1
linux/Documentation/i2c/smbus-protocol
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

217 lines
6.4 KiB
Plaintext

SMBus Protocol Summary
======================
The following is a summary of the SMBus protocol. It applies to
all revisions of the protocol (1.0, 1.1, and 2.0).
Certain protocol features which are not supported by
this package are briefly described at the end of this document.
Some adapters understand only the SMBus (System Management Bus) protocol,
which is a subset from the I2C protocol. Fortunately, many devices use
only the same subset, which makes it possible to put them on an SMBus.
If you write a driver for some I2C device, please try to use the SMBus
commands if at all possible (if the device uses only that subset of the
I2C protocol). This makes it possible to use the device driver on both
SMBus adapters and I2C adapters (the SMBus command set is automatically
translated to I2C on I2C adapters, but plain I2C commands can not be
handled at all on most pure SMBus adapters).
Below is a list of SMBus commands.
Key to symbols
==============
S (1 bit) : Start bit
P (1 bit) : Stop bit
Rd/Wr (1 bit) : Read/Write bit. Rd equals 1, Wr equals 0.
A, NA (1 bit) : Accept and reverse accept bit.
Addr (7 bits): I2C 7 bit address. Note that this can be expanded as usual to
get a 10 bit I2C address.
Comm (8 bits): Command byte, a data byte which often selects a register on
the device.
Data (8 bits): A plain data byte. Sometimes, I write DataLow, DataHigh
for 16 bit data.
Count (8 bits): A data byte containing the length of a block operation.
[..]: Data sent by I2C device, as opposed to data sent by the host adapter.
SMBus Write Quick
=================
This sends a single bit to the device, at the place of the Rd/Wr bit.
There is no equivalent Read Quick command.
A Addr Rd/Wr [A] P
SMBus Read Byte
===============
This reads a single byte from a device, without specifying a device
register. Some devices are so simple that this interface is enough; for
others, it is a shorthand if you want to read the same register as in
the previous SMBus command.
S Addr Rd [A] [Data] NA P
SMBus Write Byte
================
This is the reverse of Read Byte: it sends a single byte to a device.
See Read Byte for more information.
S Addr Wr [A] Data [A] P
SMBus Read Byte Data
====================
This reads a single byte from a device, from a designated register.
The register is specified through the Comm byte.
S Addr Wr [A] Comm [A] S Addr Rd [A] [Data] NA P
SMBus Read Word Data
====================
This command is very like Read Byte Data; again, data is read from a
device, from a designated register that is specified through the Comm
byte. But this time, the data is a complete word (16 bits).
S Addr Wr [A] Comm [A] S Addr Rd [A] [DataLow] A [DataHigh] NA P
SMBus Write Byte Data
=====================
This writes a single byte to a device, to a designated register. The
register is specified through the Comm byte. This is the opposite of
the Read Byte Data command.
S Addr Wr [A] Comm [A] Data [A] P
SMBus Write Word Data
=====================
This is the opposite operation of the Read Word Data command. 16 bits
of data is read from a device, from a designated register that is
specified through the Comm byte.
S Addr Wr [A] Comm [A] DataLow [A] DataHigh [A] P
SMBus Process Call
==================
This command selects a device register (through the Comm byte), sends
16 bits of data to it, and reads 16 bits of data in return.
S Addr Wr [A] Comm [A] DataLow [A] DataHigh [A]
S Addr Rd [A] [DataLow] A [DataHigh] NA P
SMBus Block Read
================
This command reads a block of up to 32 bytes from a device, from a
designated register that is specified through the Comm byte. The amount
of data is specified by the device in the Count byte.
S Addr Wr [A] Comm [A]
S Addr Rd [A] [Count] A [Data] A [Data] A ... A [Data] NA P
SMBus Block Write
=================
The opposite of the Block Read command, this writes up to 32 bytes to
a device, to a designated register that is specified through the
Comm byte. The amount of data is specified in the Count byte.
S Addr Wr [A] Comm [A] Count [A] Data [A] Data [A] ... [A] Data [A] P
SMBus Block Process Call
========================
SMBus Block Process Call was introduced in Revision 2.0 of the specification.
This command selects a device register (through the Comm byte), sends
1 to 31 bytes of data to it, and reads 1 to 31 bytes of data in return.
S Addr Wr [A] Comm [A] Count [A] Data [A] ...
S Addr Rd [A] [Count] A [Data] ... A P
SMBus Host Notify
=================
This command is sent from a SMBus device acting as a master to the
SMBus host acting as a slave.
It is the same form as Write Word, with the command code replaced by the
alerting device's address.
[S] [HostAddr] [Wr] A [DevAddr] A [DataLow] A [DataHigh] A [P]
Packet Error Checking (PEC)
===========================
Packet Error Checking was introduced in Revision 1.1 of the specification.
PEC adds a CRC-8 error-checking byte to all transfers.
Address Resolution Protocol (ARP)
=================================
The Address Resolution Protocol was introduced in Revision 2.0 of
the specification. It is a higher-layer protocol which uses the
messages above.
ARP adds device enumeration and dynamic address assignment to
the protocol. All ARP communications use slave address 0x61 and
require PEC checksums.
I2C Block Transactions
======================
The following I2C block transactions are supported by the
SMBus layer and are described here for completeness.
I2C block transactions do not limit the number of bytes transferred
but the SMBus layer places a limit of 32 bytes.
I2C Block Read
==============
This command reads a block of bytes from a device, from a
designated register that is specified through the Comm byte.
S Addr Wr [A] Comm [A]
S Addr Rd [A] [Data] A [Data] A ... A [Data] NA P
I2C Block Read (2 Comm bytes)
=============================
This command reads a block of bytes from a device, from a
designated register that is specified through the two Comm bytes.
S Addr Wr [A] Comm1 [A] Comm2 [A]
S Addr Rd [A] [Data] A [Data] A ... A [Data] NA P
I2C Block Write
===============
The opposite of the Block Read command, this writes bytes to
a device, to a designated register that is specified through the
Comm byte. Note that command lengths of 0, 2, or more bytes are
supported as they are indistinguishable from data.
S Addr Wr [A] Comm [A] Data [A] Data [A] ... [A] Data [A] P