1
linux/fs/btrfs/disk-io.c
Chris Mason e02119d5a7 Btrfs: Add a write ahead tree log to optimize synchronous operations
File syncs and directory syncs are optimized by copying their
items into a special (copy-on-write) log tree.  There is one log tree per
subvolume and the btrfs super block points to a tree of log tree roots.

After a crash, items are copied out of the log tree and back into the
subvolume.  See tree-log.c for all the details.

Signed-off-by: Chris Mason <chris.mason@oracle.com>
2008-09-25 11:04:07 -04:00

2008 lines
53 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/version.h>
#include <linux/fs.h>
#include <linux/blkdev.h>
#include <linux/scatterlist.h>
#include <linux/swap.h>
#include <linux/radix-tree.h>
#include <linux/writeback.h>
#include <linux/buffer_head.h> // for block_sync_page
#include <linux/workqueue.h>
#include <linux/kthread.h>
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,20)
# include <linux/freezer.h>
#else
# include <linux/sched.h>
#endif
#include "crc32c.h"
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "print-tree.h"
#include "async-thread.h"
#include "locking.h"
#include "ref-cache.h"
#include "tree-log.h"
#if 0
static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
{
if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
(unsigned long long)extent_buffer_blocknr(buf),
(unsigned long long)btrfs_header_blocknr(buf));
return 1;
}
return 0;
}
#endif
static struct extent_io_ops btree_extent_io_ops;
static void end_workqueue_fn(struct btrfs_work *work);
struct end_io_wq {
struct bio *bio;
bio_end_io_t *end_io;
void *private;
struct btrfs_fs_info *info;
int error;
int metadata;
struct list_head list;
struct btrfs_work work;
};
struct async_submit_bio {
struct inode *inode;
struct bio *bio;
struct list_head list;
extent_submit_bio_hook_t *submit_bio_hook;
int rw;
int mirror_num;
struct btrfs_work work;
};
struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
size_t page_offset, u64 start, u64 len,
int create)
{
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
struct extent_map *em;
int ret;
spin_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, start, len);
if (em) {
em->bdev =
BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
spin_unlock(&em_tree->lock);
goto out;
}
spin_unlock(&em_tree->lock);
em = alloc_extent_map(GFP_NOFS);
if (!em) {
em = ERR_PTR(-ENOMEM);
goto out;
}
em->start = 0;
em->len = (u64)-1;
em->block_start = 0;
em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
spin_lock(&em_tree->lock);
ret = add_extent_mapping(em_tree, em);
if (ret == -EEXIST) {
u64 failed_start = em->start;
u64 failed_len = em->len;
printk("failed to insert %Lu %Lu -> %Lu into tree\n",
em->start, em->len, em->block_start);
free_extent_map(em);
em = lookup_extent_mapping(em_tree, start, len);
if (em) {
printk("after failing, found %Lu %Lu %Lu\n",
em->start, em->len, em->block_start);
ret = 0;
} else {
em = lookup_extent_mapping(em_tree, failed_start,
failed_len);
if (em) {
printk("double failure lookup gives us "
"%Lu %Lu -> %Lu\n", em->start,
em->len, em->block_start);
free_extent_map(em);
}
ret = -EIO;
}
} else if (ret) {
free_extent_map(em);
em = NULL;
}
spin_unlock(&em_tree->lock);
if (ret)
em = ERR_PTR(ret);
out:
return em;
}
u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
{
return btrfs_crc32c(seed, data, len);
}
void btrfs_csum_final(u32 crc, char *result)
{
*(__le32 *)result = ~cpu_to_le32(crc);
}
static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
int verify)
{
char result[BTRFS_CRC32_SIZE];
unsigned long len;
unsigned long cur_len;
unsigned long offset = BTRFS_CSUM_SIZE;
char *map_token = NULL;
char *kaddr;
unsigned long map_start;
unsigned long map_len;
int err;
u32 crc = ~(u32)0;
len = buf->len - offset;
while(len > 0) {
err = map_private_extent_buffer(buf, offset, 32,
&map_token, &kaddr,
&map_start, &map_len, KM_USER0);
if (err) {
printk("failed to map extent buffer! %lu\n",
offset);
return 1;
}
cur_len = min(len, map_len - (offset - map_start));
crc = btrfs_csum_data(root, kaddr + offset - map_start,
crc, cur_len);
len -= cur_len;
offset += cur_len;
unmap_extent_buffer(buf, map_token, KM_USER0);
}
btrfs_csum_final(crc, result);
if (verify) {
/* FIXME, this is not good */
if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
u32 val;
u32 found = 0;
memcpy(&found, result, BTRFS_CRC32_SIZE);
read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
printk("btrfs: %s checksum verify failed on %llu "
"wanted %X found %X level %d\n",
root->fs_info->sb->s_id,
buf->start, val, found, btrfs_header_level(buf));
return 1;
}
} else {
write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
}
return 0;
}
static int verify_parent_transid(struct extent_io_tree *io_tree,
struct extent_buffer *eb, u64 parent_transid)
{
int ret;
if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
return 0;
lock_extent(io_tree, eb->start, eb->start + eb->len - 1, GFP_NOFS);
if (extent_buffer_uptodate(io_tree, eb) &&
btrfs_header_generation(eb) == parent_transid) {
ret = 0;
goto out;
}
printk("parent transid verify failed on %llu wanted %llu found %llu\n",
(unsigned long long)eb->start,
(unsigned long long)parent_transid,
(unsigned long long)btrfs_header_generation(eb));
ret = 1;
clear_extent_buffer_uptodate(io_tree, eb);
out:
unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
GFP_NOFS);
return ret;
}
static int btree_read_extent_buffer_pages(struct btrfs_root *root,
struct extent_buffer *eb,
u64 start, u64 parent_transid)
{
struct extent_io_tree *io_tree;
int ret;
int num_copies = 0;
int mirror_num = 0;
io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
while (1) {
ret = read_extent_buffer_pages(io_tree, eb, start, 1,
btree_get_extent, mirror_num);
if (!ret &&
!verify_parent_transid(io_tree, eb, parent_transid))
return ret;
printk("read extent buffer pages failed with ret %d mirror no %d\n", ret, mirror_num);
num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
eb->start, eb->len);
if (num_copies == 1)
return ret;
mirror_num++;
if (mirror_num > num_copies)
return ret;
}
return -EIO;
}
int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
{
struct extent_io_tree *tree;
u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
u64 found_start;
int found_level;
unsigned long len;
struct extent_buffer *eb;
int ret;
tree = &BTRFS_I(page->mapping->host)->io_tree;
if (page->private == EXTENT_PAGE_PRIVATE)
goto out;
if (!page->private)
goto out;
len = page->private >> 2;
if (len == 0) {
WARN_ON(1);
}
eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
btrfs_header_generation(eb));
BUG_ON(ret);
found_start = btrfs_header_bytenr(eb);
if (found_start != start) {
printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
start, found_start, len);
WARN_ON(1);
goto err;
}
if (eb->first_page != page) {
printk("bad first page %lu %lu\n", eb->first_page->index,
page->index);
WARN_ON(1);
goto err;
}
if (!PageUptodate(page)) {
printk("csum not up to date page %lu\n", page->index);
WARN_ON(1);
goto err;
}
found_level = btrfs_header_level(eb);
spin_lock(&root->fs_info->hash_lock);
btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
spin_unlock(&root->fs_info->hash_lock);
csum_tree_block(root, eb, 0);
err:
free_extent_buffer(eb);
out:
return 0;
}
static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
{
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
csum_dirty_buffer(root, page);
return 0;
}
int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
struct extent_state *state)
{
struct extent_io_tree *tree;
u64 found_start;
int found_level;
unsigned long len;
struct extent_buffer *eb;
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
int ret = 0;
tree = &BTRFS_I(page->mapping->host)->io_tree;
if (page->private == EXTENT_PAGE_PRIVATE)
goto out;
if (!page->private)
goto out;
len = page->private >> 2;
if (len == 0) {
WARN_ON(1);
}
eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
found_start = btrfs_header_bytenr(eb);
if (found_start != start) {
printk("bad tree block start %llu %llu\n",
(unsigned long long)found_start,
(unsigned long long)eb->start);
ret = -EIO;
goto err;
}
if (eb->first_page != page) {
printk("bad first page %lu %lu\n", eb->first_page->index,
page->index);
WARN_ON(1);
ret = -EIO;
goto err;
}
if (memcmp_extent_buffer(eb, root->fs_info->fsid,
(unsigned long)btrfs_header_fsid(eb),
BTRFS_FSID_SIZE)) {
printk("bad fsid on block %Lu\n", eb->start);
ret = -EIO;
goto err;
}
found_level = btrfs_header_level(eb);
ret = csum_tree_block(root, eb, 1);
if (ret)
ret = -EIO;
end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
end = eb->start + end - 1;
err:
free_extent_buffer(eb);
out:
return ret;
}
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
static void end_workqueue_bio(struct bio *bio, int err)
#else
static int end_workqueue_bio(struct bio *bio,
unsigned int bytes_done, int err)
#endif
{
struct end_io_wq *end_io_wq = bio->bi_private;
struct btrfs_fs_info *fs_info;
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
if (bio->bi_size)
return 1;
#endif
fs_info = end_io_wq->info;
end_io_wq->error = err;
end_io_wq->work.func = end_workqueue_fn;
end_io_wq->work.flags = 0;
if (bio->bi_rw & (1 << BIO_RW))
btrfs_queue_worker(&fs_info->endio_write_workers,
&end_io_wq->work);
else
btrfs_queue_worker(&fs_info->endio_workers, &end_io_wq->work);
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
return 0;
#endif
}
int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
int metadata)
{
struct end_io_wq *end_io_wq;
end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
if (!end_io_wq)
return -ENOMEM;
end_io_wq->private = bio->bi_private;
end_io_wq->end_io = bio->bi_end_io;
end_io_wq->info = info;
end_io_wq->error = 0;
end_io_wq->bio = bio;
end_io_wq->metadata = metadata;
bio->bi_private = end_io_wq;
bio->bi_end_io = end_workqueue_bio;
return 0;
}
unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
{
unsigned long limit = min_t(unsigned long,
info->workers.max_workers,
info->fs_devices->open_devices);
return 256 * limit;
}
int btrfs_congested_async(struct btrfs_fs_info *info, int iodone)
{
return atomic_read(&info->nr_async_bios) >
btrfs_async_submit_limit(info);
}
static void run_one_async_submit(struct btrfs_work *work)
{
struct btrfs_fs_info *fs_info;
struct async_submit_bio *async;
int limit;
async = container_of(work, struct async_submit_bio, work);
fs_info = BTRFS_I(async->inode)->root->fs_info;
limit = btrfs_async_submit_limit(fs_info);
limit = limit * 2 / 3;
atomic_dec(&fs_info->nr_async_submits);
if (atomic_read(&fs_info->nr_async_submits) < limit &&
waitqueue_active(&fs_info->async_submit_wait))
wake_up(&fs_info->async_submit_wait);
async->submit_bio_hook(async->inode, async->rw, async->bio,
async->mirror_num);
kfree(async);
}
int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
int rw, struct bio *bio, int mirror_num,
extent_submit_bio_hook_t *submit_bio_hook)
{
struct async_submit_bio *async;
int limit = btrfs_async_submit_limit(fs_info);
async = kmalloc(sizeof(*async), GFP_NOFS);
if (!async)
return -ENOMEM;
async->inode = inode;
async->rw = rw;
async->bio = bio;
async->mirror_num = mirror_num;
async->submit_bio_hook = submit_bio_hook;
async->work.func = run_one_async_submit;
async->work.flags = 0;
atomic_inc(&fs_info->nr_async_submits);
btrfs_queue_worker(&fs_info->workers, &async->work);
if (atomic_read(&fs_info->nr_async_submits) > limit) {
wait_event_timeout(fs_info->async_submit_wait,
(atomic_read(&fs_info->nr_async_submits) < limit),
HZ/10);
wait_event_timeout(fs_info->async_submit_wait,
(atomic_read(&fs_info->nr_async_bios) < limit),
HZ/10);
}
return 0;
}
static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
int mirror_num)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
u64 offset;
int ret;
offset = bio->bi_sector << 9;
/*
* when we're called for a write, we're already in the async
* submission context. Just jump into btrfs_map_bio
*/
if (rw & (1 << BIO_RW)) {
return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
mirror_num, 1);
}
/*
* called for a read, do the setup so that checksum validation
* can happen in the async kernel threads
*/
ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
BUG_ON(ret);
return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
}
static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
int mirror_num)
{
/*
* kthread helpers are used to submit writes so that checksumming
* can happen in parallel across all CPUs
*/
if (!(rw & (1 << BIO_RW))) {
return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
}
return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
inode, rw, bio, mirror_num,
__btree_submit_bio_hook);
}
static int btree_writepage(struct page *page, struct writeback_control *wbc)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(page->mapping->host)->io_tree;
if (current->flags & PF_MEMALLOC) {
redirty_page_for_writepage(wbc, page);
unlock_page(page);
return 0;
}
return extent_write_full_page(tree, page, btree_get_extent, wbc);
}
static int btree_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(mapping->host)->io_tree;
if (wbc->sync_mode == WB_SYNC_NONE) {
u64 num_dirty;
u64 start = 0;
unsigned long thresh = 8 * 1024 * 1024;
if (wbc->for_kupdate)
return 0;
num_dirty = count_range_bits(tree, &start, (u64)-1,
thresh, EXTENT_DIRTY);
if (num_dirty < thresh) {
return 0;
}
}
return extent_writepages(tree, mapping, btree_get_extent, wbc);
}
int btree_readpage(struct file *file, struct page *page)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(page->mapping->host)->io_tree;
return extent_read_full_page(tree, page, btree_get_extent);
}
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
{
struct extent_io_tree *tree;
struct extent_map_tree *map;
int ret;
tree = &BTRFS_I(page->mapping->host)->io_tree;
map = &BTRFS_I(page->mapping->host)->extent_tree;
ret = try_release_extent_state(map, tree, page, gfp_flags);
if (!ret) {
return 0;
}
ret = try_release_extent_buffer(tree, page);
if (ret == 1) {
ClearPagePrivate(page);
set_page_private(page, 0);
page_cache_release(page);
}
return ret;
}
static void btree_invalidatepage(struct page *page, unsigned long offset)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(page->mapping->host)->io_tree;
extent_invalidatepage(tree, page, offset);
btree_releasepage(page, GFP_NOFS);
if (PagePrivate(page)) {
printk("warning page private not zero on page %Lu\n",
page_offset(page));
ClearPagePrivate(page);
set_page_private(page, 0);
page_cache_release(page);
}
}
#if 0
static int btree_writepage(struct page *page, struct writeback_control *wbc)
{
struct buffer_head *bh;
struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
struct buffer_head *head;
if (!page_has_buffers(page)) {
create_empty_buffers(page, root->fs_info->sb->s_blocksize,
(1 << BH_Dirty)|(1 << BH_Uptodate));
}
head = page_buffers(page);
bh = head;
do {
if (buffer_dirty(bh))
csum_tree_block(root, bh, 0);
bh = bh->b_this_page;
} while (bh != head);
return block_write_full_page(page, btree_get_block, wbc);
}
#endif
static struct address_space_operations btree_aops = {
.readpage = btree_readpage,
.writepage = btree_writepage,
.writepages = btree_writepages,
.releasepage = btree_releasepage,
.invalidatepage = btree_invalidatepage,
.sync_page = block_sync_page,
};
int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
u64 parent_transid)
{
struct extent_buffer *buf = NULL;
struct inode *btree_inode = root->fs_info->btree_inode;
int ret = 0;
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
if (!buf)
return 0;
read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
buf, 0, 0, btree_get_extent, 0);
free_extent_buffer(buf);
return ret;
}
struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
u64 bytenr, u32 blocksize)
{
struct inode *btree_inode = root->fs_info->btree_inode;
struct extent_buffer *eb;
eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
bytenr, blocksize, GFP_NOFS);
return eb;
}
struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
u64 bytenr, u32 blocksize)
{
struct inode *btree_inode = root->fs_info->btree_inode;
struct extent_buffer *eb;
eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
bytenr, blocksize, NULL, GFP_NOFS);
return eb;
}
int btrfs_write_tree_block(struct extent_buffer *buf)
{
return btrfs_fdatawrite_range(buf->first_page->mapping, buf->start,
buf->start + buf->len - 1, WB_SYNC_NONE);
}
int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
{
return btrfs_wait_on_page_writeback_range(buf->first_page->mapping,
buf->start, buf->start + buf->len -1);
}
struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
u32 blocksize, u64 parent_transid)
{
struct extent_buffer *buf = NULL;
struct inode *btree_inode = root->fs_info->btree_inode;
struct extent_io_tree *io_tree;
int ret;
io_tree = &BTRFS_I(btree_inode)->io_tree;
buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
if (!buf)
return NULL;
ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
if (ret == 0) {
buf->flags |= EXTENT_UPTODATE;
} else {
WARN_ON(1);
}
return buf;
}
int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
struct extent_buffer *buf)
{
struct inode *btree_inode = root->fs_info->btree_inode;
if (btrfs_header_generation(buf) ==
root->fs_info->running_transaction->transid) {
WARN_ON(!btrfs_tree_locked(buf));
clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
buf);
}
return 0;
}
static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
u32 stripesize, struct btrfs_root *root,
struct btrfs_fs_info *fs_info,
u64 objectid)
{
root->node = NULL;
root->inode = NULL;
root->commit_root = NULL;
root->ref_tree = NULL;
root->sectorsize = sectorsize;
root->nodesize = nodesize;
root->leafsize = leafsize;
root->stripesize = stripesize;
root->ref_cows = 0;
root->track_dirty = 0;
root->fs_info = fs_info;
root->objectid = objectid;
root->last_trans = 0;
root->highest_inode = 0;
root->last_inode_alloc = 0;
root->name = NULL;
root->in_sysfs = 0;
INIT_LIST_HEAD(&root->dirty_list);
INIT_LIST_HEAD(&root->orphan_list);
INIT_LIST_HEAD(&root->dead_list);
spin_lock_init(&root->node_lock);
spin_lock_init(&root->list_lock);
mutex_init(&root->objectid_mutex);
mutex_init(&root->log_mutex);
btrfs_leaf_ref_tree_init(&root->ref_tree_struct);
root->ref_tree = &root->ref_tree_struct;
memset(&root->root_key, 0, sizeof(root->root_key));
memset(&root->root_item, 0, sizeof(root->root_item));
memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
memset(&root->root_kobj, 0, sizeof(root->root_kobj));
root->defrag_trans_start = fs_info->generation;
init_completion(&root->kobj_unregister);
root->defrag_running = 0;
root->defrag_level = 0;
root->root_key.objectid = objectid;
return 0;
}
static int find_and_setup_root(struct btrfs_root *tree_root,
struct btrfs_fs_info *fs_info,
u64 objectid,
struct btrfs_root *root)
{
int ret;
u32 blocksize;
__setup_root(tree_root->nodesize, tree_root->leafsize,
tree_root->sectorsize, tree_root->stripesize,
root, fs_info, objectid);
ret = btrfs_find_last_root(tree_root, objectid,
&root->root_item, &root->root_key);
BUG_ON(ret);
blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
blocksize, 0);
BUG_ON(!root->node);
return 0;
}
int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
struct extent_buffer *eb;
int ret;
if (!fs_info->log_root_tree)
return 0;
eb = fs_info->log_root_tree->node;
WARN_ON(btrfs_header_level(eb) != 0);
WARN_ON(btrfs_header_nritems(eb) != 0);
ret = btrfs_free_extent(trans, fs_info->tree_root,
eb->start, eb->len,
BTRFS_TREE_LOG_OBJECTID, 0, 0, 0, 1);
BUG_ON(ret);
free_extent_buffer(eb);
kfree(fs_info->log_root_tree);
fs_info->log_root_tree = NULL;
return 0;
}
int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
struct btrfs_root *tree_root = fs_info->tree_root;
root = kzalloc(sizeof(*root), GFP_NOFS);
if (!root)
return -ENOMEM;
__setup_root(tree_root->nodesize, tree_root->leafsize,
tree_root->sectorsize, tree_root->stripesize,
root, fs_info, BTRFS_TREE_LOG_OBJECTID);
root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
root->ref_cows = 0;
root->node = btrfs_alloc_free_block(trans, root, root->leafsize,
BTRFS_TREE_LOG_OBJECTID,
0, 0, 0, 0, 0);
btrfs_set_header_nritems(root->node, 0);
btrfs_set_header_level(root->node, 0);
btrfs_set_header_bytenr(root->node, root->node->start);
btrfs_set_header_generation(root->node, trans->transid);
btrfs_set_header_owner(root->node, BTRFS_TREE_LOG_OBJECTID);
write_extent_buffer(root->node, root->fs_info->fsid,
(unsigned long)btrfs_header_fsid(root->node),
BTRFS_FSID_SIZE);
btrfs_mark_buffer_dirty(root->node);
btrfs_tree_unlock(root->node);
fs_info->log_root_tree = root;
return 0;
}
struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
struct btrfs_key *location)
{
struct btrfs_root *root;
struct btrfs_fs_info *fs_info = tree_root->fs_info;
struct btrfs_path *path;
struct extent_buffer *l;
u64 highest_inode;
u32 blocksize;
int ret = 0;
root = kzalloc(sizeof(*root), GFP_NOFS);
if (!root)
return ERR_PTR(-ENOMEM);
if (location->offset == (u64)-1) {
ret = find_and_setup_root(tree_root, fs_info,
location->objectid, root);
if (ret) {
kfree(root);
return ERR_PTR(ret);
}
goto insert;
}
__setup_root(tree_root->nodesize, tree_root->leafsize,
tree_root->sectorsize, tree_root->stripesize,
root, fs_info, location->objectid);
path = btrfs_alloc_path();
BUG_ON(!path);
ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
if (ret != 0) {
if (ret > 0)
ret = -ENOENT;
goto out;
}
l = path->nodes[0];
read_extent_buffer(l, &root->root_item,
btrfs_item_ptr_offset(l, path->slots[0]),
sizeof(root->root_item));
memcpy(&root->root_key, location, sizeof(*location));
ret = 0;
out:
btrfs_release_path(root, path);
btrfs_free_path(path);
if (ret) {
kfree(root);
return ERR_PTR(ret);
}
blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
blocksize, 0);
BUG_ON(!root->node);
insert:
if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
root->ref_cows = 1;
ret = btrfs_find_highest_inode(root, &highest_inode);
if (ret == 0) {
root->highest_inode = highest_inode;
root->last_inode_alloc = highest_inode;
}
}
return root;
}
struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
u64 root_objectid)
{
struct btrfs_root *root;
if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
return fs_info->tree_root;
if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
return fs_info->extent_root;
root = radix_tree_lookup(&fs_info->fs_roots_radix,
(unsigned long)root_objectid);
return root;
}
struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
struct btrfs_key *location)
{
struct btrfs_root *root;
int ret;
if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
return fs_info->tree_root;
if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
return fs_info->extent_root;
if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
return fs_info->chunk_root;
if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
return fs_info->dev_root;
root = radix_tree_lookup(&fs_info->fs_roots_radix,
(unsigned long)location->objectid);
if (root)
return root;
root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
if (IS_ERR(root))
return root;
ret = radix_tree_insert(&fs_info->fs_roots_radix,
(unsigned long)root->root_key.objectid,
root);
if (ret) {
free_extent_buffer(root->node);
kfree(root);
return ERR_PTR(ret);
}
ret = btrfs_find_dead_roots(fs_info->tree_root,
root->root_key.objectid, root);
BUG_ON(ret);
return root;
}
struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
struct btrfs_key *location,
const char *name, int namelen)
{
struct btrfs_root *root;
int ret;
root = btrfs_read_fs_root_no_name(fs_info, location);
if (!root)
return NULL;
if (root->in_sysfs)
return root;
ret = btrfs_set_root_name(root, name, namelen);
if (ret) {
free_extent_buffer(root->node);
kfree(root);
return ERR_PTR(ret);
}
ret = btrfs_sysfs_add_root(root);
if (ret) {
free_extent_buffer(root->node);
kfree(root->name);
kfree(root);
return ERR_PTR(ret);
}
root->in_sysfs = 1;
return root;
}
#if 0
static int add_hasher(struct btrfs_fs_info *info, char *type) {
struct btrfs_hasher *hasher;
hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
if (!hasher)
return -ENOMEM;
hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
if (!hasher->hash_tfm) {
kfree(hasher);
return -EINVAL;
}
spin_lock(&info->hash_lock);
list_add(&hasher->list, &info->hashers);
spin_unlock(&info->hash_lock);
return 0;
}
#endif
static int btrfs_congested_fn(void *congested_data, int bdi_bits)
{
struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
int ret = 0;
struct list_head *cur;
struct btrfs_device *device;
struct backing_dev_info *bdi;
if ((bdi_bits & (1 << BDI_write_congested)) &&
btrfs_congested_async(info, 0))
return 1;
list_for_each(cur, &info->fs_devices->devices) {
device = list_entry(cur, struct btrfs_device, dev_list);
if (!device->bdev)
continue;
bdi = blk_get_backing_dev_info(device->bdev);
if (bdi && bdi_congested(bdi, bdi_bits)) {
ret = 1;
break;
}
}
return ret;
}
/*
* this unplugs every device on the box, and it is only used when page
* is null
*/
static void __unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
{
struct list_head *cur;
struct btrfs_device *device;
struct btrfs_fs_info *info;
info = (struct btrfs_fs_info *)bdi->unplug_io_data;
list_for_each(cur, &info->fs_devices->devices) {
device = list_entry(cur, struct btrfs_device, dev_list);
bdi = blk_get_backing_dev_info(device->bdev);
if (bdi->unplug_io_fn) {
bdi->unplug_io_fn(bdi, page);
}
}
}
void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
{
struct inode *inode;
struct extent_map_tree *em_tree;
struct extent_map *em;
struct address_space *mapping;
u64 offset;
/* the generic O_DIRECT read code does this */
if (!page) {
__unplug_io_fn(bdi, page);
return;
}
/*
* page->mapping may change at any time. Get a consistent copy
* and use that for everything below
*/
smp_mb();
mapping = page->mapping;
if (!mapping)
return;
inode = mapping->host;
offset = page_offset(page);
em_tree = &BTRFS_I(inode)->extent_tree;
spin_lock(&em_tree->lock);
em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
spin_unlock(&em_tree->lock);
if (!em) {
__unplug_io_fn(bdi, page);
return;
}
if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
free_extent_map(em);
__unplug_io_fn(bdi, page);
return;
}
offset = offset - em->start;
btrfs_unplug_page(&BTRFS_I(inode)->root->fs_info->mapping_tree,
em->block_start + offset, page);
free_extent_map(em);
}
static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
{
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
bdi_init(bdi);
#endif
bdi->ra_pages = default_backing_dev_info.ra_pages;
bdi->state = 0;
bdi->capabilities = default_backing_dev_info.capabilities;
bdi->unplug_io_fn = btrfs_unplug_io_fn;
bdi->unplug_io_data = info;
bdi->congested_fn = btrfs_congested_fn;
bdi->congested_data = info;
return 0;
}
static int bio_ready_for_csum(struct bio *bio)
{
u64 length = 0;
u64 buf_len = 0;
u64 start = 0;
struct page *page;
struct extent_io_tree *io_tree = NULL;
struct btrfs_fs_info *info = NULL;
struct bio_vec *bvec;
int i;
int ret;
bio_for_each_segment(bvec, bio, i) {
page = bvec->bv_page;
if (page->private == EXTENT_PAGE_PRIVATE) {
length += bvec->bv_len;
continue;
}
if (!page->private) {
length += bvec->bv_len;
continue;
}
length = bvec->bv_len;
buf_len = page->private >> 2;
start = page_offset(page) + bvec->bv_offset;
io_tree = &BTRFS_I(page->mapping->host)->io_tree;
info = BTRFS_I(page->mapping->host)->root->fs_info;
}
/* are we fully contained in this bio? */
if (buf_len <= length)
return 1;
ret = extent_range_uptodate(io_tree, start + length,
start + buf_len - 1);
if (ret == 1)
return ret;
return ret;
}
/*
* called by the kthread helper functions to finally call the bio end_io
* functions. This is where read checksum verification actually happens
*/
static void end_workqueue_fn(struct btrfs_work *work)
{
struct bio *bio;
struct end_io_wq *end_io_wq;
struct btrfs_fs_info *fs_info;
int error;
end_io_wq = container_of(work, struct end_io_wq, work);
bio = end_io_wq->bio;
fs_info = end_io_wq->info;
/* metadata bios are special because the whole tree block must
* be checksummed at once. This makes sure the entire block is in
* ram and up to date before trying to verify things. For
* blocksize <= pagesize, it is basically a noop
*/
if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
btrfs_queue_worker(&fs_info->endio_workers,
&end_io_wq->work);
return;
}
error = end_io_wq->error;
bio->bi_private = end_io_wq->private;
bio->bi_end_io = end_io_wq->end_io;
kfree(end_io_wq);
#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
bio_endio(bio, bio->bi_size, error);
#else
bio_endio(bio, error);
#endif
}
static int cleaner_kthread(void *arg)
{
struct btrfs_root *root = arg;
do {
smp_mb();
if (root->fs_info->closing)
break;
vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
mutex_lock(&root->fs_info->cleaner_mutex);
btrfs_clean_old_snapshots(root);
mutex_unlock(&root->fs_info->cleaner_mutex);
if (freezing(current)) {
refrigerator();
} else {
smp_mb();
if (root->fs_info->closing)
break;
set_current_state(TASK_INTERRUPTIBLE);
schedule();
__set_current_state(TASK_RUNNING);
}
} while (!kthread_should_stop());
return 0;
}
static int transaction_kthread(void *arg)
{
struct btrfs_root *root = arg;
struct btrfs_trans_handle *trans;
struct btrfs_transaction *cur;
unsigned long now;
unsigned long delay;
int ret;
do {
smp_mb();
if (root->fs_info->closing)
break;
delay = HZ * 30;
vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
mutex_lock(&root->fs_info->transaction_kthread_mutex);
if (root->fs_info->total_ref_cache_size > 20 * 1024 * 1024) {
printk("btrfs: total reference cache size %Lu\n",
root->fs_info->total_ref_cache_size);
}
mutex_lock(&root->fs_info->trans_mutex);
cur = root->fs_info->running_transaction;
if (!cur) {
mutex_unlock(&root->fs_info->trans_mutex);
goto sleep;
}
now = get_seconds();
if (now < cur->start_time || now - cur->start_time < 30) {
mutex_unlock(&root->fs_info->trans_mutex);
delay = HZ * 5;
goto sleep;
}
mutex_unlock(&root->fs_info->trans_mutex);
trans = btrfs_start_transaction(root, 1);
ret = btrfs_commit_transaction(trans, root);
sleep:
wake_up_process(root->fs_info->cleaner_kthread);
mutex_unlock(&root->fs_info->transaction_kthread_mutex);
if (freezing(current)) {
refrigerator();
} else {
if (root->fs_info->closing)
break;
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(delay);
__set_current_state(TASK_RUNNING);
}
} while (!kthread_should_stop());
return 0;
}
struct btrfs_root *open_ctree(struct super_block *sb,
struct btrfs_fs_devices *fs_devices,
char *options)
{
u32 sectorsize;
u32 nodesize;
u32 leafsize;
u32 blocksize;
u32 stripesize;
struct buffer_head *bh;
struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
GFP_NOFS);
struct btrfs_root *tree_root = kzalloc(sizeof(struct btrfs_root),
GFP_NOFS);
struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
GFP_NOFS);
struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
GFP_NOFS);
struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
GFP_NOFS);
struct btrfs_root *log_tree_root;
int ret;
int err = -EINVAL;
struct btrfs_super_block *disk_super;
if (!extent_root || !tree_root || !fs_info) {
err = -ENOMEM;
goto fail;
}
INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
INIT_LIST_HEAD(&fs_info->trans_list);
INIT_LIST_HEAD(&fs_info->dead_roots);
INIT_LIST_HEAD(&fs_info->hashers);
INIT_LIST_HEAD(&fs_info->delalloc_inodes);
spin_lock_init(&fs_info->hash_lock);
spin_lock_init(&fs_info->delalloc_lock);
spin_lock_init(&fs_info->new_trans_lock);
spin_lock_init(&fs_info->ref_cache_lock);
init_completion(&fs_info->kobj_unregister);
fs_info->tree_root = tree_root;
fs_info->extent_root = extent_root;
fs_info->chunk_root = chunk_root;
fs_info->dev_root = dev_root;
fs_info->fs_devices = fs_devices;
INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
INIT_LIST_HEAD(&fs_info->space_info);
btrfs_mapping_init(&fs_info->mapping_tree);
atomic_set(&fs_info->nr_async_submits, 0);
atomic_set(&fs_info->nr_async_bios, 0);
atomic_set(&fs_info->throttles, 0);
atomic_set(&fs_info->throttle_gen, 0);
fs_info->sb = sb;
fs_info->max_extent = (u64)-1;
fs_info->max_inline = 8192 * 1024;
setup_bdi(fs_info, &fs_info->bdi);
fs_info->btree_inode = new_inode(sb);
fs_info->btree_inode->i_ino = 1;
fs_info->btree_inode->i_nlink = 1;
fs_info->thread_pool_size = min(num_online_cpus() + 2, 8);
INIT_LIST_HEAD(&fs_info->ordered_extents);
spin_lock_init(&fs_info->ordered_extent_lock);
sb->s_blocksize = 4096;
sb->s_blocksize_bits = blksize_bits(4096);
/*
* we set the i_size on the btree inode to the max possible int.
* the real end of the address space is determined by all of
* the devices in the system
*/
fs_info->btree_inode->i_size = OFFSET_MAX;
fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
fs_info->btree_inode->i_mapping,
GFP_NOFS);
extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
GFP_NOFS);
BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
extent_io_tree_init(&fs_info->free_space_cache,
fs_info->btree_inode->i_mapping, GFP_NOFS);
extent_io_tree_init(&fs_info->block_group_cache,
fs_info->btree_inode->i_mapping, GFP_NOFS);
extent_io_tree_init(&fs_info->pinned_extents,
fs_info->btree_inode->i_mapping, GFP_NOFS);
extent_io_tree_init(&fs_info->pending_del,
fs_info->btree_inode->i_mapping, GFP_NOFS);
extent_io_tree_init(&fs_info->extent_ins,
fs_info->btree_inode->i_mapping, GFP_NOFS);
fs_info->do_barriers = 1;
BTRFS_I(fs_info->btree_inode)->root = tree_root;
memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
sizeof(struct btrfs_key));
insert_inode_hash(fs_info->btree_inode);
mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
mutex_init(&fs_info->trans_mutex);
mutex_init(&fs_info->tree_log_mutex);
mutex_init(&fs_info->drop_mutex);
mutex_init(&fs_info->alloc_mutex);
mutex_init(&fs_info->chunk_mutex);
mutex_init(&fs_info->transaction_kthread_mutex);
mutex_init(&fs_info->cleaner_mutex);
mutex_init(&fs_info->volume_mutex);
init_waitqueue_head(&fs_info->transaction_throttle);
init_waitqueue_head(&fs_info->transaction_wait);
init_waitqueue_head(&fs_info->async_submit_wait);
init_waitqueue_head(&fs_info->tree_log_wait);
atomic_set(&fs_info->tree_log_commit, 0);
atomic_set(&fs_info->tree_log_writers, 0);
fs_info->tree_log_transid = 0;
#if 0
ret = add_hasher(fs_info, "crc32c");
if (ret) {
printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
err = -ENOMEM;
goto fail_iput;
}
#endif
__setup_root(4096, 4096, 4096, 4096, tree_root,
fs_info, BTRFS_ROOT_TREE_OBJECTID);
bh = __bread(fs_devices->latest_bdev,
BTRFS_SUPER_INFO_OFFSET / 4096, 4096);
if (!bh)
goto fail_iput;
memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
brelse(bh);
memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
disk_super = &fs_info->super_copy;
if (!btrfs_super_root(disk_super))
goto fail_sb_buffer;
err = btrfs_parse_options(tree_root, options);
if (err)
goto fail_sb_buffer;
/*
* we need to start all the end_io workers up front because the
* queue work function gets called at interrupt time, and so it
* cannot dynamically grow.
*/
btrfs_init_workers(&fs_info->workers, "worker",
fs_info->thread_pool_size);
btrfs_init_workers(&fs_info->submit_workers, "submit",
min_t(u64, fs_devices->num_devices,
fs_info->thread_pool_size));
/* a higher idle thresh on the submit workers makes it much more
* likely that bios will be send down in a sane order to the
* devices
*/
fs_info->submit_workers.idle_thresh = 64;
/* fs_info->workers is responsible for checksumming file data
* blocks and metadata. Using a larger idle thresh allows each
* worker thread to operate on things in roughly the order they
* were sent by the writeback daemons, improving overall locality
* of the IO going down the pipe.
*/
fs_info->workers.idle_thresh = 128;
btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1);
btrfs_init_workers(&fs_info->endio_workers, "endio",
fs_info->thread_pool_size);
btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
fs_info->thread_pool_size);
/*
* endios are largely parallel and should have a very
* low idle thresh
*/
fs_info->endio_workers.idle_thresh = 4;
fs_info->endio_write_workers.idle_thresh = 4;
btrfs_start_workers(&fs_info->workers, 1);
btrfs_start_workers(&fs_info->submit_workers, 1);
btrfs_start_workers(&fs_info->fixup_workers, 1);
btrfs_start_workers(&fs_info->endio_workers, fs_info->thread_pool_size);
btrfs_start_workers(&fs_info->endio_write_workers,
fs_info->thread_pool_size);
err = -EINVAL;
if (btrfs_super_num_devices(disk_super) > fs_devices->open_devices) {
printk("Btrfs: wanted %llu devices, but found %llu\n",
(unsigned long long)btrfs_super_num_devices(disk_super),
(unsigned long long)fs_devices->open_devices);
if (btrfs_test_opt(tree_root, DEGRADED))
printk("continuing in degraded mode\n");
else {
goto fail_sb_buffer;
}
}
fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
nodesize = btrfs_super_nodesize(disk_super);
leafsize = btrfs_super_leafsize(disk_super);
sectorsize = btrfs_super_sectorsize(disk_super);
stripesize = btrfs_super_stripesize(disk_super);
tree_root->nodesize = nodesize;
tree_root->leafsize = leafsize;
tree_root->sectorsize = sectorsize;
tree_root->stripesize = stripesize;
sb->s_blocksize = sectorsize;
sb->s_blocksize_bits = blksize_bits(sectorsize);
if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
sizeof(disk_super->magic))) {
printk("btrfs: valid FS not found on %s\n", sb->s_id);
goto fail_sb_buffer;
}
mutex_lock(&fs_info->chunk_mutex);
ret = btrfs_read_sys_array(tree_root);
mutex_unlock(&fs_info->chunk_mutex);
if (ret) {
printk("btrfs: failed to read the system array on %s\n",
sb->s_id);
goto fail_sys_array;
}
blocksize = btrfs_level_size(tree_root,
btrfs_super_chunk_root_level(disk_super));
__setup_root(nodesize, leafsize, sectorsize, stripesize,
chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
chunk_root->node = read_tree_block(chunk_root,
btrfs_super_chunk_root(disk_super),
blocksize, 0);
BUG_ON(!chunk_root->node);
read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
(unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
BTRFS_UUID_SIZE);
mutex_lock(&fs_info->chunk_mutex);
ret = btrfs_read_chunk_tree(chunk_root);
mutex_unlock(&fs_info->chunk_mutex);
BUG_ON(ret);
btrfs_close_extra_devices(fs_devices);
blocksize = btrfs_level_size(tree_root,
btrfs_super_root_level(disk_super));
tree_root->node = read_tree_block(tree_root,
btrfs_super_root(disk_super),
blocksize, 0);
if (!tree_root->node)
goto fail_sb_buffer;
ret = find_and_setup_root(tree_root, fs_info,
BTRFS_EXTENT_TREE_OBJECTID, extent_root);
if (ret)
goto fail_tree_root;
extent_root->track_dirty = 1;
ret = find_and_setup_root(tree_root, fs_info,
BTRFS_DEV_TREE_OBJECTID, dev_root);
dev_root->track_dirty = 1;
if (ret)
goto fail_extent_root;
btrfs_read_block_groups(extent_root);
fs_info->generation = btrfs_super_generation(disk_super) + 1;
fs_info->data_alloc_profile = (u64)-1;
fs_info->metadata_alloc_profile = (u64)-1;
fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
"btrfs-cleaner");
if (!fs_info->cleaner_kthread)
goto fail_extent_root;
fs_info->transaction_kthread = kthread_run(transaction_kthread,
tree_root,
"btrfs-transaction");
if (!fs_info->transaction_kthread)
goto fail_cleaner;
if (btrfs_super_log_root(disk_super) != 0) {
u32 blocksize;
u64 bytenr = btrfs_super_log_root(disk_super);
blocksize =
btrfs_level_size(tree_root,
btrfs_super_log_root_level(disk_super));
log_tree_root = kzalloc(sizeof(struct btrfs_root),
GFP_NOFS);
__setup_root(nodesize, leafsize, sectorsize, stripesize,
log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
log_tree_root->node = read_tree_block(tree_root, bytenr,
blocksize, 0);
ret = btrfs_recover_log_trees(log_tree_root);
BUG_ON(ret);
}
fs_info->last_trans_committed = btrfs_super_generation(disk_super);
return tree_root;
fail_cleaner:
kthread_stop(fs_info->cleaner_kthread);
fail_extent_root:
free_extent_buffer(extent_root->node);
fail_tree_root:
free_extent_buffer(tree_root->node);
fail_sys_array:
fail_sb_buffer:
btrfs_stop_workers(&fs_info->fixup_workers);
btrfs_stop_workers(&fs_info->workers);
btrfs_stop_workers(&fs_info->endio_workers);
btrfs_stop_workers(&fs_info->endio_write_workers);
btrfs_stop_workers(&fs_info->submit_workers);
fail_iput:
iput(fs_info->btree_inode);
fail:
btrfs_close_devices(fs_info->fs_devices);
btrfs_mapping_tree_free(&fs_info->mapping_tree);
kfree(extent_root);
kfree(tree_root);
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
bdi_destroy(&fs_info->bdi);
#endif
kfree(fs_info);
return ERR_PTR(err);
}
static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
{
char b[BDEVNAME_SIZE];
if (uptodate) {
set_buffer_uptodate(bh);
} else {
if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
printk(KERN_WARNING "lost page write due to "
"I/O error on %s\n",
bdevname(bh->b_bdev, b));
}
/* note, we dont' set_buffer_write_io_error because we have
* our own ways of dealing with the IO errors
*/
clear_buffer_uptodate(bh);
}
unlock_buffer(bh);
put_bh(bh);
}
int write_all_supers(struct btrfs_root *root)
{
struct list_head *cur;
struct list_head *head = &root->fs_info->fs_devices->devices;
struct btrfs_device *dev;
struct btrfs_super_block *sb;
struct btrfs_dev_item *dev_item;
struct buffer_head *bh;
int ret;
int do_barriers;
int max_errors;
int total_errors = 0;
u32 crc;
u64 flags;
max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
do_barriers = !btrfs_test_opt(root, NOBARRIER);
sb = &root->fs_info->super_for_commit;
dev_item = &sb->dev_item;
list_for_each(cur, head) {
dev = list_entry(cur, struct btrfs_device, dev_list);
if (!dev->bdev) {
total_errors++;
continue;
}
if (!dev->in_fs_metadata)
continue;
btrfs_set_stack_device_type(dev_item, dev->type);
btrfs_set_stack_device_id(dev_item, dev->devid);
btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
btrfs_set_stack_device_io_align(dev_item, dev->io_align);
btrfs_set_stack_device_io_width(dev_item, dev->io_width);
btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
flags = btrfs_super_flags(sb);
btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
crc = ~(u32)0;
crc = btrfs_csum_data(root, (char *)sb + BTRFS_CSUM_SIZE, crc,
BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
btrfs_csum_final(crc, sb->csum);
bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET / 4096,
BTRFS_SUPER_INFO_SIZE);
memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
dev->pending_io = bh;
get_bh(bh);
set_buffer_uptodate(bh);
lock_buffer(bh);
bh->b_end_io = btrfs_end_buffer_write_sync;
if (do_barriers && dev->barriers) {
ret = submit_bh(WRITE_BARRIER, bh);
if (ret == -EOPNOTSUPP) {
printk("btrfs: disabling barriers on dev %s\n",
dev->name);
set_buffer_uptodate(bh);
dev->barriers = 0;
get_bh(bh);
lock_buffer(bh);
ret = submit_bh(WRITE, bh);
}
} else {
ret = submit_bh(WRITE, bh);
}
if (ret)
total_errors++;
}
if (total_errors > max_errors) {
printk("btrfs: %d errors while writing supers\n", total_errors);
BUG();
}
total_errors = 0;
list_for_each(cur, head) {
dev = list_entry(cur, struct btrfs_device, dev_list);
if (!dev->bdev)
continue;
if (!dev->in_fs_metadata)
continue;
BUG_ON(!dev->pending_io);
bh = dev->pending_io;
wait_on_buffer(bh);
if (!buffer_uptodate(dev->pending_io)) {
if (do_barriers && dev->barriers) {
printk("btrfs: disabling barriers on dev %s\n",
dev->name);
set_buffer_uptodate(bh);
get_bh(bh);
lock_buffer(bh);
dev->barriers = 0;
ret = submit_bh(WRITE, bh);
BUG_ON(ret);
wait_on_buffer(bh);
if (!buffer_uptodate(bh))
total_errors++;
} else {
total_errors++;
}
}
dev->pending_io = NULL;
brelse(bh);
}
if (total_errors > max_errors) {
printk("btrfs: %d errors while writing supers\n", total_errors);
BUG();
}
return 0;
}
int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
*root)
{
int ret;
ret = write_all_supers(root);
return ret;
}
int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
{
radix_tree_delete(&fs_info->fs_roots_radix,
(unsigned long)root->root_key.objectid);
if (root->in_sysfs)
btrfs_sysfs_del_root(root);
if (root->inode)
iput(root->inode);
if (root->node)
free_extent_buffer(root->node);
if (root->commit_root)
free_extent_buffer(root->commit_root);
if (root->name)
kfree(root->name);
kfree(root);
return 0;
}
static int del_fs_roots(struct btrfs_fs_info *fs_info)
{
int ret;
struct btrfs_root *gang[8];
int i;
while(1) {
ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
(void **)gang, 0,
ARRAY_SIZE(gang));
if (!ret)
break;
for (i = 0; i < ret; i++)
btrfs_free_fs_root(fs_info, gang[i]);
}
return 0;
}
int close_ctree(struct btrfs_root *root)
{
int ret;
struct btrfs_trans_handle *trans;
struct btrfs_fs_info *fs_info = root->fs_info;
fs_info->closing = 1;
smp_mb();
kthread_stop(root->fs_info->transaction_kthread);
kthread_stop(root->fs_info->cleaner_kthread);
btrfs_clean_old_snapshots(root);
trans = btrfs_start_transaction(root, 1);
ret = btrfs_commit_transaction(trans, root);
/* run commit again to drop the original snapshot */
trans = btrfs_start_transaction(root, 1);
btrfs_commit_transaction(trans, root);
ret = btrfs_write_and_wait_transaction(NULL, root);
BUG_ON(ret);
write_ctree_super(NULL, root);
if (fs_info->delalloc_bytes) {
printk("btrfs: at unmount delalloc count %Lu\n",
fs_info->delalloc_bytes);
}
if (fs_info->total_ref_cache_size) {
printk("btrfs: at umount reference cache size %Lu\n",
fs_info->total_ref_cache_size);
}
if (fs_info->extent_root->node)
free_extent_buffer(fs_info->extent_root->node);
if (fs_info->tree_root->node)
free_extent_buffer(fs_info->tree_root->node);
if (root->fs_info->chunk_root->node);
free_extent_buffer(root->fs_info->chunk_root->node);
if (root->fs_info->dev_root->node);
free_extent_buffer(root->fs_info->dev_root->node);
btrfs_free_block_groups(root->fs_info);
fs_info->closing = 2;
del_fs_roots(fs_info);
filemap_write_and_wait(fs_info->btree_inode->i_mapping);
truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
btrfs_stop_workers(&fs_info->fixup_workers);
btrfs_stop_workers(&fs_info->workers);
btrfs_stop_workers(&fs_info->endio_workers);
btrfs_stop_workers(&fs_info->endio_write_workers);
btrfs_stop_workers(&fs_info->submit_workers);
iput(fs_info->btree_inode);
#if 0
while(!list_empty(&fs_info->hashers)) {
struct btrfs_hasher *hasher;
hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
hashers);
list_del(&hasher->hashers);
crypto_free_hash(&fs_info->hash_tfm);
kfree(hasher);
}
#endif
btrfs_close_devices(fs_info->fs_devices);
btrfs_mapping_tree_free(&fs_info->mapping_tree);
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
bdi_destroy(&fs_info->bdi);
#endif
kfree(fs_info->extent_root);
kfree(fs_info->tree_root);
kfree(fs_info->chunk_root);
kfree(fs_info->dev_root);
return 0;
}
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
{
int ret;
struct inode *btree_inode = buf->first_page->mapping->host;
ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
if (!ret)
return ret;
ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
parent_transid);
return !ret;
}
int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
{
struct inode *btree_inode = buf->first_page->mapping->host;
return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
buf);
}
void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
{
struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
u64 transid = btrfs_header_generation(buf);
struct inode *btree_inode = root->fs_info->btree_inode;
WARN_ON(!btrfs_tree_locked(buf));
if (transid != root->fs_info->generation) {
printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
(unsigned long long)buf->start,
transid, root->fs_info->generation);
WARN_ON(1);
}
set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
}
void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
{
/*
* looks as though older kernels can get into trouble with
* this code, they end up stuck in balance_dirty_pages forever
*/
struct extent_io_tree *tree;
u64 num_dirty;
u64 start = 0;
unsigned long thresh = 96 * 1024 * 1024;
tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
if (current_is_pdflush() || current->flags & PF_MEMALLOC)
return;
num_dirty = count_range_bits(tree, &start, (u64)-1,
thresh, EXTENT_DIRTY);
if (num_dirty > thresh) {
balance_dirty_pages_ratelimited_nr(
root->fs_info->btree_inode->i_mapping, 1);
}
return;
}
int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
{
struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
int ret;
ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
if (ret == 0) {
buf->flags |= EXTENT_UPTODATE;
}
return ret;
}
static struct extent_io_ops btree_extent_io_ops = {
.writepage_io_hook = btree_writepage_io_hook,
.readpage_end_io_hook = btree_readpage_end_io_hook,
.submit_bio_hook = btree_submit_bio_hook,
/* note we're sharing with inode.c for the merge bio hook */
.merge_bio_hook = btrfs_merge_bio_hook,
};