*
* Both might pass back a path immediate to the left of the
* one being inserted to. This will be cause
* ocfs2_insert_path() to modify the rightmost records of
* left_path to account for an edge insert.
*
* XXX: When modifying this code, keep in mind that an insert
* can wind up skipping both of these two special cases...
*/
if (rotate) {
ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
le32_to_cpu(insert_rec->e_cpos),
right_path, &left_path);
if (ret) {
mlog_errno(ret);
goto out;
}
} else if (type->ins_appending == APPEND_TAIL
&& type->ins_contig != CONTIG_LEFT) {
ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
right_path, &left_path);
if (ret) {
mlog_errno(ret);
goto out;
}
}
ret = ocfs2_insert_path(inode, handle, left_path, right_path,
insert_rec, type);
if (ret) {
mlog_errno(ret);
goto out;
}
out_update_clusters:
if (type->ins_split == SPLIT_NONE)
ocfs2_update_dinode_clusters(inode, di,
le16_to_cpu(insert_rec->e_leaf_clusters));
ret = ocfs2_journal_dirty(handle, di_bh);
if (ret)
mlog_errno(ret);
out:
ocfs2_free_path(left_path);
ocfs2_free_path(right_path);
return ret;
}
static enum ocfs2_contig_type
ocfs2_figure_merge_contig_type(struct inode *inode,
struct ocfs2_extent_list *el, int index,
struct ocfs2_extent_rec *split_rec)
{
struct ocfs2_extent_rec *rec;
enum ocfs2_contig_type ret = CONTIG_NONE;
/*
* We're careful to check for an empty extent record here -
* the merge code will know what to do if it sees one.
*/
if (index > 0) {
rec = &el->l_recs[index - 1];
if (index == 1 && ocfs2_is_empty_extent(rec)) {
if (split_rec->e_cpos == el->l_recs[index].e_cpos)
ret = CONTIG_RIGHT;
} else {
ret = ocfs2_extent_contig(inode, rec, split_rec);
}
}
if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) {
enum ocfs2_contig_type contig_type;
rec = &el->l_recs[index + 1];
contig_type = ocfs2_extent_contig(inode, rec, split_rec);
if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
ret = CONTIG_LEFTRIGHT;
else if (ret == CONTIG_NONE)
ret = contig_type;
}
return ret;
}
static void ocfs2_figure_contig_type(struct inode *inode,
struct ocfs2_insert_type *insert,
struct ocfs2_extent_list *el,
struct ocfs2_extent_rec *insert_rec)
{
int i;
enum ocfs2_contig_type contig_type = CONTIG_NONE;
BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
insert_rec);
if (contig_type != CONTIG_NONE) {
insert->ins_contig_index = i;
break;
}
}
insert->ins_contig = contig_type;
}
/*
* This should only be called against the righmost leaf extent list.
*
* ocfs2_figure_appending_type() will figure out whether we'll have to
* insert at the tail of the rightmost leaf.
*
* This should also work against the dinode list for tree's with 0
* depth. If we consider the dinode list to be the rightmost leaf node
* then the logic here makes sense.
*/
static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
struct ocfs2_extent_list *el,
struct ocfs2_extent_rec *insert_rec)
{
int i;
u32 cpos = le32_to_cpu(insert_rec->e_cpos);
struct ocfs2_extent_rec *rec;
insert->ins_appending = APPEND_NONE;
BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
if (!el->l_next_free_rec)
goto set_tail_append;
if (ocfs2_is_empty_extent(&el->l_recs[0])) {
/* Were all records empty? */
if (le16_to_cpu(el->l_next_free_rec) == 1)
goto set_tail_append;
}
i = le16_to_cpu(el->l_next_free_rec) - 1;
rec = &el->l_recs[i];
if (cpos >=
(le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
goto set_tail_append;
return;
set_tail_append:
insert->ins_appending = APPEND_TAIL;
}
/*
* Helper function called at the begining of an insert.
*
* This computes a few things that are commonly used in the process of
* inserting into the btree:
* - Whether the new extent is contiguous with an existing one.
* - The current tree depth.
* - Whether the insert is an appending one.
* - The total # of free records in the tree.
*
* All of the information is stored on the ocfs2_insert_type
* structure.
*/
static int ocfs2_figure_insert_type(struct inode *inode,
struct buffer_head *di_bh,
struct buffer_head **last_eb_bh,
struct ocfs2_extent_rec *insert_rec,
int *free_records,
struct ocfs2_insert_type *insert)
{
int ret;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *el;
struct ocfs2_path *path = NULL;
struct buffer_head *bh = NULL;
insert->ins_split = SPLIT_NONE;
el = &di->id2.i_list;
insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
if (el->l_tree_depth) {
/*
* If we have tree depth, we read in the
* rightmost extent block ahead of time as
* ocfs2_figure_insert_type() and ocfs2_add_branch()
* may want it later.
*/
ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
le64_to_cpu(di->i_last_eb_blk), &bh,
OCFS2_BH_CACHED, inode);
if (ret) {
mlog_exit(ret);
goto out;
}
eb = (struct ocfs2_extent_block *) bh->b_data;
el = &eb->h_list;
}
/*
* Unless we have a contiguous insert, we'll need to know if
* there is room left in our allocation tree for another
* extent record.
*
* XXX: This test is simplistic, we can search for empty
* extent records too.
*/
*free_records = le16_to_cpu(el->l_count) -
le16_to_cpu(el->l_next_free_rec);
if (!insert->ins_tree_depth) {
ocfs2_figure_contig_type(inode, insert, el, insert_rec);
ocfs2_figure_appending_type(insert, el, insert_rec);
return 0;
}
path = ocfs2_new_inode_path(di_bh);
if (!path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
/*
* In the case that we're inserting past what the tree
* currently accounts for, ocfs2_find_path() will return for
* us the rightmost tree path. This is accounted for below in
* the appending code.
*/
ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
if (ret) {
mlog_errno(ret);
goto out;
}
el = path_leaf_el(path);
/*
* Now that we have the path, there's two things we want to determine:
* 1) Contiguousness (also set contig_index if this is so)
*
* 2) Are we doing an append? We can trivially break this up
* into two types of appends: simple record append, or a
* rotate inside the tail leaf.
*/
ocfs2_figure_contig_type(inode, insert, el, insert_rec);
/*
* The insert code isn't quite ready to deal with all cases of
* left contiguousness. Specifically, if it's an insert into
* the 1st record in a leaf, it will require the adjustment of
* cluster count on the last record of the path directly to it's
* left. For now, just catch that case and fool the layers
* above us. This works just fine for tree_depth == 0, which
* is why we allow that above.
*/
if (insert->ins_contig == CONTIG_LEFT &&
insert->ins_contig_index == 0)
insert->ins_contig = CONTIG_NONE;
/*
* Ok, so we can simply compare against last_eb to figure out
* whether the path doesn't exist. This will only happen in
* the case that we're doing a tail append, so maybe we can
* take advantage of that information somehow.
*/
if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
/*
* Ok, ocfs2_find_path() returned us the rightmost
* tree path. This might be an appending insert. There are
* two cases:
* 1) We're doing a true append at the tail:
* -This might even be off the end of the leaf
* 2) We're "appending" by rotating in the tail
*/
ocfs2_figure_appending_type(insert, el, insert_rec);
}
out:
ocfs2_free_path(path);
if (ret == 0)
*last_eb_bh = bh;
else
brelse(bh);
return ret;
}
/*
* Insert an extent into an inode btree.
*
* The caller needs to update fe->i_clusters
*/
int ocfs2_insert_extent(struct ocfs2_super *osb,
handle_t *handle,
struct inode *inode,
struct buffer_head *fe_bh,
u32 cpos,
u64 start_blk,
u32 new_clusters,
u8 flags,
struct ocfs2_alloc_context *meta_ac)
{
int status;
int uninitialized_var(free_records);
struct buffer_head *last_eb_bh = NULL;
struct ocfs2_insert_type insert = {0, };
struct ocfs2_extent_rec rec;
BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
mlog(0, "add %u clusters at position %u to inode %llu\n",
new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
(OCFS2_I(inode)->ip_clusters != cpos),
"Device %s, asking for sparse allocation: inode %llu, "
"cpos %u, clusters %u\n",
osb->dev_str,
(unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
OCFS2_I(inode)->ip_clusters);
memset(&rec, 0, sizeof(rec));
rec.e_cpos = cpu_to_le32(cpos);
rec.e_blkno = cpu_to_le64(start_blk);
rec.e_leaf_clusters = cpu_to_le16(new_clusters);
rec.e_flags = flags;
status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
&free_records, &insert);
if (status < 0) {
mlog_errno(status);
goto bail;
}
mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
"Insert.contig_index: %d, Insert.free_records: %d, "
"Insert.tree_depth: %d\n",
insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
free_records, insert.ins_tree_depth);
if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
status = ocfs2_grow_tree(inode, handle, fe_bh,
&insert.ins_tree_depth, &last_eb_bh,
meta_ac);
if (status) {
mlog_errno(status);
goto bail;
}
}
/* Finally, we can add clusters. This might rotate the tree for us. */
status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
if (status < 0)
mlog_errno(status);
else
ocfs2_extent_map_insert_rec(inode, &rec);
bail:
if (last_eb_bh)
brelse(last_eb_bh);
mlog_exit(status);
return status;
}
static void ocfs2_make_right_split_rec(struct super_block *sb,
struct ocfs2_extent_rec *split_rec,
u32 cpos,
struct ocfs2_extent_rec *rec)
{
u32 rec_cpos = le32_to_cpu(rec->e_cpos);
u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
split_rec->e_cpos = cpu_to_le32(cpos);
split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
split_rec->e_blkno = rec->e_blkno;
le64_add_cpu(&split_rec->e_blkno,
ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
split_rec->e_flags = rec->e_flags;
}
static int ocfs2_split_and_insert(struct inode *inode,
handle_t *handle,
struct ocfs2_path *path,
struct buffer_head *di_bh,
struct buffer_head **last_eb_bh,
int split_index,
struct ocfs2_extent_rec *orig_split_rec,
struct ocfs2_alloc_context *meta_ac)
{
int ret = 0, depth;
unsigned int insert_range, rec_range, do_leftright = 0;
struct ocfs2_extent_rec tmprec;
struct ocfs2_extent_list *rightmost_el;
struct ocfs2_extent_rec rec;
struct ocfs2_extent_rec split_rec = *orig_split_rec;
struct ocfs2_insert_type insert;
struct ocfs2_extent_block *eb;
struct ocfs2_dinode *di;
leftright:
/*
* Store a copy of the record on the stack - it might move
* around as the tree is manipulated below.
*/
rec = path_leaf_el(path)->l_recs[split_index];
di = (struct ocfs2_dinode *)di_bh->b_data;
rightmost_el = &di->id2.i_list;
depth = le16_to_cpu(rightmost_el->l_tree_depth);
if (depth) {
BUG_ON(!(*last_eb_bh));
eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
rightmost_el = &eb->h_list;
}
if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
le16_to_cpu(rightmost_el->l_count)) {
ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh,
meta_ac);
if (ret) {
mlog_errno(ret);
goto out;
}
}
memset(&insert, 0, sizeof(struct ocfs2_insert_type));
insert.ins_appending = APPEND_NONE;
insert.ins_contig = CONTIG_NONE;
insert.ins_tree_depth = depth;
insert_range = le32_to_cpu(split_rec.e_cpos) +
le16_to_cpu(split_rec.e_leaf_clusters);
rec_range = le32_to_cpu(rec.e_cpos) +
le16_to_cpu(rec.e_leaf_clusters);
if (split_rec.e_cpos == rec.e_cpos) {
insert.ins_split = SPLIT_LEFT;
} else if (insert_range == rec_range) {
insert.ins_split = SPLIT_RIGHT;
} else {
/*
* Left/right split. We fake this as a right split
* first and then make a second pass as a left split.
*/
insert.ins_split = SPLIT_RIGHT;
ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
&rec);
split_rec = tmprec;
BUG_ON(do_leftright);
do_leftright = 1;
}
ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec,
&insert);
if (ret) {
mlog_errno(ret);
goto out;
}
if (do_leftright == 1) {
u32 cpos;
struct ocfs2_extent_list *el;
do_leftright++;
split_rec = *orig_split_rec;
ocfs2_reinit_path(path, 1);
cpos = le32_to_cpu(split_rec.e_cpos);
ret = ocfs2_find_path(inode, path, cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
el = path_leaf_el(path);
split_index = ocfs2_search_extent_list(el, cpos);
goto leftright;
}
out:
return ret;
}
/*
* Mark part or all of the extent record at split_index in the leaf
* pointed to by path as written. This removes the unwritten
* extent flag.
*
* Care is taken to handle contiguousness so as to not grow the tree.
*
* meta_ac is not strictly necessary - we only truly need it if growth
* of the tree is required. All other cases will degrade into a less
* optimal tree layout.
*
* last_eb_bh should be the rightmost leaf block for any inode with a
* btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
*
* This code is optimized for readability - several passes might be
* made over certain portions of the tree. All of those blocks will
* have been brought into cache (and pinned via the journal), so the
* extra overhead is not expressed in terms of disk reads.
*/
static int __ocfs2_mark_extent_written(struct inode *inode,
struct buffer_head *di_bh,
handle_t *handle,
struct ocfs2_path *path,
int split_index,
struct ocfs2_extent_rec *split_rec,
struct ocfs2_alloc_context *meta_ac,
struct ocfs2_cached_dealloc_ctxt *dealloc)
{
int ret = 0;
struct ocfs2_extent_list *el = path_leaf_el(path);
struct buffer_head *eb_bh, *last_eb_bh = NULL;
struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
struct ocfs2_merge_ctxt ctxt;
struct ocfs2_extent_list *rightmost_el;
if (!rec->e_flags & OCFS2_EXT_UNWRITTEN) {
ret = -EIO;
mlog_errno(ret);
goto out;
}
if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
(le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
ret = -EIO;
mlog_errno(ret);
goto out;
}
eb_bh = path_leaf_bh(path);
ret = ocfs2_journal_access(handle, inode, eb_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out;
}
ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, el,
split_index,
split_rec);
/*
* The core merge / split code wants to know how much room is
* left in this inodes allocation tree, so we pass the
* rightmost extent list.
*/
if (path->p_tree_depth) {
struct ocfs2_extent_block *eb;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
le64_to_cpu(di->i_last_eb_blk),
&last_eb_bh, OCFS2_BH_CACHED, inode);
if (ret) {
mlog_exit(ret);
goto out;
}
eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
ret = -EROFS;
goto out;
}
rightmost_el = &eb->h_list;
} else
rightmost_el = path_root_el(path);
if (rec->e_cpos == split_rec->e_cpos &&
rec->e_leaf_clusters == split_rec->e_leaf_clusters)
ctxt.c_split_covers_rec = 1;
else
ctxt.c_split_covers_rec = 0;
ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
ctxt.c_split_covers_rec);
if (ctxt.c_contig_type == CONTIG_NONE) {
if (ctxt.c_split_covers_rec)
el->l_recs[split_index] = *split_rec;
else
ret = ocfs2_split_and_insert(inode, handle, path, di_bh,
&last_eb_bh, split_index,
split_rec, meta_ac);
if (ret)
mlog_errno(ret);
} else {
ret = ocfs2_try_to_merge_extent(inode, handle, path,
split_index, split_rec,
dealloc, &ctxt);
if (ret)
mlog_errno(ret);
}
ocfs2_journal_dirty(handle, eb_bh);
out:
brelse(last_eb_bh);
return ret;
}
/*
* Mark the already-existing extent at cpos as written for len clusters.
*
* If the existing extent is larger than the request, initiate a
* split. An attempt will be made at merging with adjacent extents.
*
* The caller is responsible for passing down meta_ac if we'll need it.
*/
int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh,
handle_t *handle, u32 cpos, u32 len, u32 phys,
struct ocfs2_alloc_context *meta_ac,
struct ocfs2_cached_dealloc_ctxt *dealloc)
{
int ret, index;
u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
struct ocfs2_extent_rec split_rec;
struct ocfs2_path *left_path = NULL;
struct ocfs2_extent_list *el;
mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
"that are being written to, but the feature bit "
"is not set in the super block.",
(unsigned long long)OCFS2_I(inode)->ip_blkno);
ret = -EROFS;
goto out;
}
/*
* XXX: This should be fixed up so that we just re-insert the
* next extent records.
*/
ocfs2_extent_map_trunc(inode, 0);
left_path = ocfs2_new_inode_path(di_bh);
if (!left_path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_find_path(inode, left_path, cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
el = path_leaf_el(left_path);
index = ocfs2_search_extent_list(el, cpos);
if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
ocfs2_error(inode->i_sb,
"Inode %llu has an extent at cpos %u which can no "
"longer be found.\n",
(unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
ret = -EROFS;
goto out;
}
memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
split_rec.e_cpos = cpu_to_le32(cpos);
split_rec.e_leaf_clusters = cpu_to_le16(len);
split_rec.e_blkno = cpu_to_le64(start_blkno);
split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path,
index, &split_rec, meta_ac, dealloc);
if (ret)
mlog_errno(ret);
out:
ocfs2_free_path(left_path);
return ret;
}
static int ocfs2_split_tree(struct inode *inode, struct buffer_head *di_bh,
handle_t *handle, struct ocfs2_path *path,
int index, u32 new_range,
struct ocfs2_alloc_context *meta_ac)
{
int ret, depth, credits = handle->h_buffer_credits;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
struct buffer_head *last_eb_bh = NULL;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *rightmost_el, *el;
struct ocfs2_extent_rec split_rec;
struct ocfs2_extent_rec *rec;
struct ocfs2_insert_type insert;
/*
* Setup the record to split before we grow the tree.
*/
el = path_leaf_el(path);
rec = &el->l_recs[index];
ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
depth = path->p_tree_depth;
if (depth > 0) {
ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
le64_to_cpu(di->i_last_eb_blk),
&last_eb_bh, OCFS2_BH_CACHED, inode);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
rightmost_el = &eb->h_list;
} else
rightmost_el = path_leaf_el(path);
credits += path->p_tree_depth + ocfs2_extend_meta_needed(di);
ret = ocfs2_extend_trans(handle, credits);
if (ret) {
mlog_errno(ret);
goto out;
}
if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
le16_to_cpu(rightmost_el->l_count)) {
ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, &last_eb_bh,
meta_ac);
if (ret) {
mlog_errno(ret);
goto out;
}
}
memset(&insert, 0, sizeof(struct ocfs2_insert_type));
insert.ins_appending = APPEND_NONE;
insert.ins_contig = CONTIG_NONE;
insert.ins_split = SPLIT_RIGHT;
insert.ins_tree_depth = depth;
ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec, &insert);
if (ret)
mlog_errno(ret);
out:
brelse(last_eb_bh);
return ret;
}
static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
struct ocfs2_path *path, int index,
struct ocfs2_cached_dealloc_ctxt *dealloc,
u32 cpos, u32 len)
{
int ret;
u32 left_cpos, rec_range, trunc_range;
int wants_rotate = 0, is_rightmost_tree_rec = 0;
struct super_block *sb = inode->i_sb;
struct ocfs2_path *left_path = NULL;
struct ocfs2_extent_list *el = path_leaf_el(path);
struct ocfs2_extent_rec *rec;
struct ocfs2_extent_block *eb;
if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
if (ret) {
mlog_errno(ret);
goto out;
}
index--;
}
if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
path->p_tree_depth) {
/*
* Check whether this is the rightmost tree record. If
* we remove all of this record or part of its right
* edge then an update of the record lengths above it
* will be required.
*/
eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
if (eb->h_next_leaf_blk == 0)
is_rightmost_tree_rec = 1;
}
rec = &el->l_recs[index];
if (index == 0 && path->p_tree_depth &&
le32_to_cpu(rec->e_cpos) == cpos) {
/*
* Changing the leftmost offset (via partial or whole
* record truncate) of an interior (or rightmost) path
* means we have to update the subtree that is formed
* by this leaf and the one to it's left.
*
* There are two cases we can skip:
* 1) Path is the leftmost one in our inode tree.
* 2) The leaf is rightmost and will be empty after
* we remove the extent record - the rotate code
* knows how to update the newly formed edge.
*/
ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
&left_cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
left_path = ocfs2_new_path(path_root_bh(path),
path_root_el(path));
if (!left_path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_find_path(inode, left_path, left_cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
}
}
ret = ocfs2_extend_rotate_transaction(handle, 0,
handle->h_buffer_credits,
path);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_path(inode, handle, path);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_path(inode, handle, left_path);
if (ret) {
mlog_errno(ret);
goto out;
}
rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
trunc_range = cpos + len;
if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
int next_free;
memset(rec, 0, sizeof(*rec));
ocfs2_cleanup_merge(el, index);
wants_rotate = 1;
next_free = le16_to_cpu(el->l_next_free_rec);
if (is_rightmost_tree_rec && next_free > 1) {
/*
* We skip the edge update if this path will
* be deleted by the rotate code.
*/
rec = &el->l_recs[next_free - 1];
ocfs2_adjust_rightmost_records(inode, handle, path,
rec);
}
} else if (le32_to_cpu(rec->e_cpos) == cpos) {
/* Remove leftmost portion of the record. */
le32_add_cpu(&rec->e_cpos, len);
le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
le16_add_cpu(&rec->e_leaf_clusters, -len);
} else if (rec_range == trunc_range) {
/* Remove rightmost portion of the record */
le16_add_cpu(&rec->e_leaf_clusters, -len);
if (is_rightmost_tree_rec)
ocfs2_adjust_rightmost_records(inode, handle, path, rec);
} else {
/* Caller should have trapped this. */
mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
"(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
le32_to_cpu(rec->e_cpos),
le16_to_cpu(rec->e_leaf_clusters), cpos, len);
BUG();
}
if (left_path) {
int subtree_index;
subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
ocfs2_complete_edge_insert(inode, handle, left_path, path,
subtree_index);
}
ocfs2_journal_dirty(handle, path_leaf_bh(path));
ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc);
if (ret) {
mlog_errno(ret);
goto out;
}
out:
ocfs2_free_path(left_path);
return ret;
}
int ocfs2_remove_extent(struct inode *inode, struct buffer_head *di_bh,
u32 cpos, u32 len, handle_t *handle,
struct ocfs2_alloc_context *meta_ac,
struct ocfs2_cached_dealloc_ctxt *dealloc)
{
int ret, index;
u32 rec_range, trunc_range;
struct ocfs2_extent_rec *rec;
struct ocfs2_extent_list *el;
struct ocfs2_path *path;
ocfs2_extent_map_trunc(inode, 0);
path = ocfs2_new_inode_path(di_bh);
if (!path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_find_path(inode, path, cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
el = path_leaf_el(path);
index = ocfs2_search_extent_list(el, cpos);
if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
ocfs2_error(inode->i_sb,
"Inode %llu has an extent at cpos %u which can no "
"longer be found.\n",
(unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
ret = -EROFS;
goto out;
}
/*
* We have 3 cases of extent removal:
* 1) Range covers the entire extent rec
* 2) Range begins or ends on one edge of the extent rec
* 3) Range is in the middle of the extent rec (no shared edges)
*
* For case 1 we remove the extent rec and left rotate to
* fill the hole.
*
* For case 2 we just shrink the existing extent rec, with a
* tree update if the shrinking edge is also the edge of an
* extent block.
*
* For case 3 we do a right split to turn the extent rec into
* something case 2 can handle.
*/
rec = &el->l_recs[index];
rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
trunc_range = cpos + len;
BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
"(cpos %u, len %u)\n",
(unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
cpos, len);
if (ret) {
mlog_errno(ret);
goto out;
}
} else {
ret = ocfs2_split_tree(inode, di_bh, handle, path, index,
trunc_range, meta_ac);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* The split could have manipulated the tree enough to
* move the record location, so we have to look for it again.
*/
ocfs2_reinit_path(path, 1);
ret = ocfs2_find_path(inode, path, cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
el = path_leaf_el(path);
index = ocfs2_search_extent_list(el, cpos);
if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
ocfs2_error(inode->i_sb,
"Inode %llu: split at cpos %u lost record.",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
cpos);
ret = -EROFS;
goto out;
}
/*
* Double check our values here. If anything is fishy,
* it's easier to catch it at the top level.
*/
rec = &el->l_recs[index];
rec_range = le32_to_cpu(rec->e_cpos) +
ocfs2_rec_clusters(el, rec);
if (rec_range != trunc_range) {
ocfs2_error(inode->i_sb,
"Inode %llu: error after split at cpos %u"
"trunc len %u, existing record is (%u,%u)",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
cpos, len, le32_to_cpu(rec->e_cpos),
ocfs2_rec_clusters(el, rec));
ret = -EROFS;
goto out;
}
ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
cpos, len);
if (ret) {
mlog_errno(ret);
goto out;
}
}
out:
ocfs2_free_path(path);
return ret;
}
int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
{
struct buffer_head *tl_bh = osb->osb_tl_bh;
struct ocfs2_dinode *di;
struct ocfs2_truncate_log *tl;
di = (struct ocfs2_dinode *) tl_bh->b_data;
tl = &di->id2.i_dealloc;
mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
"slot %d, invalid truncate log parameters: used = "
"%u, count = %u\n", osb->slot_num,
le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
}
static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
unsigned int new_start)
{
unsigned int tail_index;
unsigned int current_tail;
/* No records, nothing to coalesce */
if (!le16_to_cpu(tl->tl_used))
return 0;
tail_index = le16_to_cpu(tl->tl_used) - 1;
current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
return current_tail == new_start;
}
int ocfs2_truncate_log_append(struct ocfs2_super *osb,
handle_t *handle,
u64 start_blk,
unsigned int num_clusters)
{
int status, index;
unsigned int start_cluster, tl_count;
struct inode *tl_inode = osb->osb_tl_inode;
struct buffer_head *tl_bh = osb->osb_tl_bh;
struct ocfs2_dinode *di;
struct ocfs2_truncate_log *tl;
mlog_entry("start_blk = %llu, num_clusters = %u\n",
(unsigned long long)start_blk, num_clusters);
BUG_ON(mutex_trylock(&tl_inode->i_mutex));
start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
di = (struct ocfs2_dinode *) tl_bh->b_data;
tl = &di->id2.i_dealloc;
if (!OCFS2_IS_VALID_DINODE(di)) {
OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
status = -EIO;
goto bail;
}
tl_count = le16_to_cpu(tl->tl_count);
mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
tl_count == 0,
"Truncate record count on #%llu invalid "
"wanted %u, actual %u\n",
(unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
ocfs2_truncate_recs_per_inode(osb->sb),
le16_to_cpu(tl->tl_count));
/* Caller should have known to flush before calling us. */
index = le16_to_cpu(tl->tl_used);
if (index >= tl_count) {
status = -ENOSPC;
mlog_errno(status);
goto bail;
}
status = ocfs2_journal_access(handle, tl_inode, tl_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
mlog(0, "Log truncate of %u clusters starting at cluster %u to "
"%llu (index = %d)\n", num_clusters, start_cluster,
(unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
/*
* Move index back to the record we are coalescing with.
* ocfs2_truncate_log_can_coalesce() guarantees nonzero
*/
index--;
num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
index, le32_to_cpu(tl->tl_recs[index].t_start),
num_clusters);
} else {
tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
tl->tl_used = cpu_to_le16(index + 1);
}
tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
status = ocfs2_journal_dirty(handle, tl_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
bail:
mlog_exit(status);
return status;
}
static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
handle_t *handle,
struct inode *data_alloc_inode,
struct buffer_head *data_alloc_bh)
{
int status = 0;
int i;
unsigned int num_clusters;
u64 start_blk;
struct ocfs2_truncate_rec rec;
struct ocfs2_dinode *di;
struct ocfs2_truncate_log *tl;
struct inode *tl_inode = osb->osb_tl_inode;
struct buffer_head *tl_bh = osb->osb_tl_bh;
mlog_entry_void();
di = (struct ocfs2_dinode *) tl_bh->b_data;
tl = &di->id2.i_dealloc;
i = le16_to_cpu(tl->tl_used) - 1;
while (i >= 0) {
/* Caller has given us at least enough credits to
* update the truncate log dinode */
status = ocfs2_journal_access(handle, tl_inode, tl_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
tl->tl_used = cpu_to_le16(i);
status = ocfs2_journal_dirty(handle, tl_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
/* TODO: Perhaps we can calculate the bulk of the
* credits up front rather than extending like
* this. */
status = ocfs2_extend_trans(handle,
OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
if (status < 0) {
mlog_errno(status);
goto bail;
}
rec = tl->tl_recs[i];
start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
le32_to_cpu(rec.t_start));
num_clusters = le32_to_cpu(rec.t_clusters);
/* if start_blk is not set, we ignore the record as
* invalid. */
if (start_blk) {
mlog(0, "free record %d, start = %u, clusters = %u\n",
i, le32_to_cpu(rec.t_start), num_clusters);
status = ocfs2_free_clusters(handle, data_alloc_inode,
data_alloc_bh, start_blk,
num_clusters);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
i--;
}
bail:
mlog_exit(status);
return status;
}
/* Expects you to already be holding tl_inode->i_mutex */
int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
{
int status;
unsigned int num_to_flush;
handle_t *handle;
struct inode *tl_inode = osb->osb_tl_inode;
struct inode *data_alloc_inode = NULL;
struct buffer_head *tl_bh = osb->osb_tl_bh;
struct buffer_head *data_alloc_bh = NULL;
struct ocfs2_dinode *di;
struct ocfs2_truncate_log *tl;
mlog_entry_void();
BUG_ON(mutex_trylock(&tl_inode->i_mutex));
di = (struct ocfs2_dinode *) tl_bh->b_data;
tl = &di->id2.i_dealloc;
if (!OCFS2_IS_VALID_DINODE(di)) {
OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
status = -EIO;
goto out;
}
num_to_flush = le16_to_cpu(tl->tl_used);
mlog(0, "Flush %u records from truncate log #%llu\n",
num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
if (!num_to_flush) {
status = 0;
goto out;
}
data_alloc_inode = ocfs2_get_system_file_inode(osb,
GLOBAL_BITMAP_SYSTEM_INODE,
OCFS2_INVALID_SLOT);
if (!data_alloc_inode) {
status = -EINVAL;
mlog(ML_ERROR, "Could not get bitmap inode!\n");
goto out;
}
mutex_lock(&data_alloc_inode->i_mutex);
status = ocfs2_meta_lock(data_alloc_inode, &data_alloc_bh, 1);
if (status < 0) {
mlog_errno(status);
goto out_mutex;
}
handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
mlog_errno(status);
goto out_unlock;
}
status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
data_alloc_bh);
if (status < 0)
mlog_errno(status);
ocfs2_commit_trans(osb, handle);
out_unlock:
brelse(data_alloc_bh);
ocfs2_meta_unlock(data_alloc_inode, 1);
out_mutex:
mutex_unlock(&data_alloc_inode->i_mutex);
iput(data_alloc_inode);
out:
mlog_exit(status);
return status;
}
int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
{
int status;
struct inode *tl_inode = osb->osb_tl_inode;
mutex_lock(&tl_inode->i_mutex);
status = __ocfs2_flush_truncate_log(osb);
mutex_unlock(&tl_inode->i_mutex);
return status;
}
static void ocfs2_truncate_log_worker(struct work_struct *work)
{
int status;
struct ocfs2_super *osb =
container_of(work, struct ocfs2_super,
osb_truncate_log_wq.work);
mlog_entry_void();
status = ocfs2_flush_truncate_log(osb);
if (status < 0)
mlog_errno(status);
mlog_exit(status);
}
#define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
int cancel)
{
if (osb->osb_tl_inode) {
/* We want to push off log flushes while truncates are
* still running. */
if (cancel)
cancel_delayed_work(&osb->osb_truncate_log_wq);
queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
}
}
static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
int slot_num,
struct inode **tl_inode,
struct buffer_head **tl_bh)
{
int status;
struct inode *inode = NULL;
struct buffer_head *bh = NULL;
inode = ocfs2_get_system_file_inode(osb,
TRUNCATE_LOG_SYSTEM_INODE,
slot_num);
if (!inode) {
status = -EINVAL;
mlog(ML_ERROR, "Could not get load truncate log inode!\n");
goto bail;
}
status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
OCFS2_BH_CACHED, inode);
if (status < 0) {
iput(inode);
mlog_errno(status);
goto bail;
}
*tl_inode = inode;
*tl_bh = bh;
bail:
mlog_exit(status);
return status;
}
/* called during the 1st stage of node recovery. we stamp a clean
* truncate log and pass back a copy for processing later. if the
* truncate log does not require processing, a *tl_copy is set to
* NULL. */
int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
int slot_num,
struct ocfs2_dinode **tl_copy)
{
int status;
struct inode *tl_inode = NULL;
struct buffer_head *tl_bh = NULL;
struct ocfs2_dinode *di;
struct ocfs2_truncate_log *tl;
*tl_copy = NULL;
mlog(0, "recover truncate log from slot %d\n", slot_num);
status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
di = (struct ocfs2_dinode *) tl_bh->b_data;
tl = &di->id2.i_dealloc;
if (!OCFS2_IS_VALID_DINODE(di)) {
OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
status = -EIO;
goto bail;
}
if (le16_to_cpu(tl->tl_used)) {
mlog(0, "We'll have %u logs to recover\n",
le16_to_cpu(tl->tl_used));
*tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
if (!(*tl_copy)) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
/* Assuming the write-out below goes well, this copy
* will be passed back to recovery for processing. */
memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
/* All we need to do to clear the truncate log is set
* tl_used. */
tl->tl_used = 0;
status = ocfs2_write_block(osb, tl_bh, tl_inode);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
bail:
if (tl_inode)
iput(tl_inode);
if (tl_bh)
brelse(tl_bh);
if (status < 0 && (*tl_copy)) {
kfree(*tl_copy);
*tl_copy = NULL;
}
mlog_exit(status);
return status;
}
int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
struct ocfs2_dinode *tl_copy)
{
int status = 0;
int i;
unsigned int clusters, num_recs, start_cluster;
u64 start_blk;
handle_t *handle;
struct inode *tl_inode = osb->osb_tl_inode;
struct ocfs2_truncate_log *tl;
mlog_entry_void();
if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
return -EINVAL;
}
tl = &tl_copy->id2.i_dealloc;
num_recs = le16_to_cpu(tl->tl_used);
mlog(0, "cleanup %u records from %llu\n", num_recs,
(unsigned long long)le64_to_cpu(tl_copy->i_blkno));
mutex_lock(&tl_inode->i_mutex);
for(i = 0; i < num_recs; i++) {
if (ocfs2_truncate_log_needs_flush(osb)) {
status = __ocfs2_flush_truncate_log(osb);
if (status < 0) {
mlog_errno(status);
goto bail_up;
}
}
handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
mlog_errno(status);
goto bail_up;
}
clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
status = ocfs2_truncate_log_append(osb, handle,
start_blk, clusters);
ocfs2_commit_trans(osb, handle);
if (status < 0) {
mlog_errno(status);
goto bail_up;
}
}
bail_up:
mutex_unlock(&tl_inode->i_mutex);
mlog_exit(status);
return status;
}
void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
{
int status;
struct inode *tl_inode = osb->osb_tl_inode;
mlog_entry_void();
if (tl_inode) {
cancel_delayed_work(&osb->osb_truncate_log_wq);
flush_workqueue(ocfs2_wq);
status = ocfs2_flush_truncate_log(osb);
if (status < 0)
mlog_errno(status);
brelse(osb->osb_tl_bh);
iput(osb->osb_tl_inode);
}
mlog_exit_void();
}
int ocfs2_truncate_log_init(struct ocfs2_super *osb)
{
int status;
struct inode *tl_inode = NULL;
struct buffer_head *tl_bh = NULL;
mlog_entry_void();
status = ocfs2_get_truncate_log_info(osb,
osb->slot_num,
&tl_inode,
&tl_bh);
if (status < 0)
mlog_errno(status);
/* ocfs2_truncate_log_shutdown keys on the existence of
* osb->osb_tl_inode so we don't set any of the osb variables
* until we're sure all is well. */
INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
ocfs2_truncate_log_worker);
osb->osb_tl_bh = tl_bh;
osb->osb_tl_inode = tl_inode;
mlog_exit(status);
return status;
}
/*
* Delayed de-allocation of suballocator blocks.
*
* Some sets of block de-allocations might involve multiple suballocator inodes.
*
* The locking for this can get extremely complicated, especially when
* the suballocator inodes to delete from aren't known until deep
* within an unrelated codepath.
*
* ocfs2_extent_block structures are a good example of this - an inode
* btree could have been grown by any number of nodes each allocating
* out of their own suballoc inode.
*
* These structures allow the delay of block de-allocation until a
* later time, when locking of multiple cluster inodes won't cause
* deadlock.
*/
/*
* Describes a single block free from a suballocator
*/
struct ocfs2_cached_block_free {
struct ocfs2_cached_block_free *free_next;
u64 free_blk;
unsigned int free_bit;
};
struct ocfs2_per_slot_free_list {
struct ocfs2_per_slot_free_list *f_next_suballocator;
int f_inode_type;
int f_slot;
struct ocfs2_cached_block_free *f_first;
};
static int ocfs2_free_cached_items(struct ocfs2_super *osb,
int sysfile_type,
int slot,
struct ocfs2_cached_block_free *head)
{
int ret;
u64 bg_blkno;
handle_t *handle;
struct inode *inode;
struct buffer_head *di_bh = NULL;
struct ocfs2_cached_block_free *tmp;
inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
if (!inode) {
ret = -EINVAL;
mlog_errno(ret);
goto out;
}
mutex_lock(&inode->i_mutex);
ret = ocfs2_meta_lock(inode, &di_bh, 1);
if (ret) {
mlog_errno(ret);
goto out_mutex;
}
handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out_unlock;
}
while (head) {
bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
head->free_bit);
mlog(0, "Free bit: (bit %u, blkno %llu)\n",
head->free_bit, (unsigned long long)head->free_blk);
ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
head->free_bit, bg_blkno, 1);
if (ret) {
mlog_errno(ret);
goto out_journal;
}
ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
if (ret) {
mlog_errno(ret);
goto out_journal;
}
tmp = head;
head = head->free_next;
kfree(tmp);
}
out_journal:
ocfs2_commit_trans(osb, handle);
out_unlock:
ocfs2_meta_unlock(inode, 1);
brelse(di_bh);
out_mutex:
mutex_unlock(&inode->i_mutex);
iput(inode);
out:
while(head) {
/* Premature exit may have left some dangling items. */
tmp = head;
head = head->free_next;
kfree(tmp);
}
return ret;
}
int ocfs2_run_deallocs(struct ocfs2_super *osb,
struct ocfs2_cached_dealloc_ctxt *ctxt)
{
int ret = 0, ret2;
struct ocfs2_per_slot_free_list *fl;
if (!ctxt)
return 0;
while (ctxt->c_first_suballocator) {
fl = ctxt->c_first_suballocator;
if (fl->f_first) {
mlog(0, "Free items: (type %u, slot %d)\n",
fl->f_inode_type, fl->f_slot);
ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
fl->f_slot, fl->f_first);
if (ret2)
mlog_errno(ret2);
if (!ret)
ret = ret2;
}
ctxt->c_first_suballocator = fl->f_next_suballocator;
kfree(fl);
}
return ret;
}
static struct ocfs2_per_slot_free_list *
ocfs2_find_per_slot_free_list(int type,
int slot,
struct ocfs2_cached_dealloc_ctxt *ctxt)
{
struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
while (fl) {
if (fl->f_inode_type == type && fl->f_slot == slot)
return fl;
fl = fl->f_next_suballocator;
}
fl = kmalloc(sizeof(*fl), GFP_NOFS);
if (fl) {
fl->f_inode_type = type;
fl->f_slot = slot;
fl->f_first = NULL;
fl->f_next_suballocator = ctxt->c_first_suballocator;
ctxt->c_first_suballocator = fl;
}
return fl;
}
static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
int type, int slot, u64 blkno,
unsigned int bit)
{
int ret;
struct ocfs2_per_slot_free_list *fl;
struct ocfs2_cached_block_free *item;
fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
if (fl == NULL) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
item = kmalloc(sizeof(*item), GFP_NOFS);
if (item == NULL) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
type, slot, bit, (unsigned long long)blkno);
item->free_blk = blkno;
item->free_bit = bit;
item->free_next = fl->f_first;
fl->f_first = item;
ret = 0;
out:
return ret;
}
static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
struct ocfs2_extent_block *eb)
{
return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
le16_to_cpu(eb->h_suballoc_slot),
le64_to_cpu(eb->h_blkno),
le16_to_cpu(eb->h_suballoc_bit));
}
/* This function will figure out whether the currently last extent
* block will be deleted, and if it will, what the new last extent
* block will be so we can update his h_next_leaf_blk field, as well
* as the dinodes i_last_eb_blk */
static int ocfs2_find_new_last_ext_blk(struct inode *inode,
unsigned int clusters_to_del,
struct ocfs2_path *path,
struct buffer_head **new_last_eb)
{
int next_free, ret = 0;
u32 cpos;
struct ocfs2_extent_rec *rec;
struct ocfs2_extent_block *eb;
struct ocfs2_extent_list *el;
struct buffer_head *bh = NULL;
*new_last_eb = NULL;
/* we have no tree, so of course, no last_eb. */
if (!path->p_tree_depth)
goto out;
/* trunc to zero special case - this makes tree_depth = 0
* regardless of what it is. */
if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
goto out;
el = path_leaf_el(path);
BUG_ON(!el->l_next_free_rec);
/*
* Make sure that this extent list will actually be empty
* after we clear away the data. We can shortcut out if
* there's more than one non-empty extent in the
* list. Otherwise, a check of the remaining extent is
* necessary.
*/
next_free = le16_to_cpu(el->l_next_free_rec);
rec = NULL;
if (ocfs2_is_empty_extent(&el->l_recs[0])) {
if (next_free > 2)
goto out;
/* We may have a valid extent in index 1, check it. */
if (next_free == 2)
rec = &el->l_recs[1];
/*
* Fall through - no more nonempty extents, so we want
* to delete this leaf.
*/
} else {
if (next_free > 1)
goto out;
rec = &el->l_recs[0];
}
if (rec) {
/*
* Check it we'll only be trimming off the end of this
* cluster.
*/
if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
goto out;
}
ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
if (ret) {
mlog_errno(ret);
goto out;
}
eb = (struct ocfs2_extent_block *) bh->b_data;
el = &eb->h_list;
if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
ret = -EROFS;
goto out;
}
*new_last_eb = bh;
get_bh(*new_last_eb);
mlog(0, "returning block %llu, (cpos: %u)\n",
(unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
out:
brelse(bh);
return ret;
}
/*
* Trim some clusters off the rightmost edge of a tree. Only called
* during truncate.
*
* The caller needs to:
* - start journaling of each path component.
* - compute and fully set up any new last ext block
*/
static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
handle_t *handle, struct ocfs2_truncate_context *tc,
u32 clusters_to_del, u64 *delete_start)
{
int ret, i, index = path->p_tree_depth;
u32 new_edge = 0;
u64 deleted_eb = 0;
struct buffer_head *bh;
struct ocfs2_extent_list *el;
struct ocfs2_extent_rec *rec;
*delete_start = 0;
while (index >= 0) {
bh = path->p_node[index].bh;
el = path->p_node[index].el;
mlog(0, "traveling tree (index = %d, block = %llu)\n",
index, (unsigned long long)bh->b_blocknr);
BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
if (index !=
(path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
ocfs2_error(inode->i_sb,
"Inode %lu has invalid ext. block %llu",
inode->i_ino,
(unsigned long long)bh->b_blocknr);
ret = -EROFS;
goto out;
}
find_tail_record:
i = le16_to_cpu(el->l_next_free_rec) - 1;
rec = &el->l_recs[i];
mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
"next = %u\n", i, le32_to_cpu(rec->e_cpos),
ocfs2_rec_clusters(el, rec),
(unsigned long long)le64_to_cpu(rec->e_blkno),
le16_to_cpu(el->l_next_free_rec));
BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
if (le16_to_cpu(el->l_tree_depth) == 0) {
/*
* If the leaf block contains a single empty
* extent and no records, we can just remove
* the block.
*/
if (i == 0 && ocfs2_is_empty_extent(rec)) {
memset(rec, 0,
sizeof(struct ocfs2_extent_rec));
el->l_next_free_rec = cpu_to_le16(0);
goto delete;
}
/*
* Remove any empty extents by shifting things
* left. That should make life much easier on
* the code below. This condition is rare
* enough that we shouldn't see a performance
* hit.
*/
if (ocfs2_is_empty_extent(&el->l_recs[0])) {
le16_add_cpu(&el->l_next_free_rec, -1);
for(i = 0;
i < le16_to_cpu(el->l_next_free_rec); i++)
el->l_recs[i] = el->l_recs[i + 1];
memset(&el->l_recs[i], 0,
sizeof(struct ocfs2_extent_rec));
/*
* We've modified our extent list. The
* simplest way to handle this change
* is to being the search from the
* start again.
*/
goto find_tail_record;
}
le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
/*
* We'll use "new_edge" on our way back up the
* tree to know what our rightmost cpos is.
*/
new_edge = le16_to_cpu(rec->e_leaf_clusters);
new_edge += le32_to_cpu(rec->e_cpos);
/*
* The caller will use this to delete data blocks.
*/
*delete_start = le64_to_cpu(rec->e_blkno)
+ ocfs2_clusters_to_blocks(inode->i_sb,
le16_to_cpu(rec->e_leaf_clusters));
/*
* If it's now empty, remove this record.
*/
if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
memset(rec, 0,
sizeof(struct ocfs2_extent_rec));
le16_add_cpu(&el->l_next_free_rec, -1);
}
} else {
if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
memset(rec, 0,
sizeof(struct ocfs2_extent_rec));
le16_add_cpu(&el->l_next_free_rec, -1);
goto delete;
}
/* Can this actually happen? */
if (le16_to_cpu(el->l_next_free_rec) == 0)
goto delete;
/*
* We never actually deleted any clusters
* because our leaf was empty. There's no
* reason to adjust the rightmost edge then.
*/
if (new_edge == 0)
goto delete;
rec->e_int_clusters = cpu_to_le32(new_edge);
le32_add_cpu(&rec->e_int_clusters,
-le32_to_cpu(rec->e_cpos));
/*
* A deleted child record should have been
* caught above.
*/
BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
}
delete:
ret = ocfs2_journal_dirty(handle, bh);
if (ret) {
mlog_errno(ret);
goto out;
}
mlog(0, "extent list container %llu, after: record %d: "
"(%u, %u, %llu), next = %u.\n",
(unsigned long long)bh->b_blocknr, i,
le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
(unsigned long long)le64_to_cpu(rec->e_blkno),
le16_to_cpu(el->l_next_free_rec));
/*
* We must be careful to only attempt delete of an
* extent block (and not the root inode block).
*/
if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
struct ocfs2_extent_block *eb =
(struct ocfs2_extent_block *)bh->b_data;
/*
* Save this for use when processing the
* parent block.
*/
deleted_eb = le64_to_cpu(eb->h_blkno);
mlog(0, "deleting this extent block.\n");
ocfs2_remove_from_cache(inode, bh);
BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
/* An error here is not fatal. */
if (ret < 0)
mlog_errno(ret);
} else {
deleted_eb = 0;
}
index--;
}
ret = 0;
out:
return ret;
}
static int ocfs2_do_truncate(struct ocfs2_super *osb,
unsigned int clusters_to_del,
struct inode *inode,
struct buffer_head *fe_bh,
handle_t *handle,
struct ocfs2_truncate_context *tc,
struct ocfs2_path *path)
{
int status;
struct ocfs2_dinode *fe;
struct ocfs2_extent_block *last_eb = NULL;
struct ocfs2_extent_list *el;
struct buffer_head *last_eb_bh = NULL;
u64 delete_blk = 0;
fe = (struct ocfs2_dinode *) fe_bh->b_data;
status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
path, &last_eb_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
/*
* Each component will be touched, so we might as well journal
* here to avoid having to handle errors later.
*/
status = ocfs2_journal_access_path(inode, handle, path);
if (status < 0) {
mlog_errno(status);
goto bail;
}
if (last_eb_bh) {
status = ocfs2_journal_access(handle, inode, last_eb_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto bail;
}
last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
}
el = &(fe->id2.i_list);
/*
* Lower levels depend on this never happening, but it's best
* to check it up here before changing the tree.
*/
if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
ocfs2_error(inode->i_sb,
"Inode %lu has an empty extent record, depth %u\n",
inode->i_ino, le16_to_cpu(el->l_tree_depth));
status = -EROFS;
goto bail;
}
spin_lock(&OCFS2_I(inode)->ip_lock);
OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
clusters_to_del;
spin_unlock(&OCFS2_I(inode)->ip_lock);
le32_add_cpu(&fe->i_clusters, -clusters_to_del);
inode->i_blocks = ocfs2_inode_sector_count(inode);
status = ocfs2_trim_tree(inode, path, handle, tc,
clusters_to_del, &delete_blk);
if (status) {
mlog_errno(status);
goto bail;
}
if (le32_to_cpu(fe->i_clusters) == 0) {
/* trunc to zero is a special case. */
el->l_tree_depth = 0;
fe->i_last_eb_blk = 0;
} else if (last_eb)
fe->i_last_eb_blk = last_eb->h_blkno;
status = ocfs2_journal_dirty(handle, fe_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
if (last_eb) {
/* If there will be a new last extent block, then by
* definition, there cannot be any leaves to the right of
* him. */
last_eb->h_next_leaf_blk = 0;
status = ocfs2_journal_dirty(handle, last_eb_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
if (delete_blk) {
status = ocfs2_truncate_log_append(osb, handle, delete_blk,
clusters_to_del);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
status = 0;
bail:
mlog_exit(status);
return status;
}
static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
{
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
return 0;
}
static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
{
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
return ocfs2_journal_dirty_data(handle, bh);
}
static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
unsigned int from, unsigned int to,
struct page *page, int zero, u64 *phys)
{
int ret, partial = 0;
ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
if (ret)
mlog_errno(ret);
if (zero)
zero_user_page(page, from, to - from, KM_USER0);
/*
* Need to set the buffers we zero'd into uptodate
* here if they aren't - ocfs2_map_page_blocks()
* might've skipped some
*/
if (ocfs2_should_order_data(inode)) {
ret = walk_page_buffers(handle,
page_buffers(page),
from, to, &partial,
ocfs2_ordered_zero_func);
if (ret < 0)
mlog_errno(ret);
} else {
ret = walk_page_buffers(handle, page_buffers(page),
from, to, &partial,
ocfs2_writeback_zero_func);
if (ret < 0)
mlog_errno(ret);
}
if (!partial)
SetPageUptodate(page);
flush_dcache_page(page);
}
static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
loff_t end, struct page **pages,
int numpages, u64 phys, handle_t *handle)
{
int i;
struct page *page;
unsigned int from, to = PAGE_CACHE_SIZE;
struct super_block *sb = inode->i_sb;
BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
if (numpages == 0)
goto out;
to = PAGE_CACHE_SIZE;
for(i = 0; i < numpages; i++) {
page = pages[i];
from = start & (PAGE_CACHE_SIZE - 1);
if ((end >> PAGE_CACHE_SHIFT) == page->index)
to = end & (PAGE_CACHE_SIZE - 1);
BUG_ON(from > PAGE_CACHE_SIZE);
BUG_ON(to > PAGE_CACHE_SIZE);
ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
&phys);
start = (page->index + 1) << PAGE_CACHE_SHIFT;
}
out:
if (pages)
ocfs2_unlock_and_free_pages(pages, numpages);
}
static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
struct page **pages, int *num)
{
int numpages, ret = 0;
struct super_block *sb = inode->i_sb;
struct address_space *mapping = inode->i_mapping;
unsigned long index;
loff_t last_page_bytes;
BUG_ON(start > end);
BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
(end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
numpages = 0;
last_page_bytes = PAGE_ALIGN(end);
index = start >> PAGE_CACHE_SHIFT;
do {
pages[numpages] = grab_cache_page(mapping, index);
if (!pages[numpages]) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
numpages++;
index++;
} while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
out:
if (ret != 0) {
if (pages)
ocfs2_unlock_and_free_pages(pages, numpages);
numpages = 0;
}
*num = numpages;
return ret;
}
/*
* Zero the area past i_size but still within an allocated
* cluster. This avoids exposing nonzero data on subsequent file
* extends.
*
* We need to call this before i_size is updated on the inode because
* otherwise block_write_full_page() will skip writeout of pages past
* i_size. The new_i_size parameter is passed for this reason.
*/
int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
u64 range_start, u64 range_end)
{
int ret = 0, numpages;
struct page **pages = NULL;
u64 phys;
unsigned int ext_flags;
struct super_block *sb = inode->i_sb;
/*
* File systems which don't support sparse files zero on every
* extend.
*/
if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
return 0;
pages = kcalloc(ocfs2_pages_per_cluster(sb),
sizeof(struct page *), GFP_NOFS);
if (pages == NULL) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
if (range_start == range_end)
goto out;
ret = ocfs2_extent_map_get_blocks(inode,
range_start >> sb->s_blocksize_bits,
&phys, NULL, &ext_flags);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* Tail is a hole, or is marked unwritten. In either case, we
* can count on read and write to return/push zero's.
*/
if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
goto out;
ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
&numpages);
if (ret) {
mlog_errno(ret);
goto out;
}
ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
numpages, phys, handle);
/*
* Initiate writeout of the pages we zero'd here. We don't
* wait on them - the truncate_inode_pages() call later will
* do that for us.
*/
ret = do_sync_mapping_range(inode->i_mapping, range_start,
range_end - 1, SYNC_FILE_RANGE_WRITE);
if (ret)
mlog_errno(ret);
out:
if (pages)
kfree(pages);
return ret;
}
static void ocfs2_zero_dinode_id2(struct inode *inode, struct ocfs2_dinode *di)
{
unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
memset(&di->id2, 0, blocksize - offsetof(struct ocfs2_dinode, id2));
}
void ocfs2_dinode_new_extent_list(struct inode *inode,
struct ocfs2_dinode *di)
{
ocfs2_zero_dinode_id2(inode, di);
di->id2.i_list.l_tree_depth = 0;
di->id2.i_list.l_next_free_rec = 0;
di->id2.i_list.l_count = cpu_to_le16(ocfs2_extent_recs_per_inode(inode->i_sb));
}
void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
{
struct ocfs2_inode_info *oi = OCFS2_I(inode);
struct ocfs2_inline_data *idata = &di->id2.i_data;
spin_lock(&oi->ip_lock);
oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
spin_unlock(&oi->ip_lock);
/*
* We clear the entire i_data structure here so that all
* fields can be properly initialized.
*/
ocfs2_zero_dinode_id2(inode, di);
idata->id_count = cpu_to_le16(ocfs2_max_inline_data(inode->i_sb));
}
int ocfs2_convert_inline_data_to_extents(struct inode *inode,
struct buffer_head *di_bh)
{
int ret, i, has_data, num_pages = 0;
handle_t *handle;
u64 uninitialized_var(block);
struct ocfs2_inode_info *oi = OCFS2_I(inode);
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
struct ocfs2_alloc_context *data_ac = NULL;
struct page **pages = NULL;
loff_t end = osb->s_clustersize;
has_data = i_size_read(inode) ? 1 : 0;
if (has_data) {
pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
sizeof(struct page *), GFP_NOFS);
if (pages == NULL) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
if (ret) {
mlog_errno(ret);
goto out;
}
}
handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out_unlock;
}
ret = ocfs2_journal_access(handle, inode, di_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
if (has_data) {
u32 bit_off, num;
unsigned int page_end;
u64 phys;
ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
&num);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
/*
* Save two copies, one for insert, and one that can
* be changed by ocfs2_map_and_dirty_page() below.
*/
block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
/*
* Non sparse file systems zero on extend, so no need
* to do that now.
*/
if (!ocfs2_sparse_alloc(osb) &&
PAGE_CACHE_SIZE < osb->s_clustersize)
end = PAGE_CACHE_SIZE;
ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
/*
* This should populate the 1st page for us and mark
* it up to date.
*/
ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
page_end = PAGE_CACHE_SIZE;
if (PAGE_CACHE_SIZE > osb->s_clustersize)
page_end = osb->s_clustersize;
for (i = 0; i < num_pages; i++)
ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
pages[i], i > 0, &phys);
}
spin_lock(&oi->ip_lock);
oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
spin_unlock(&oi->ip_lock);
ocfs2_dinode_new_extent_list(inode, di);
ocfs2_journal_dirty(handle, di_bh);
if (has_data) {
/*
* An error at this point should be extremely rare. If
* this proves to be false, we could always re-build
* the in-inode data from our pages.
*/
ret = ocfs2_insert_extent(osb, handle, inode, di_bh,
0, block, 1, 0, NULL);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
inode->i_blocks = ocfs2_inode_sector_count(inode);
}
out_commit:
ocfs2_commit_trans(osb, handle);
out_unlock:
if (data_ac)
ocfs2_free_alloc_context(data_ac);
out:
if (pages) {
ocfs2_unlock_and_free_pages(pages, num_pages);
kfree(pages);
}
return ret;
}
/*
* It is expected, that by the time you call this function,
* inode->i_size and fe->i_size have been adjusted.
*
* WARNING: This will kfree the truncate context
*/
int ocfs2_commit_truncate(struct ocfs2_super *osb,
struct inode *inode,
struct buffer_head *fe_bh,
struct ocfs2_truncate_context *tc)
{
int status, i, credits, tl_sem = 0;
u32 clusters_to_del, new_highest_cpos, range;
struct ocfs2_extent_list *el;
handle_t *handle = NULL;
struct inode *tl_inode = osb->osb_tl_inode;
struct ocfs2_path *path = NULL;
mlog_entry_void();
new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
i_size_read(inode));
path = ocfs2_new_inode_path(fe_bh);
if (!path) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
ocfs2_extent_map_trunc(inode, new_highest_cpos);
start:
/*
* Check that we still have allocation to delete.
*/
if (OCFS2_I(inode)->ip_clusters == 0) {
status = 0;
goto bail;
}
/*
* Truncate always works against the rightmost tree branch.
*/
status = ocfs2_find_path(inode, path, UINT_MAX);
if (status) {
mlog_errno(status);
goto bail;
}
mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
/*
* By now, el will point to the extent list on the bottom most
* portion of this tree. Only the tail record is considered in
* each pass.
*
* We handle the following cases, in order:
* - empty extent: delete the remaining branch
* - remove the entire record
* - remove a partial record
* - no record needs to be removed (truncate has completed)
*/
el = path_leaf_el(path);
if (le16_to_cpu(el->l_next_free_rec) == 0) {
ocfs2_error(inode->i_sb,
"Inode %llu has empty extent block at %llu\n",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)path_leaf_bh(path)->b_blocknr);
status = -EROFS;
goto bail;
}
i = le16_to_cpu(el->l_next_free_rec) - 1;
range = le32_to_cpu(el->l_recs[i].e_cpos) +
ocfs2_rec_clusters(el, &el->l_recs[i]);
if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
clusters_to_del = 0;
} else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
} else if (range > new_highest_cpos) {
clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
le32_to_cpu(el->l_recs[i].e_cpos)) -
new_highest_cpos;
} else {
status = 0;
goto bail;
}
mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
BUG_ON(clusters_to_del == 0);
mutex_lock(&tl_inode->i_mutex);
tl_sem = 1;
/* ocfs2_truncate_log_needs_flush guarantees us at least one
* record is free for use. If there isn't any, we flush to get
* an empty truncate log. */
if (ocfs2_truncate_log_needs_flush(osb)) {
status = __ocfs2_flush_truncate_log(osb);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
(struct ocfs2_dinode *)fe_bh->b_data,
el);
handle = ocfs2_start_trans(osb, credits);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
handle = NULL;
mlog_errno(status);
goto bail;
}
status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
tc, path);
if (status < 0) {
mlog_errno(status);
goto bail;
}
mutex_unlock(&tl_inode->i_mutex);
tl_sem = 0;
ocfs2_commit_trans(osb, handle);
handle = NULL;
ocfs2_reinit_path(path, 1);
/*
* The check above will catch the case where we've truncated
* away all allocation.
*/
goto start;
bail:
ocfs2_schedule_truncate_log_flush(osb, 1);
if (tl_sem)
mutex_unlock(&tl_inode->i_mutex);
if (handle)
ocfs2_commit_trans(osb, handle);
ocfs2_run_deallocs(osb, &tc->tc_dealloc);
ocfs2_free_path(path);
/* This will drop the ext_alloc cluster lock for us */
ocfs2_free_truncate_context(tc);
mlog_exit(status);
return status;
}
/*
* Expects the inode to already be locked.
*/
int ocfs2_prepare_truncate(struct ocfs2_super *osb,
struct inode *inode,
struct buffer_head *fe_bh,
struct ocfs2_truncate_context **tc)
{
int status;
unsigned int new_i_clusters;
struct ocfs2_dinode *fe;
struct ocfs2_extent_block *eb;
struct buffer_head *last_eb_bh = NULL;
mlog_entry_void();
*tc = NULL;
new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
i_size_read(inode));
fe = (struct ocfs2_dinode *) fe_bh->b_data;
mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
"%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
(unsigned long long)le64_to_cpu(fe->i_size));
*tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
if (!(*tc)) {
status = -ENOMEM;
mlog_errno(status);
goto bail;
}
ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
if (fe->id2.i_list.l_tree_depth) {
status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
&last_eb_bh, OCFS2_BH_CACHED, inode);
if (status < 0) {
mlog_errno(status);
goto bail;
}
eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
brelse(last_eb_bh);
status = -EIO;
goto bail;
}
}
(*tc)->tc_last_eb_bh = last_eb_bh;
status = 0;
bail:
if (status < 0) {
if (*tc)
ocfs2_free_truncate_context(*tc);
*tc = NULL;
}
mlog_exit_void();
return status;
}
/*
* 'start' is inclusive, 'end' is not.
*/
int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
unsigned int start, unsigned int end, int trunc)
{
int ret;
unsigned int numbytes;
handle_t *handle;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
struct ocfs2_inline_data *idata = &di->id2.i_data;
if (end > i_size_read(inode))
end = i_size_read(inode);
BUG_ON(start >= end);
if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
!ocfs2_supports_inline_data(osb)) {
ocfs2_error(inode->i_sb,
"Inline data flags for inode %llu don't agree! "
"Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
le16_to_cpu(di->i_dyn_features),
OCFS2_I(inode)->ip_dyn_features,
osb->s_feature_incompat);
ret = -EROFS;
goto out;
}
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access(handle, inode, di_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
numbytes = end - start;
memset(idata->id_data + start, 0, numbytes);
/*
* No need to worry about the data page here - it's been
* truncated already and inline data doesn't need it for
* pushing zero's to disk, so we'll let readpage pick it up
* later.
*/
if (trunc) {
i_size_write(inode, start);
di->i_size = cpu_to_le64(start);
}
inode->i_blocks = ocfs2_inode_sector_count(inode);
inode->i_ctime = inode->i_mtime = CURRENT_TIME;
di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
ocfs2_journal_dirty(handle, di_bh);
out_commit:
ocfs2_commit_trans(osb, handle);
out:
return ret;
}
static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
{
/*
* The caller is responsible for completing deallocation
* before freeing the context.
*/
if (tc->tc_dealloc.c_first_suballocator != NULL)
mlog(ML_NOTICE,
"Truncate completion has non-empty dealloc context\n");
if (tc->tc_last_eb_bh)
brelse(tc->tc_last_eb_bh);
kfree(tc);
}