1
linux/drivers/net/mlx4/en_rx.c
FUJITA Tomonori e4fc85600b mlx4: replace the dma_sync_single_range_for_cpu/device API
There are only two users of the dma_sync_single_range_for_cpu/device
API in mainline (mlx4 and ssb). The
dma_sync_single_range_for_cpu/device API has never been documented and
the dma_sync_single_for_cpu/device API also support a partial sync.

This converts mlx4 to use the dma_sync_single_for_cpu/device API
(preparations for the removal of the dma_sync_single_range_for_cpu/device API).

Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-02-19 13:19:51 -08:00

941 lines
26 KiB
C

/*
* Copyright (c) 2007 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*/
#include <linux/mlx4/cq.h>
#include <linux/mlx4/qp.h>
#include <linux/skbuff.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/vmalloc.h>
#include "mlx4_en.h"
static int mlx4_en_get_frag_header(struct skb_frag_struct *frags, void **mac_hdr,
void **ip_hdr, void **tcpudp_hdr,
u64 *hdr_flags, void *priv)
{
*mac_hdr = page_address(frags->page) + frags->page_offset;
*ip_hdr = *mac_hdr + ETH_HLEN;
*tcpudp_hdr = (struct tcphdr *)(*ip_hdr + sizeof(struct iphdr));
*hdr_flags = LRO_IPV4 | LRO_TCP;
return 0;
}
static int mlx4_en_alloc_frag(struct mlx4_en_priv *priv,
struct mlx4_en_rx_desc *rx_desc,
struct skb_frag_struct *skb_frags,
struct mlx4_en_rx_alloc *ring_alloc,
int i)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_frag_info *frag_info = &priv->frag_info[i];
struct mlx4_en_rx_alloc *page_alloc = &ring_alloc[i];
struct page *page;
dma_addr_t dma;
if (page_alloc->offset == frag_info->last_offset) {
/* Allocate new page */
page = alloc_pages(GFP_ATOMIC | __GFP_COMP, MLX4_EN_ALLOC_ORDER);
if (!page)
return -ENOMEM;
skb_frags[i].page = page_alloc->page;
skb_frags[i].page_offset = page_alloc->offset;
page_alloc->page = page;
page_alloc->offset = frag_info->frag_align;
} else {
page = page_alloc->page;
get_page(page);
skb_frags[i].page = page;
skb_frags[i].page_offset = page_alloc->offset;
page_alloc->offset += frag_info->frag_stride;
}
dma = pci_map_single(mdev->pdev, page_address(skb_frags[i].page) +
skb_frags[i].page_offset, frag_info->frag_size,
PCI_DMA_FROMDEVICE);
rx_desc->data[i].addr = cpu_to_be64(dma);
return 0;
}
static int mlx4_en_init_allocator(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
struct mlx4_en_rx_alloc *page_alloc;
int i;
for (i = 0; i < priv->num_frags; i++) {
page_alloc = &ring->page_alloc[i];
page_alloc->page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
MLX4_EN_ALLOC_ORDER);
if (!page_alloc->page)
goto out;
page_alloc->offset = priv->frag_info[i].frag_align;
en_dbg(DRV, priv, "Initialized allocator:%d with page:%p\n",
i, page_alloc->page);
}
return 0;
out:
while (i--) {
page_alloc = &ring->page_alloc[i];
put_page(page_alloc->page);
page_alloc->page = NULL;
}
return -ENOMEM;
}
static void mlx4_en_destroy_allocator(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
struct mlx4_en_rx_alloc *page_alloc;
int i;
for (i = 0; i < priv->num_frags; i++) {
page_alloc = &ring->page_alloc[i];
en_dbg(DRV, priv, "Freeing allocator:%d count:%d\n",
i, page_count(page_alloc->page));
put_page(page_alloc->page);
page_alloc->page = NULL;
}
}
static void mlx4_en_init_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring, int index)
{
struct mlx4_en_rx_desc *rx_desc = ring->buf + ring->stride * index;
struct skb_frag_struct *skb_frags = ring->rx_info +
(index << priv->log_rx_info);
int possible_frags;
int i;
/* Set size and memtype fields */
for (i = 0; i < priv->num_frags; i++) {
skb_frags[i].size = priv->frag_info[i].frag_size;
rx_desc->data[i].byte_count =
cpu_to_be32(priv->frag_info[i].frag_size);
rx_desc->data[i].lkey = cpu_to_be32(priv->mdev->mr.key);
}
/* If the number of used fragments does not fill up the ring stride,
* remaining (unused) fragments must be padded with null address/size
* and a special memory key */
possible_frags = (ring->stride - sizeof(struct mlx4_en_rx_desc)) / DS_SIZE;
for (i = priv->num_frags; i < possible_frags; i++) {
rx_desc->data[i].byte_count = 0;
rx_desc->data[i].lkey = cpu_to_be32(MLX4_EN_MEMTYPE_PAD);
rx_desc->data[i].addr = 0;
}
}
static int mlx4_en_prepare_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring, int index)
{
struct mlx4_en_rx_desc *rx_desc = ring->buf + (index * ring->stride);
struct skb_frag_struct *skb_frags = ring->rx_info +
(index << priv->log_rx_info);
int i;
for (i = 0; i < priv->num_frags; i++)
if (mlx4_en_alloc_frag(priv, rx_desc, skb_frags, ring->page_alloc, i))
goto err;
return 0;
err:
while (i--)
put_page(skb_frags[i].page);
return -ENOMEM;
}
static inline void mlx4_en_update_rx_prod_db(struct mlx4_en_rx_ring *ring)
{
*ring->wqres.db.db = cpu_to_be32(ring->prod & 0xffff);
}
static void mlx4_en_free_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring,
int index)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct skb_frag_struct *skb_frags;
struct mlx4_en_rx_desc *rx_desc = ring->buf + (index << ring->log_stride);
dma_addr_t dma;
int nr;
skb_frags = ring->rx_info + (index << priv->log_rx_info);
for (nr = 0; nr < priv->num_frags; nr++) {
en_dbg(DRV, priv, "Freeing fragment:%d\n", nr);
dma = be64_to_cpu(rx_desc->data[nr].addr);
en_dbg(DRV, priv, "Unmapping buffer at dma:0x%llx\n", (u64) dma);
pci_unmap_single(mdev->pdev, dma, skb_frags[nr].size,
PCI_DMA_FROMDEVICE);
put_page(skb_frags[nr].page);
}
}
static int mlx4_en_fill_rx_buffers(struct mlx4_en_priv *priv)
{
struct mlx4_en_rx_ring *ring;
int ring_ind;
int buf_ind;
int new_size;
for (buf_ind = 0; buf_ind < priv->prof->rx_ring_size; buf_ind++) {
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = &priv->rx_ring[ring_ind];
if (mlx4_en_prepare_rx_desc(priv, ring,
ring->actual_size)) {
if (ring->actual_size < MLX4_EN_MIN_RX_SIZE) {
en_err(priv, "Failed to allocate "
"enough rx buffers\n");
return -ENOMEM;
} else {
new_size = rounddown_pow_of_two(ring->actual_size);
en_warn(priv, "Only %d buffers allocated "
"reducing ring size to %d",
ring->actual_size, new_size);
goto reduce_rings;
}
}
ring->actual_size++;
ring->prod++;
}
}
return 0;
reduce_rings:
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = &priv->rx_ring[ring_ind];
while (ring->actual_size > new_size) {
ring->actual_size--;
ring->prod--;
mlx4_en_free_rx_desc(priv, ring, ring->actual_size);
}
ring->size_mask = ring->actual_size - 1;
}
return 0;
}
static void mlx4_en_free_rx_buf(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
int index;
en_dbg(DRV, priv, "Freeing Rx buf - cons:%d prod:%d\n",
ring->cons, ring->prod);
/* Unmap and free Rx buffers */
BUG_ON((u32) (ring->prod - ring->cons) > ring->actual_size);
while (ring->cons != ring->prod) {
index = ring->cons & ring->size_mask;
en_dbg(DRV, priv, "Processing descriptor:%d\n", index);
mlx4_en_free_rx_desc(priv, ring, index);
++ring->cons;
}
}
int mlx4_en_create_rx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring, u32 size, u16 stride)
{
struct mlx4_en_dev *mdev = priv->mdev;
int err;
int tmp;
ring->prod = 0;
ring->cons = 0;
ring->size = size;
ring->size_mask = size - 1;
ring->stride = stride;
ring->log_stride = ffs(ring->stride) - 1;
ring->buf_size = ring->size * ring->stride + TXBB_SIZE;
tmp = size * roundup_pow_of_two(MLX4_EN_MAX_RX_FRAGS *
sizeof(struct skb_frag_struct));
ring->rx_info = vmalloc(tmp);
if (!ring->rx_info) {
en_err(priv, "Failed allocating rx_info ring\n");
return -ENOMEM;
}
en_dbg(DRV, priv, "Allocated rx_info ring at addr:%p size:%d\n",
ring->rx_info, tmp);
err = mlx4_alloc_hwq_res(mdev->dev, &ring->wqres,
ring->buf_size, 2 * PAGE_SIZE);
if (err)
goto err_ring;
err = mlx4_en_map_buffer(&ring->wqres.buf);
if (err) {
en_err(priv, "Failed to map RX buffer\n");
goto err_hwq;
}
ring->buf = ring->wqres.buf.direct.buf;
/* Configure lro mngr */
memset(&ring->lro, 0, sizeof(struct net_lro_mgr));
ring->lro.dev = priv->dev;
ring->lro.features = LRO_F_NAPI;
ring->lro.frag_align_pad = NET_IP_ALIGN;
ring->lro.ip_summed = CHECKSUM_UNNECESSARY;
ring->lro.ip_summed_aggr = CHECKSUM_UNNECESSARY;
ring->lro.max_desc = mdev->profile.num_lro;
ring->lro.max_aggr = MAX_SKB_FRAGS;
ring->lro.lro_arr = kzalloc(mdev->profile.num_lro *
sizeof(struct net_lro_desc),
GFP_KERNEL);
if (!ring->lro.lro_arr) {
en_err(priv, "Failed to allocate lro array\n");
goto err_map;
}
ring->lro.get_frag_header = mlx4_en_get_frag_header;
return 0;
err_map:
mlx4_en_unmap_buffer(&ring->wqres.buf);
err_hwq:
mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size);
err_ring:
vfree(ring->rx_info);
ring->rx_info = NULL;
return err;
}
int mlx4_en_activate_rx_rings(struct mlx4_en_priv *priv)
{
struct mlx4_en_rx_ring *ring;
int i;
int ring_ind;
int err;
int stride = roundup_pow_of_two(sizeof(struct mlx4_en_rx_desc) +
DS_SIZE * priv->num_frags);
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = &priv->rx_ring[ring_ind];
ring->prod = 0;
ring->cons = 0;
ring->actual_size = 0;
ring->cqn = priv->rx_cq[ring_ind].mcq.cqn;
ring->stride = stride;
if (ring->stride <= TXBB_SIZE)
ring->buf += TXBB_SIZE;
ring->log_stride = ffs(ring->stride) - 1;
ring->buf_size = ring->size * ring->stride;
memset(ring->buf, 0, ring->buf_size);
mlx4_en_update_rx_prod_db(ring);
/* Initailize all descriptors */
for (i = 0; i < ring->size; i++)
mlx4_en_init_rx_desc(priv, ring, i);
/* Initialize page allocators */
err = mlx4_en_init_allocator(priv, ring);
if (err) {
en_err(priv, "Failed initializing ring allocator\n");
ring_ind--;
goto err_allocator;
}
}
err = mlx4_en_fill_rx_buffers(priv);
if (err)
goto err_buffers;
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++) {
ring = &priv->rx_ring[ring_ind];
mlx4_en_update_rx_prod_db(ring);
}
return 0;
err_buffers:
for (ring_ind = 0; ring_ind < priv->rx_ring_num; ring_ind++)
mlx4_en_free_rx_buf(priv, &priv->rx_ring[ring_ind]);
ring_ind = priv->rx_ring_num - 1;
err_allocator:
while (ring_ind >= 0) {
mlx4_en_destroy_allocator(priv, &priv->rx_ring[ring_ind]);
ring_ind--;
}
return err;
}
void mlx4_en_destroy_rx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
struct mlx4_en_dev *mdev = priv->mdev;
kfree(ring->lro.lro_arr);
mlx4_en_unmap_buffer(&ring->wqres.buf);
mlx4_free_hwq_res(mdev->dev, &ring->wqres, ring->buf_size + TXBB_SIZE);
vfree(ring->rx_info);
ring->rx_info = NULL;
}
void mlx4_en_deactivate_rx_ring(struct mlx4_en_priv *priv,
struct mlx4_en_rx_ring *ring)
{
mlx4_en_free_rx_buf(priv, ring);
if (ring->stride <= TXBB_SIZE)
ring->buf -= TXBB_SIZE;
mlx4_en_destroy_allocator(priv, ring);
}
/* Unmap a completed descriptor and free unused pages */
static int mlx4_en_complete_rx_desc(struct mlx4_en_priv *priv,
struct mlx4_en_rx_desc *rx_desc,
struct skb_frag_struct *skb_frags,
struct skb_frag_struct *skb_frags_rx,
struct mlx4_en_rx_alloc *page_alloc,
int length)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_frag_info *frag_info;
int nr;
dma_addr_t dma;
/* Collect used fragments while replacing them in the HW descirptors */
for (nr = 0; nr < priv->num_frags; nr++) {
frag_info = &priv->frag_info[nr];
if (length <= frag_info->frag_prefix_size)
break;
/* Save page reference in skb */
skb_frags_rx[nr].page = skb_frags[nr].page;
skb_frags_rx[nr].size = skb_frags[nr].size;
skb_frags_rx[nr].page_offset = skb_frags[nr].page_offset;
dma = be64_to_cpu(rx_desc->data[nr].addr);
/* Allocate a replacement page */
if (mlx4_en_alloc_frag(priv, rx_desc, skb_frags, page_alloc, nr))
goto fail;
/* Unmap buffer */
pci_unmap_single(mdev->pdev, dma, skb_frags[nr].size,
PCI_DMA_FROMDEVICE);
}
/* Adjust size of last fragment to match actual length */
if (nr > 0)
skb_frags_rx[nr - 1].size = length -
priv->frag_info[nr - 1].frag_prefix_size;
return nr;
fail:
/* Drop all accumulated fragments (which have already been replaced in
* the descriptor) of this packet; remaining fragments are reused... */
while (nr > 0) {
nr--;
put_page(skb_frags_rx[nr].page);
}
return 0;
}
static struct sk_buff *mlx4_en_rx_skb(struct mlx4_en_priv *priv,
struct mlx4_en_rx_desc *rx_desc,
struct skb_frag_struct *skb_frags,
struct mlx4_en_rx_alloc *page_alloc,
unsigned int length)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct sk_buff *skb;
void *va;
int used_frags;
dma_addr_t dma;
skb = dev_alloc_skb(SMALL_PACKET_SIZE + NET_IP_ALIGN);
if (!skb) {
en_dbg(RX_ERR, priv, "Failed allocating skb\n");
return NULL;
}
skb->dev = priv->dev;
skb_reserve(skb, NET_IP_ALIGN);
skb->len = length;
skb->truesize = length + sizeof(struct sk_buff);
/* Get pointer to first fragment so we could copy the headers into the
* (linear part of the) skb */
va = page_address(skb_frags[0].page) + skb_frags[0].page_offset;
if (length <= SMALL_PACKET_SIZE) {
/* We are copying all relevant data to the skb - temporarily
* synch buffers for the copy */
dma = be64_to_cpu(rx_desc->data[0].addr);
dma_sync_single_for_cpu(&mdev->pdev->dev, dma, length,
DMA_FROM_DEVICE);
skb_copy_to_linear_data(skb, va, length);
dma_sync_single_for_device(&mdev->pdev->dev, dma, length,
DMA_FROM_DEVICE);
skb->tail += length;
} else {
/* Move relevant fragments to skb */
used_frags = mlx4_en_complete_rx_desc(priv, rx_desc, skb_frags,
skb_shinfo(skb)->frags,
page_alloc, length);
if (unlikely(!used_frags)) {
kfree_skb(skb);
return NULL;
}
skb_shinfo(skb)->nr_frags = used_frags;
/* Copy headers into the skb linear buffer */
memcpy(skb->data, va, HEADER_COPY_SIZE);
skb->tail += HEADER_COPY_SIZE;
/* Skip headers in first fragment */
skb_shinfo(skb)->frags[0].page_offset += HEADER_COPY_SIZE;
/* Adjust size of first fragment */
skb_shinfo(skb)->frags[0].size -= HEADER_COPY_SIZE;
skb->data_len = length - HEADER_COPY_SIZE;
}
return skb;
}
int mlx4_en_process_rx_cq(struct net_device *dev, struct mlx4_en_cq *cq, int budget)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
struct mlx4_cqe *cqe;
struct mlx4_en_rx_ring *ring = &priv->rx_ring[cq->ring];
struct skb_frag_struct *skb_frags;
struct skb_frag_struct lro_frags[MLX4_EN_MAX_RX_FRAGS];
struct mlx4_en_rx_desc *rx_desc;
struct sk_buff *skb;
int index;
int nr;
unsigned int length;
int polled = 0;
int ip_summed;
if (!priv->port_up)
return 0;
/* We assume a 1:1 mapping between CQEs and Rx descriptors, so Rx
* descriptor offset can be deduced from the CQE index instead of
* reading 'cqe->index' */
index = cq->mcq.cons_index & ring->size_mask;
cqe = &cq->buf[index];
/* Process all completed CQEs */
while (XNOR(cqe->owner_sr_opcode & MLX4_CQE_OWNER_MASK,
cq->mcq.cons_index & cq->size)) {
skb_frags = ring->rx_info + (index << priv->log_rx_info);
rx_desc = ring->buf + (index << ring->log_stride);
/*
* make sure we read the CQE after we read the ownership bit
*/
rmb();
/* Drop packet on bad receive or bad checksum */
if (unlikely((cqe->owner_sr_opcode & MLX4_CQE_OPCODE_MASK) ==
MLX4_CQE_OPCODE_ERROR)) {
en_err(priv, "CQE completed in error - vendor "
"syndrom:%d syndrom:%d\n",
((struct mlx4_err_cqe *) cqe)->vendor_err_syndrome,
((struct mlx4_err_cqe *) cqe)->syndrome);
goto next;
}
if (unlikely(cqe->badfcs_enc & MLX4_CQE_BAD_FCS)) {
en_dbg(RX_ERR, priv, "Accepted frame with bad FCS\n");
goto next;
}
/*
* Packet is OK - process it.
*/
length = be32_to_cpu(cqe->byte_cnt);
ring->bytes += length;
ring->packets++;
if (likely(priv->rx_csum)) {
if ((cqe->status & cpu_to_be16(MLX4_CQE_STATUS_IPOK)) &&
(cqe->checksum == cpu_to_be16(0xffff))) {
priv->port_stats.rx_chksum_good++;
/* This packet is eligible for LRO if it is:
* - DIX Ethernet (type interpretation)
* - TCP/IP (v4)
* - without IP options
* - not an IP fragment */
if (mlx4_en_can_lro(cqe->status) &&
dev->features & NETIF_F_LRO) {
nr = mlx4_en_complete_rx_desc(
priv, rx_desc,
skb_frags, lro_frags,
ring->page_alloc, length);
if (!nr)
goto next;
if (priv->vlgrp && (cqe->vlan_my_qpn &
cpu_to_be32(MLX4_CQE_VLAN_PRESENT_MASK))) {
lro_vlan_hwaccel_receive_frags(
&ring->lro, lro_frags,
length, length,
priv->vlgrp,
be16_to_cpu(cqe->sl_vid),
NULL, 0);
} else
lro_receive_frags(&ring->lro,
lro_frags,
length,
length,
NULL, 0);
goto next;
}
/* LRO not possible, complete processing here */
ip_summed = CHECKSUM_UNNECESSARY;
INC_PERF_COUNTER(priv->pstats.lro_misses);
} else {
ip_summed = CHECKSUM_NONE;
priv->port_stats.rx_chksum_none++;
}
} else {
ip_summed = CHECKSUM_NONE;
priv->port_stats.rx_chksum_none++;
}
skb = mlx4_en_rx_skb(priv, rx_desc, skb_frags,
ring->page_alloc, length);
if (!skb) {
priv->stats.rx_dropped++;
goto next;
}
skb->ip_summed = ip_summed;
skb->protocol = eth_type_trans(skb, dev);
skb_record_rx_queue(skb, cq->ring);
/* Push it up the stack */
if (priv->vlgrp && (be32_to_cpu(cqe->vlan_my_qpn) &
MLX4_CQE_VLAN_PRESENT_MASK)) {
vlan_hwaccel_receive_skb(skb, priv->vlgrp,
be16_to_cpu(cqe->sl_vid));
} else
netif_receive_skb(skb);
next:
++cq->mcq.cons_index;
index = (cq->mcq.cons_index) & ring->size_mask;
cqe = &cq->buf[index];
if (++polled == budget) {
/* We are here because we reached the NAPI budget -
* flush only pending LRO sessions */
lro_flush_all(&ring->lro);
goto out;
}
}
/* If CQ is empty flush all LRO sessions unconditionally */
lro_flush_all(&ring->lro);
out:
AVG_PERF_COUNTER(priv->pstats.rx_coal_avg, polled);
mlx4_cq_set_ci(&cq->mcq);
wmb(); /* ensure HW sees CQ consumer before we post new buffers */
ring->cons = cq->mcq.cons_index;
ring->prod += polled; /* Polled descriptors were realocated in place */
mlx4_en_update_rx_prod_db(ring);
return polled;
}
void mlx4_en_rx_irq(struct mlx4_cq *mcq)
{
struct mlx4_en_cq *cq = container_of(mcq, struct mlx4_en_cq, mcq);
struct mlx4_en_priv *priv = netdev_priv(cq->dev);
if (priv->port_up)
napi_schedule(&cq->napi);
else
mlx4_en_arm_cq(priv, cq);
}
/* Rx CQ polling - called by NAPI */
int mlx4_en_poll_rx_cq(struct napi_struct *napi, int budget)
{
struct mlx4_en_cq *cq = container_of(napi, struct mlx4_en_cq, napi);
struct net_device *dev = cq->dev;
struct mlx4_en_priv *priv = netdev_priv(dev);
int done;
done = mlx4_en_process_rx_cq(dev, cq, budget);
/* If we used up all the quota - we're probably not done yet... */
if (done == budget)
INC_PERF_COUNTER(priv->pstats.napi_quota);
else {
/* Done for now */
napi_complete(napi);
mlx4_en_arm_cq(priv, cq);
}
return done;
}
/* Calculate the last offset position that accomodates a full fragment
* (assuming fagment size = stride-align) */
static int mlx4_en_last_alloc_offset(struct mlx4_en_priv *priv, u16 stride, u16 align)
{
u16 res = MLX4_EN_ALLOC_SIZE % stride;
u16 offset = MLX4_EN_ALLOC_SIZE - stride - res + align;
en_dbg(DRV, priv, "Calculated last offset for stride:%d align:%d "
"res:%d offset:%d\n", stride, align, res, offset);
return offset;
}
static int frag_sizes[] = {
FRAG_SZ0,
FRAG_SZ1,
FRAG_SZ2,
FRAG_SZ3
};
void mlx4_en_calc_rx_buf(struct net_device *dev)
{
struct mlx4_en_priv *priv = netdev_priv(dev);
int eff_mtu = dev->mtu + ETH_HLEN + VLAN_HLEN + ETH_LLC_SNAP_SIZE;
int buf_size = 0;
int i = 0;
while (buf_size < eff_mtu) {
priv->frag_info[i].frag_size =
(eff_mtu > buf_size + frag_sizes[i]) ?
frag_sizes[i] : eff_mtu - buf_size;
priv->frag_info[i].frag_prefix_size = buf_size;
if (!i) {
priv->frag_info[i].frag_align = NET_IP_ALIGN;
priv->frag_info[i].frag_stride =
ALIGN(frag_sizes[i] + NET_IP_ALIGN, SMP_CACHE_BYTES);
} else {
priv->frag_info[i].frag_align = 0;
priv->frag_info[i].frag_stride =
ALIGN(frag_sizes[i], SMP_CACHE_BYTES);
}
priv->frag_info[i].last_offset = mlx4_en_last_alloc_offset(
priv, priv->frag_info[i].frag_stride,
priv->frag_info[i].frag_align);
buf_size += priv->frag_info[i].frag_size;
i++;
}
priv->num_frags = i;
priv->rx_skb_size = eff_mtu;
priv->log_rx_info = ROUNDUP_LOG2(i * sizeof(struct skb_frag_struct));
en_dbg(DRV, priv, "Rx buffer scatter-list (effective-mtu:%d "
"num_frags:%d):\n", eff_mtu, priv->num_frags);
for (i = 0; i < priv->num_frags; i++) {
en_dbg(DRV, priv, " frag:%d - size:%d prefix:%d align:%d "
"stride:%d last_offset:%d\n", i,
priv->frag_info[i].frag_size,
priv->frag_info[i].frag_prefix_size,
priv->frag_info[i].frag_align,
priv->frag_info[i].frag_stride,
priv->frag_info[i].last_offset);
}
}
/* RSS related functions */
static int mlx4_en_config_rss_qp(struct mlx4_en_priv *priv, int qpn,
struct mlx4_en_rx_ring *ring,
enum mlx4_qp_state *state,
struct mlx4_qp *qp)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_qp_context *context;
int err = 0;
context = kmalloc(sizeof *context , GFP_KERNEL);
if (!context) {
en_err(priv, "Failed to allocate qp context\n");
return -ENOMEM;
}
err = mlx4_qp_alloc(mdev->dev, qpn, qp);
if (err) {
en_err(priv, "Failed to allocate qp #%x\n", qpn);
goto out;
}
qp->event = mlx4_en_sqp_event;
memset(context, 0, sizeof *context);
mlx4_en_fill_qp_context(priv, ring->size, ring->stride, 0, 0,
qpn, ring->cqn, context);
context->db_rec_addr = cpu_to_be64(ring->wqres.db.dma);
err = mlx4_qp_to_ready(mdev->dev, &ring->wqres.mtt, context, qp, state);
if (err) {
mlx4_qp_remove(mdev->dev, qp);
mlx4_qp_free(mdev->dev, qp);
}
mlx4_en_update_rx_prod_db(ring);
out:
kfree(context);
return err;
}
/* Allocate rx qp's and configure them according to rss map */
int mlx4_en_config_rss_steer(struct mlx4_en_priv *priv)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rss_map *rss_map = &priv->rss_map;
struct mlx4_qp_context context;
struct mlx4_en_rss_context *rss_context;
void *ptr;
int rss_xor = mdev->profile.rss_xor;
u8 rss_mask = mdev->profile.rss_mask;
int i, qpn;
int err = 0;
int good_qps = 0;
en_dbg(DRV, priv, "Configuring rss steering\n");
err = mlx4_qp_reserve_range(mdev->dev, priv->rx_ring_num,
priv->rx_ring_num,
&rss_map->base_qpn);
if (err) {
en_err(priv, "Failed reserving %d qps\n", priv->rx_ring_num);
return err;
}
for (i = 0; i < priv->rx_ring_num; i++) {
qpn = rss_map->base_qpn + i;
err = mlx4_en_config_rss_qp(priv, qpn, &priv->rx_ring[i],
&rss_map->state[i],
&rss_map->qps[i]);
if (err)
goto rss_err;
++good_qps;
}
/* Configure RSS indirection qp */
err = mlx4_qp_reserve_range(mdev->dev, 1, 1, &priv->base_qpn);
if (err) {
en_err(priv, "Failed to reserve range for RSS "
"indirection qp\n");
goto rss_err;
}
err = mlx4_qp_alloc(mdev->dev, priv->base_qpn, &rss_map->indir_qp);
if (err) {
en_err(priv, "Failed to allocate RSS indirection QP\n");
goto reserve_err;
}
rss_map->indir_qp.event = mlx4_en_sqp_event;
mlx4_en_fill_qp_context(priv, 0, 0, 0, 1, priv->base_qpn,
priv->rx_ring[0].cqn, &context);
ptr = ((void *) &context) + 0x3c;
rss_context = (struct mlx4_en_rss_context *) ptr;
rss_context->base_qpn = cpu_to_be32(ilog2(priv->rx_ring_num) << 24 |
(rss_map->base_qpn));
rss_context->default_qpn = cpu_to_be32(rss_map->base_qpn);
rss_context->hash_fn = rss_xor & 0x3;
rss_context->flags = rss_mask << 2;
err = mlx4_qp_to_ready(mdev->dev, &priv->res.mtt, &context,
&rss_map->indir_qp, &rss_map->indir_state);
if (err)
goto indir_err;
return 0;
indir_err:
mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
reserve_err:
mlx4_qp_release_range(mdev->dev, priv->base_qpn, 1);
rss_err:
for (i = 0; i < good_qps; i++) {
mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
}
mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
return err;
}
void mlx4_en_release_rss_steer(struct mlx4_en_priv *priv)
{
struct mlx4_en_dev *mdev = priv->mdev;
struct mlx4_en_rss_map *rss_map = &priv->rss_map;
int i;
mlx4_qp_modify(mdev->dev, NULL, rss_map->indir_state,
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->indir_qp);
mlx4_qp_remove(mdev->dev, &rss_map->indir_qp);
mlx4_qp_free(mdev->dev, &rss_map->indir_qp);
mlx4_qp_release_range(mdev->dev, priv->base_qpn, 1);
for (i = 0; i < priv->rx_ring_num; i++) {
mlx4_qp_modify(mdev->dev, NULL, rss_map->state[i],
MLX4_QP_STATE_RST, NULL, 0, 0, &rss_map->qps[i]);
mlx4_qp_remove(mdev->dev, &rss_map->qps[i]);
mlx4_qp_free(mdev->dev, &rss_map->qps[i]);
}
mlx4_qp_release_range(mdev->dev, rss_map->base_qpn, priv->rx_ring_num);
}