1
linux/net/ipv6/ip6mr.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

1797 lines
40 KiB
C

/*
* Linux IPv6 multicast routing support for BSD pim6sd
* Based on net/ipv4/ipmr.c.
*
* (c) 2004 Mickael Hoerdt, <hoerdt@clarinet.u-strasbg.fr>
* LSIIT Laboratory, Strasbourg, France
* (c) 2004 Jean-Philippe Andriot, <jean-philippe.andriot@6WIND.com>
* 6WIND, Paris, France
* Copyright (C)2007,2008 USAGI/WIDE Project
* YOSHIFUJI Hideaki <yoshfuji@linux-ipv6.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <asm/system.h>
#include <asm/uaccess.h>
#include <linux/types.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/kernel.h>
#include <linux/fcntl.h>
#include <linux/stat.h>
#include <linux/socket.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <net/protocol.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <net/raw.h>
#include <linux/notifier.h>
#include <linux/if_arp.h>
#include <net/checksum.h>
#include <net/netlink.h>
#include <net/ipv6.h>
#include <net/ip6_route.h>
#include <linux/mroute6.h>
#include <linux/pim.h>
#include <net/addrconf.h>
#include <linux/netfilter_ipv6.h>
#include <net/ip6_checksum.h>
/* Big lock, protecting vif table, mrt cache and mroute socket state.
Note that the changes are semaphored via rtnl_lock.
*/
static DEFINE_RWLOCK(mrt_lock);
/*
* Multicast router control variables
*/
#define MIF_EXISTS(_net, _idx) ((_net)->ipv6.vif6_table[_idx].dev != NULL)
static struct mfc6_cache *mfc_unres_queue; /* Queue of unresolved entries */
/* Special spinlock for queue of unresolved entries */
static DEFINE_SPINLOCK(mfc_unres_lock);
/* We return to original Alan's scheme. Hash table of resolved
entries is changed only in process context and protected
with weak lock mrt_lock. Queue of unresolved entries is protected
with strong spinlock mfc_unres_lock.
In this case data path is free of exclusive locks at all.
*/
static struct kmem_cache *mrt_cachep __read_mostly;
static int ip6_mr_forward(struct sk_buff *skb, struct mfc6_cache *cache);
static int ip6mr_cache_report(struct net *net, struct sk_buff *pkt,
mifi_t mifi, int assert);
static int ip6mr_fill_mroute(struct sk_buff *skb, struct mfc6_cache *c, struct rtmsg *rtm);
static void mroute_clean_tables(struct net *net);
static struct timer_list ipmr_expire_timer;
#ifdef CONFIG_PROC_FS
struct ipmr_mfc_iter {
struct seq_net_private p;
struct mfc6_cache **cache;
int ct;
};
static struct mfc6_cache *ipmr_mfc_seq_idx(struct net *net,
struct ipmr_mfc_iter *it, loff_t pos)
{
struct mfc6_cache *mfc;
it->cache = net->ipv6.mfc6_cache_array;
read_lock(&mrt_lock);
for (it->ct = 0; it->ct < MFC6_LINES; it->ct++)
for (mfc = net->ipv6.mfc6_cache_array[it->ct];
mfc; mfc = mfc->next)
if (pos-- == 0)
return mfc;
read_unlock(&mrt_lock);
it->cache = &mfc_unres_queue;
spin_lock_bh(&mfc_unres_lock);
for (mfc = mfc_unres_queue; mfc; mfc = mfc->next)
if (net_eq(mfc6_net(mfc), net) &&
pos-- == 0)
return mfc;
spin_unlock_bh(&mfc_unres_lock);
it->cache = NULL;
return NULL;
}
/*
* The /proc interfaces to multicast routing /proc/ip6_mr_cache /proc/ip6_mr_vif
*/
struct ipmr_vif_iter {
struct seq_net_private p;
int ct;
};
static struct mif_device *ip6mr_vif_seq_idx(struct net *net,
struct ipmr_vif_iter *iter,
loff_t pos)
{
for (iter->ct = 0; iter->ct < net->ipv6.maxvif; ++iter->ct) {
if (!MIF_EXISTS(net, iter->ct))
continue;
if (pos-- == 0)
return &net->ipv6.vif6_table[iter->ct];
}
return NULL;
}
static void *ip6mr_vif_seq_start(struct seq_file *seq, loff_t *pos)
__acquires(mrt_lock)
{
struct net *net = seq_file_net(seq);
read_lock(&mrt_lock);
return *pos ? ip6mr_vif_seq_idx(net, seq->private, *pos - 1)
: SEQ_START_TOKEN;
}
static void *ip6mr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct ipmr_vif_iter *iter = seq->private;
struct net *net = seq_file_net(seq);
++*pos;
if (v == SEQ_START_TOKEN)
return ip6mr_vif_seq_idx(net, iter, 0);
while (++iter->ct < net->ipv6.maxvif) {
if (!MIF_EXISTS(net, iter->ct))
continue;
return &net->ipv6.vif6_table[iter->ct];
}
return NULL;
}
static void ip6mr_vif_seq_stop(struct seq_file *seq, void *v)
__releases(mrt_lock)
{
read_unlock(&mrt_lock);
}
static int ip6mr_vif_seq_show(struct seq_file *seq, void *v)
{
struct net *net = seq_file_net(seq);
if (v == SEQ_START_TOKEN) {
seq_puts(seq,
"Interface BytesIn PktsIn BytesOut PktsOut Flags\n");
} else {
const struct mif_device *vif = v;
const char *name = vif->dev ? vif->dev->name : "none";
seq_printf(seq,
"%2td %-10s %8ld %7ld %8ld %7ld %05X\n",
vif - net->ipv6.vif6_table,
name, vif->bytes_in, vif->pkt_in,
vif->bytes_out, vif->pkt_out,
vif->flags);
}
return 0;
}
static const struct seq_operations ip6mr_vif_seq_ops = {
.start = ip6mr_vif_seq_start,
.next = ip6mr_vif_seq_next,
.stop = ip6mr_vif_seq_stop,
.show = ip6mr_vif_seq_show,
};
static int ip6mr_vif_open(struct inode *inode, struct file *file)
{
return seq_open_net(inode, file, &ip6mr_vif_seq_ops,
sizeof(struct ipmr_vif_iter));
}
static const struct file_operations ip6mr_vif_fops = {
.owner = THIS_MODULE,
.open = ip6mr_vif_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_net,
};
static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
{
struct net *net = seq_file_net(seq);
return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
: SEQ_START_TOKEN;
}
static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct mfc6_cache *mfc = v;
struct ipmr_mfc_iter *it = seq->private;
struct net *net = seq_file_net(seq);
++*pos;
if (v == SEQ_START_TOKEN)
return ipmr_mfc_seq_idx(net, seq->private, 0);
if (mfc->next)
return mfc->next;
if (it->cache == &mfc_unres_queue)
goto end_of_list;
BUG_ON(it->cache != net->ipv6.mfc6_cache_array);
while (++it->ct < MFC6_LINES) {
mfc = net->ipv6.mfc6_cache_array[it->ct];
if (mfc)
return mfc;
}
/* exhausted cache_array, show unresolved */
read_unlock(&mrt_lock);
it->cache = &mfc_unres_queue;
it->ct = 0;
spin_lock_bh(&mfc_unres_lock);
mfc = mfc_unres_queue;
if (mfc)
return mfc;
end_of_list:
spin_unlock_bh(&mfc_unres_lock);
it->cache = NULL;
return NULL;
}
static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
{
struct ipmr_mfc_iter *it = seq->private;
struct net *net = seq_file_net(seq);
if (it->cache == &mfc_unres_queue)
spin_unlock_bh(&mfc_unres_lock);
else if (it->cache == net->ipv6.mfc6_cache_array)
read_unlock(&mrt_lock);
}
static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
{
int n;
struct net *net = seq_file_net(seq);
if (v == SEQ_START_TOKEN) {
seq_puts(seq,
"Group "
"Origin "
"Iif Pkts Bytes Wrong Oifs\n");
} else {
const struct mfc6_cache *mfc = v;
const struct ipmr_mfc_iter *it = seq->private;
seq_printf(seq, "%pI6 %pI6 %-3hd",
&mfc->mf6c_mcastgrp, &mfc->mf6c_origin,
mfc->mf6c_parent);
if (it->cache != &mfc_unres_queue) {
seq_printf(seq, " %8lu %8lu %8lu",
mfc->mfc_un.res.pkt,
mfc->mfc_un.res.bytes,
mfc->mfc_un.res.wrong_if);
for (n = mfc->mfc_un.res.minvif;
n < mfc->mfc_un.res.maxvif; n++) {
if (MIF_EXISTS(net, n) &&
mfc->mfc_un.res.ttls[n] < 255)
seq_printf(seq,
" %2d:%-3d",
n, mfc->mfc_un.res.ttls[n]);
}
} else {
/* unresolved mfc_caches don't contain
* pkt, bytes and wrong_if values
*/
seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
}
seq_putc(seq, '\n');
}
return 0;
}
static const struct seq_operations ipmr_mfc_seq_ops = {
.start = ipmr_mfc_seq_start,
.next = ipmr_mfc_seq_next,
.stop = ipmr_mfc_seq_stop,
.show = ipmr_mfc_seq_show,
};
static int ipmr_mfc_open(struct inode *inode, struct file *file)
{
return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
sizeof(struct ipmr_mfc_iter));
}
static const struct file_operations ip6mr_mfc_fops = {
.owner = THIS_MODULE,
.open = ipmr_mfc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release_net,
};
#endif
#ifdef CONFIG_IPV6_PIMSM_V2
static int pim6_rcv(struct sk_buff *skb)
{
struct pimreghdr *pim;
struct ipv6hdr *encap;
struct net_device *reg_dev = NULL;
struct net *net = dev_net(skb->dev);
int reg_vif_num = net->ipv6.mroute_reg_vif_num;
if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(*encap)))
goto drop;
pim = (struct pimreghdr *)skb_transport_header(skb);
if (pim->type != ((PIM_VERSION << 4) | PIM_REGISTER) ||
(pim->flags & PIM_NULL_REGISTER) ||
(csum_ipv6_magic(&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr,
sizeof(*pim), IPPROTO_PIM,
csum_partial((void *)pim, sizeof(*pim), 0)) &&
csum_fold(skb_checksum(skb, 0, skb->len, 0))))
goto drop;
/* check if the inner packet is destined to mcast group */
encap = (struct ipv6hdr *)(skb_transport_header(skb) +
sizeof(*pim));
if (!ipv6_addr_is_multicast(&encap->daddr) ||
encap->payload_len == 0 ||
ntohs(encap->payload_len) + sizeof(*pim) > skb->len)
goto drop;
read_lock(&mrt_lock);
if (reg_vif_num >= 0)
reg_dev = net->ipv6.vif6_table[reg_vif_num].dev;
if (reg_dev)
dev_hold(reg_dev);
read_unlock(&mrt_lock);
if (reg_dev == NULL)
goto drop;
skb->mac_header = skb->network_header;
skb_pull(skb, (u8 *)encap - skb->data);
skb_reset_network_header(skb);
skb->dev = reg_dev;
skb->protocol = htons(ETH_P_IPV6);
skb->ip_summed = 0;
skb->pkt_type = PACKET_HOST;
skb_dst_drop(skb);
reg_dev->stats.rx_bytes += skb->len;
reg_dev->stats.rx_packets++;
nf_reset(skb);
netif_rx(skb);
dev_put(reg_dev);
return 0;
drop:
kfree_skb(skb);
return 0;
}
static const struct inet6_protocol pim6_protocol = {
.handler = pim6_rcv,
};
/* Service routines creating virtual interfaces: PIMREG */
static netdev_tx_t reg_vif_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct net *net = dev_net(dev);
read_lock(&mrt_lock);
dev->stats.tx_bytes += skb->len;
dev->stats.tx_packets++;
ip6mr_cache_report(net, skb, net->ipv6.mroute_reg_vif_num,
MRT6MSG_WHOLEPKT);
read_unlock(&mrt_lock);
kfree_skb(skb);
return NETDEV_TX_OK;
}
static const struct net_device_ops reg_vif_netdev_ops = {
.ndo_start_xmit = reg_vif_xmit,
};
static void reg_vif_setup(struct net_device *dev)
{
dev->type = ARPHRD_PIMREG;
dev->mtu = 1500 - sizeof(struct ipv6hdr) - 8;
dev->flags = IFF_NOARP;
dev->netdev_ops = &reg_vif_netdev_ops;
dev->destructor = free_netdev;
dev->features |= NETIF_F_NETNS_LOCAL;
}
static struct net_device *ip6mr_reg_vif(struct net *net)
{
struct net_device *dev;
dev = alloc_netdev(0, "pim6reg", reg_vif_setup);
if (dev == NULL)
return NULL;
dev_net_set(dev, net);
if (register_netdevice(dev)) {
free_netdev(dev);
return NULL;
}
dev->iflink = 0;
if (dev_open(dev))
goto failure;
dev_hold(dev);
return dev;
failure:
/* allow the register to be completed before unregistering. */
rtnl_unlock();
rtnl_lock();
unregister_netdevice(dev);
return NULL;
}
#endif
/*
* Delete a VIF entry
*/
static int mif6_delete(struct net *net, int vifi, struct list_head *head)
{
struct mif_device *v;
struct net_device *dev;
struct inet6_dev *in6_dev;
if (vifi < 0 || vifi >= net->ipv6.maxvif)
return -EADDRNOTAVAIL;
v = &net->ipv6.vif6_table[vifi];
write_lock_bh(&mrt_lock);
dev = v->dev;
v->dev = NULL;
if (!dev) {
write_unlock_bh(&mrt_lock);
return -EADDRNOTAVAIL;
}
#ifdef CONFIG_IPV6_PIMSM_V2
if (vifi == net->ipv6.mroute_reg_vif_num)
net->ipv6.mroute_reg_vif_num = -1;
#endif
if (vifi + 1 == net->ipv6.maxvif) {
int tmp;
for (tmp = vifi - 1; tmp >= 0; tmp--) {
if (MIF_EXISTS(net, tmp))
break;
}
net->ipv6.maxvif = tmp + 1;
}
write_unlock_bh(&mrt_lock);
dev_set_allmulti(dev, -1);
in6_dev = __in6_dev_get(dev);
if (in6_dev)
in6_dev->cnf.mc_forwarding--;
if (v->flags & MIFF_REGISTER)
unregister_netdevice_queue(dev, head);
dev_put(dev);
return 0;
}
static inline void ip6mr_cache_free(struct mfc6_cache *c)
{
release_net(mfc6_net(c));
kmem_cache_free(mrt_cachep, c);
}
/* Destroy an unresolved cache entry, killing queued skbs
and reporting error to netlink readers.
*/
static void ip6mr_destroy_unres(struct mfc6_cache *c)
{
struct sk_buff *skb;
struct net *net = mfc6_net(c);
atomic_dec(&net->ipv6.cache_resolve_queue_len);
while((skb = skb_dequeue(&c->mfc_un.unres.unresolved)) != NULL) {
if (ipv6_hdr(skb)->version == 0) {
struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr));
nlh->nlmsg_type = NLMSG_ERROR;
nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
skb_trim(skb, nlh->nlmsg_len);
((struct nlmsgerr *)NLMSG_DATA(nlh))->error = -ETIMEDOUT;
rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
} else
kfree_skb(skb);
}
ip6mr_cache_free(c);
}
/* Single timer process for all the unresolved queue. */
static void ipmr_do_expire_process(unsigned long dummy)
{
unsigned long now = jiffies;
unsigned long expires = 10 * HZ;
struct mfc6_cache *c, **cp;
cp = &mfc_unres_queue;
while ((c = *cp) != NULL) {
if (time_after(c->mfc_un.unres.expires, now)) {
/* not yet... */
unsigned long interval = c->mfc_un.unres.expires - now;
if (interval < expires)
expires = interval;
cp = &c->next;
continue;
}
*cp = c->next;
ip6mr_destroy_unres(c);
}
if (mfc_unres_queue != NULL)
mod_timer(&ipmr_expire_timer, jiffies + expires);
}
static void ipmr_expire_process(unsigned long dummy)
{
if (!spin_trylock(&mfc_unres_lock)) {
mod_timer(&ipmr_expire_timer, jiffies + 1);
return;
}
if (mfc_unres_queue != NULL)
ipmr_do_expire_process(dummy);
spin_unlock(&mfc_unres_lock);
}
/* Fill oifs list. It is called under write locked mrt_lock. */
static void ip6mr_update_thresholds(struct mfc6_cache *cache, unsigned char *ttls)
{
int vifi;
struct net *net = mfc6_net(cache);
cache->mfc_un.res.minvif = MAXMIFS;
cache->mfc_un.res.maxvif = 0;
memset(cache->mfc_un.res.ttls, 255, MAXMIFS);
for (vifi = 0; vifi < net->ipv6.maxvif; vifi++) {
if (MIF_EXISTS(net, vifi) &&
ttls[vifi] && ttls[vifi] < 255) {
cache->mfc_un.res.ttls[vifi] = ttls[vifi];
if (cache->mfc_un.res.minvif > vifi)
cache->mfc_un.res.minvif = vifi;
if (cache->mfc_un.res.maxvif <= vifi)
cache->mfc_un.res.maxvif = vifi + 1;
}
}
}
static int mif6_add(struct net *net, struct mif6ctl *vifc, int mrtsock)
{
int vifi = vifc->mif6c_mifi;
struct mif_device *v = &net->ipv6.vif6_table[vifi];
struct net_device *dev;
struct inet6_dev *in6_dev;
int err;
/* Is vif busy ? */
if (MIF_EXISTS(net, vifi))
return -EADDRINUSE;
switch (vifc->mif6c_flags) {
#ifdef CONFIG_IPV6_PIMSM_V2
case MIFF_REGISTER:
/*
* Special Purpose VIF in PIM
* All the packets will be sent to the daemon
*/
if (net->ipv6.mroute_reg_vif_num >= 0)
return -EADDRINUSE;
dev = ip6mr_reg_vif(net);
if (!dev)
return -ENOBUFS;
err = dev_set_allmulti(dev, 1);
if (err) {
unregister_netdevice(dev);
dev_put(dev);
return err;
}
break;
#endif
case 0:
dev = dev_get_by_index(net, vifc->mif6c_pifi);
if (!dev)
return -EADDRNOTAVAIL;
err = dev_set_allmulti(dev, 1);
if (err) {
dev_put(dev);
return err;
}
break;
default:
return -EINVAL;
}
in6_dev = __in6_dev_get(dev);
if (in6_dev)
in6_dev->cnf.mc_forwarding++;
/*
* Fill in the VIF structures
*/
v->rate_limit = vifc->vifc_rate_limit;
v->flags = vifc->mif6c_flags;
if (!mrtsock)
v->flags |= VIFF_STATIC;
v->threshold = vifc->vifc_threshold;
v->bytes_in = 0;
v->bytes_out = 0;
v->pkt_in = 0;
v->pkt_out = 0;
v->link = dev->ifindex;
if (v->flags & MIFF_REGISTER)
v->link = dev->iflink;
/* And finish update writing critical data */
write_lock_bh(&mrt_lock);
v->dev = dev;
#ifdef CONFIG_IPV6_PIMSM_V2
if (v->flags & MIFF_REGISTER)
net->ipv6.mroute_reg_vif_num = vifi;
#endif
if (vifi + 1 > net->ipv6.maxvif)
net->ipv6.maxvif = vifi + 1;
write_unlock_bh(&mrt_lock);
return 0;
}
static struct mfc6_cache *ip6mr_cache_find(struct net *net,
struct in6_addr *origin,
struct in6_addr *mcastgrp)
{
int line = MFC6_HASH(mcastgrp, origin);
struct mfc6_cache *c;
for (c = net->ipv6.mfc6_cache_array[line]; c; c = c->next) {
if (ipv6_addr_equal(&c->mf6c_origin, origin) &&
ipv6_addr_equal(&c->mf6c_mcastgrp, mcastgrp))
break;
}
return c;
}
/*
* Allocate a multicast cache entry
*/
static struct mfc6_cache *ip6mr_cache_alloc(struct net *net)
{
struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
if (c == NULL)
return NULL;
c->mfc_un.res.minvif = MAXMIFS;
mfc6_net_set(c, net);
return c;
}
static struct mfc6_cache *ip6mr_cache_alloc_unres(struct net *net)
{
struct mfc6_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
if (c == NULL)
return NULL;
skb_queue_head_init(&c->mfc_un.unres.unresolved);
c->mfc_un.unres.expires = jiffies + 10 * HZ;
mfc6_net_set(c, net);
return c;
}
/*
* A cache entry has gone into a resolved state from queued
*/
static void ip6mr_cache_resolve(struct mfc6_cache *uc, struct mfc6_cache *c)
{
struct sk_buff *skb;
/*
* Play the pending entries through our router
*/
while((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
if (ipv6_hdr(skb)->version == 0) {
int err;
struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct ipv6hdr));
if (ip6mr_fill_mroute(skb, c, NLMSG_DATA(nlh)) > 0) {
nlh->nlmsg_len = skb_tail_pointer(skb) - (u8 *)nlh;
} else {
nlh->nlmsg_type = NLMSG_ERROR;
nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
skb_trim(skb, nlh->nlmsg_len);
((struct nlmsgerr *)NLMSG_DATA(nlh))->error = -EMSGSIZE;
}
err = rtnl_unicast(skb, mfc6_net(uc), NETLINK_CB(skb).pid);
} else
ip6_mr_forward(skb, c);
}
}
/*
* Bounce a cache query up to pim6sd. We could use netlink for this but pim6sd
* expects the following bizarre scheme.
*
* Called under mrt_lock.
*/
static int ip6mr_cache_report(struct net *net, struct sk_buff *pkt, mifi_t mifi,
int assert)
{
struct sk_buff *skb;
struct mrt6msg *msg;
int ret;
#ifdef CONFIG_IPV6_PIMSM_V2
if (assert == MRT6MSG_WHOLEPKT)
skb = skb_realloc_headroom(pkt, -skb_network_offset(pkt)
+sizeof(*msg));
else
#endif
skb = alloc_skb(sizeof(struct ipv6hdr) + sizeof(*msg), GFP_ATOMIC);
if (!skb)
return -ENOBUFS;
/* I suppose that internal messages
* do not require checksums */
skb->ip_summed = CHECKSUM_UNNECESSARY;
#ifdef CONFIG_IPV6_PIMSM_V2
if (assert == MRT6MSG_WHOLEPKT) {
/* Ugly, but we have no choice with this interface.
Duplicate old header, fix length etc.
And all this only to mangle msg->im6_msgtype and
to set msg->im6_mbz to "mbz" :-)
*/
skb_push(skb, -skb_network_offset(pkt));
skb_push(skb, sizeof(*msg));
skb_reset_transport_header(skb);
msg = (struct mrt6msg *)skb_transport_header(skb);
msg->im6_mbz = 0;
msg->im6_msgtype = MRT6MSG_WHOLEPKT;
msg->im6_mif = net->ipv6.mroute_reg_vif_num;
msg->im6_pad = 0;
ipv6_addr_copy(&msg->im6_src, &ipv6_hdr(pkt)->saddr);
ipv6_addr_copy(&msg->im6_dst, &ipv6_hdr(pkt)->daddr);
skb->ip_summed = CHECKSUM_UNNECESSARY;
} else
#endif
{
/*
* Copy the IP header
*/
skb_put(skb, sizeof(struct ipv6hdr));
skb_reset_network_header(skb);
skb_copy_to_linear_data(skb, ipv6_hdr(pkt), sizeof(struct ipv6hdr));
/*
* Add our header
*/
skb_put(skb, sizeof(*msg));
skb_reset_transport_header(skb);
msg = (struct mrt6msg *)skb_transport_header(skb);
msg->im6_mbz = 0;
msg->im6_msgtype = assert;
msg->im6_mif = mifi;
msg->im6_pad = 0;
ipv6_addr_copy(&msg->im6_src, &ipv6_hdr(pkt)->saddr);
ipv6_addr_copy(&msg->im6_dst, &ipv6_hdr(pkt)->daddr);
skb_dst_set(skb, dst_clone(skb_dst(pkt)));
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
if (net->ipv6.mroute6_sk == NULL) {
kfree_skb(skb);
return -EINVAL;
}
/*
* Deliver to user space multicast routing algorithms
*/
ret = sock_queue_rcv_skb(net->ipv6.mroute6_sk, skb);
if (ret < 0) {
if (net_ratelimit())
printk(KERN_WARNING "mroute6: pending queue full, dropping entries.\n");
kfree_skb(skb);
}
return ret;
}
/*
* Queue a packet for resolution. It gets locked cache entry!
*/
static int
ip6mr_cache_unresolved(struct net *net, mifi_t mifi, struct sk_buff *skb)
{
int err;
struct mfc6_cache *c;
spin_lock_bh(&mfc_unres_lock);
for (c = mfc_unres_queue; c; c = c->next) {
if (net_eq(mfc6_net(c), net) &&
ipv6_addr_equal(&c->mf6c_mcastgrp, &ipv6_hdr(skb)->daddr) &&
ipv6_addr_equal(&c->mf6c_origin, &ipv6_hdr(skb)->saddr))
break;
}
if (c == NULL) {
/*
* Create a new entry if allowable
*/
if (atomic_read(&net->ipv6.cache_resolve_queue_len) >= 10 ||
(c = ip6mr_cache_alloc_unres(net)) == NULL) {
spin_unlock_bh(&mfc_unres_lock);
kfree_skb(skb);
return -ENOBUFS;
}
/*
* Fill in the new cache entry
*/
c->mf6c_parent = -1;
c->mf6c_origin = ipv6_hdr(skb)->saddr;
c->mf6c_mcastgrp = ipv6_hdr(skb)->daddr;
/*
* Reflect first query at pim6sd
*/
err = ip6mr_cache_report(net, skb, mifi, MRT6MSG_NOCACHE);
if (err < 0) {
/* If the report failed throw the cache entry
out - Brad Parker
*/
spin_unlock_bh(&mfc_unres_lock);
ip6mr_cache_free(c);
kfree_skb(skb);
return err;
}
atomic_inc(&net->ipv6.cache_resolve_queue_len);
c->next = mfc_unres_queue;
mfc_unres_queue = c;
ipmr_do_expire_process(1);
}
/*
* See if we can append the packet
*/
if (c->mfc_un.unres.unresolved.qlen > 3) {
kfree_skb(skb);
err = -ENOBUFS;
} else {
skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
err = 0;
}
spin_unlock_bh(&mfc_unres_lock);
return err;
}
/*
* MFC6 cache manipulation by user space
*/
static int ip6mr_mfc_delete(struct net *net, struct mf6cctl *mfc)
{
int line;
struct mfc6_cache *c, **cp;
line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr);
for (cp = &net->ipv6.mfc6_cache_array[line];
(c = *cp) != NULL; cp = &c->next) {
if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) &&
ipv6_addr_equal(&c->mf6c_mcastgrp, &mfc->mf6cc_mcastgrp.sin6_addr)) {
write_lock_bh(&mrt_lock);
*cp = c->next;
write_unlock_bh(&mrt_lock);
ip6mr_cache_free(c);
return 0;
}
}
return -ENOENT;
}
static int ip6mr_device_event(struct notifier_block *this,
unsigned long event, void *ptr)
{
struct net_device *dev = ptr;
struct net *net = dev_net(dev);
struct mif_device *v;
int ct;
LIST_HEAD(list);
if (event != NETDEV_UNREGISTER)
return NOTIFY_DONE;
v = &net->ipv6.vif6_table[0];
for (ct = 0; ct < net->ipv6.maxvif; ct++, v++) {
if (v->dev == dev)
mif6_delete(net, ct, &list);
}
unregister_netdevice_many(&list);
return NOTIFY_DONE;
}
static struct notifier_block ip6_mr_notifier = {
.notifier_call = ip6mr_device_event
};
/*
* Setup for IP multicast routing
*/
static int __net_init ip6mr_net_init(struct net *net)
{
int err = 0;
net->ipv6.vif6_table = kcalloc(MAXMIFS, sizeof(struct mif_device),
GFP_KERNEL);
if (!net->ipv6.vif6_table) {
err = -ENOMEM;
goto fail;
}
/* Forwarding cache */
net->ipv6.mfc6_cache_array = kcalloc(MFC6_LINES,
sizeof(struct mfc6_cache *),
GFP_KERNEL);
if (!net->ipv6.mfc6_cache_array) {
err = -ENOMEM;
goto fail_mfc6_cache;
}
#ifdef CONFIG_IPV6_PIMSM_V2
net->ipv6.mroute_reg_vif_num = -1;
#endif
#ifdef CONFIG_PROC_FS
err = -ENOMEM;
if (!proc_net_fops_create(net, "ip6_mr_vif", 0, &ip6mr_vif_fops))
goto proc_vif_fail;
if (!proc_net_fops_create(net, "ip6_mr_cache", 0, &ip6mr_mfc_fops))
goto proc_cache_fail;
#endif
return 0;
#ifdef CONFIG_PROC_FS
proc_cache_fail:
proc_net_remove(net, "ip6_mr_vif");
proc_vif_fail:
kfree(net->ipv6.mfc6_cache_array);
#endif
fail_mfc6_cache:
kfree(net->ipv6.vif6_table);
fail:
return err;
}
static void __net_exit ip6mr_net_exit(struct net *net)
{
#ifdef CONFIG_PROC_FS
proc_net_remove(net, "ip6_mr_cache");
proc_net_remove(net, "ip6_mr_vif");
#endif
mroute_clean_tables(net);
kfree(net->ipv6.mfc6_cache_array);
kfree(net->ipv6.vif6_table);
}
static struct pernet_operations ip6mr_net_ops = {
.init = ip6mr_net_init,
.exit = ip6mr_net_exit,
};
int __init ip6_mr_init(void)
{
int err;
mrt_cachep = kmem_cache_create("ip6_mrt_cache",
sizeof(struct mfc6_cache),
0, SLAB_HWCACHE_ALIGN,
NULL);
if (!mrt_cachep)
return -ENOMEM;
err = register_pernet_subsys(&ip6mr_net_ops);
if (err)
goto reg_pernet_fail;
setup_timer(&ipmr_expire_timer, ipmr_expire_process, 0);
err = register_netdevice_notifier(&ip6_mr_notifier);
if (err)
goto reg_notif_fail;
#ifdef CONFIG_IPV6_PIMSM_V2
if (inet6_add_protocol(&pim6_protocol, IPPROTO_PIM) < 0) {
printk(KERN_ERR "ip6_mr_init: can't add PIM protocol\n");
err = -EAGAIN;
goto add_proto_fail;
}
#endif
return 0;
#ifdef CONFIG_IPV6_PIMSM_V2
add_proto_fail:
unregister_netdevice_notifier(&ip6_mr_notifier);
#endif
reg_notif_fail:
del_timer(&ipmr_expire_timer);
unregister_pernet_subsys(&ip6mr_net_ops);
reg_pernet_fail:
kmem_cache_destroy(mrt_cachep);
return err;
}
void ip6_mr_cleanup(void)
{
unregister_netdevice_notifier(&ip6_mr_notifier);
del_timer(&ipmr_expire_timer);
unregister_pernet_subsys(&ip6mr_net_ops);
kmem_cache_destroy(mrt_cachep);
}
static int ip6mr_mfc_add(struct net *net, struct mf6cctl *mfc, int mrtsock)
{
int line;
struct mfc6_cache *uc, *c, **cp;
unsigned char ttls[MAXMIFS];
int i;
if (mfc->mf6cc_parent >= MAXMIFS)
return -ENFILE;
memset(ttls, 255, MAXMIFS);
for (i = 0; i < MAXMIFS; i++) {
if (IF_ISSET(i, &mfc->mf6cc_ifset))
ttls[i] = 1;
}
line = MFC6_HASH(&mfc->mf6cc_mcastgrp.sin6_addr, &mfc->mf6cc_origin.sin6_addr);
for (cp = &net->ipv6.mfc6_cache_array[line];
(c = *cp) != NULL; cp = &c->next) {
if (ipv6_addr_equal(&c->mf6c_origin, &mfc->mf6cc_origin.sin6_addr) &&
ipv6_addr_equal(&c->mf6c_mcastgrp, &mfc->mf6cc_mcastgrp.sin6_addr))
break;
}
if (c != NULL) {
write_lock_bh(&mrt_lock);
c->mf6c_parent = mfc->mf6cc_parent;
ip6mr_update_thresholds(c, ttls);
if (!mrtsock)
c->mfc_flags |= MFC_STATIC;
write_unlock_bh(&mrt_lock);
return 0;
}
if (!ipv6_addr_is_multicast(&mfc->mf6cc_mcastgrp.sin6_addr))
return -EINVAL;
c = ip6mr_cache_alloc(net);
if (c == NULL)
return -ENOMEM;
c->mf6c_origin = mfc->mf6cc_origin.sin6_addr;
c->mf6c_mcastgrp = mfc->mf6cc_mcastgrp.sin6_addr;
c->mf6c_parent = mfc->mf6cc_parent;
ip6mr_update_thresholds(c, ttls);
if (!mrtsock)
c->mfc_flags |= MFC_STATIC;
write_lock_bh(&mrt_lock);
c->next = net->ipv6.mfc6_cache_array[line];
net->ipv6.mfc6_cache_array[line] = c;
write_unlock_bh(&mrt_lock);
/*
* Check to see if we resolved a queued list. If so we
* need to send on the frames and tidy up.
*/
spin_lock_bh(&mfc_unres_lock);
for (cp = &mfc_unres_queue; (uc = *cp) != NULL;
cp = &uc->next) {
if (net_eq(mfc6_net(uc), net) &&
ipv6_addr_equal(&uc->mf6c_origin, &c->mf6c_origin) &&
ipv6_addr_equal(&uc->mf6c_mcastgrp, &c->mf6c_mcastgrp)) {
*cp = uc->next;
atomic_dec(&net->ipv6.cache_resolve_queue_len);
break;
}
}
if (mfc_unres_queue == NULL)
del_timer(&ipmr_expire_timer);
spin_unlock_bh(&mfc_unres_lock);
if (uc) {
ip6mr_cache_resolve(uc, c);
ip6mr_cache_free(uc);
}
return 0;
}
/*
* Close the multicast socket, and clear the vif tables etc
*/
static void mroute_clean_tables(struct net *net)
{
int i;
LIST_HEAD(list);
/*
* Shut down all active vif entries
*/
for (i = 0; i < net->ipv6.maxvif; i++) {
if (!(net->ipv6.vif6_table[i].flags & VIFF_STATIC))
mif6_delete(net, i, &list);
}
unregister_netdevice_many(&list);
/*
* Wipe the cache
*/
for (i = 0; i < MFC6_LINES; i++) {
struct mfc6_cache *c, **cp;
cp = &net->ipv6.mfc6_cache_array[i];
while ((c = *cp) != NULL) {
if (c->mfc_flags & MFC_STATIC) {
cp = &c->next;
continue;
}
write_lock_bh(&mrt_lock);
*cp = c->next;
write_unlock_bh(&mrt_lock);
ip6mr_cache_free(c);
}
}
if (atomic_read(&net->ipv6.cache_resolve_queue_len) != 0) {
struct mfc6_cache *c, **cp;
spin_lock_bh(&mfc_unres_lock);
cp = &mfc_unres_queue;
while ((c = *cp) != NULL) {
if (!net_eq(mfc6_net(c), net)) {
cp = &c->next;
continue;
}
*cp = c->next;
ip6mr_destroy_unres(c);
}
spin_unlock_bh(&mfc_unres_lock);
}
}
static int ip6mr_sk_init(struct sock *sk)
{
int err = 0;
struct net *net = sock_net(sk);
rtnl_lock();
write_lock_bh(&mrt_lock);
if (likely(net->ipv6.mroute6_sk == NULL)) {
net->ipv6.mroute6_sk = sk;
net->ipv6.devconf_all->mc_forwarding++;
}
else
err = -EADDRINUSE;
write_unlock_bh(&mrt_lock);
rtnl_unlock();
return err;
}
int ip6mr_sk_done(struct sock *sk)
{
int err = 0;
struct net *net = sock_net(sk);
rtnl_lock();
if (sk == net->ipv6.mroute6_sk) {
write_lock_bh(&mrt_lock);
net->ipv6.mroute6_sk = NULL;
net->ipv6.devconf_all->mc_forwarding--;
write_unlock_bh(&mrt_lock);
mroute_clean_tables(net);
} else
err = -EACCES;
rtnl_unlock();
return err;
}
/*
* Socket options and virtual interface manipulation. The whole
* virtual interface system is a complete heap, but unfortunately
* that's how BSD mrouted happens to think. Maybe one day with a proper
* MOSPF/PIM router set up we can clean this up.
*/
int ip6_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
{
int ret;
struct mif6ctl vif;
struct mf6cctl mfc;
mifi_t mifi;
struct net *net = sock_net(sk);
if (optname != MRT6_INIT) {
if (sk != net->ipv6.mroute6_sk && !capable(CAP_NET_ADMIN))
return -EACCES;
}
switch (optname) {
case MRT6_INIT:
if (sk->sk_type != SOCK_RAW ||
inet_sk(sk)->inet_num != IPPROTO_ICMPV6)
return -EOPNOTSUPP;
if (optlen < sizeof(int))
return -EINVAL;
return ip6mr_sk_init(sk);
case MRT6_DONE:
return ip6mr_sk_done(sk);
case MRT6_ADD_MIF:
if (optlen < sizeof(vif))
return -EINVAL;
if (copy_from_user(&vif, optval, sizeof(vif)))
return -EFAULT;
if (vif.mif6c_mifi >= MAXMIFS)
return -ENFILE;
rtnl_lock();
ret = mif6_add(net, &vif, sk == net->ipv6.mroute6_sk);
rtnl_unlock();
return ret;
case MRT6_DEL_MIF:
if (optlen < sizeof(mifi_t))
return -EINVAL;
if (copy_from_user(&mifi, optval, sizeof(mifi_t)))
return -EFAULT;
rtnl_lock();
ret = mif6_delete(net, mifi, NULL);
rtnl_unlock();
return ret;
/*
* Manipulate the forwarding caches. These live
* in a sort of kernel/user symbiosis.
*/
case MRT6_ADD_MFC:
case MRT6_DEL_MFC:
if (optlen < sizeof(mfc))
return -EINVAL;
if (copy_from_user(&mfc, optval, sizeof(mfc)))
return -EFAULT;
rtnl_lock();
if (optname == MRT6_DEL_MFC)
ret = ip6mr_mfc_delete(net, &mfc);
else
ret = ip6mr_mfc_add(net, &mfc,
sk == net->ipv6.mroute6_sk);
rtnl_unlock();
return ret;
/*
* Control PIM assert (to activate pim will activate assert)
*/
case MRT6_ASSERT:
{
int v;
if (get_user(v, (int __user *)optval))
return -EFAULT;
net->ipv6.mroute_do_assert = !!v;
return 0;
}
#ifdef CONFIG_IPV6_PIMSM_V2
case MRT6_PIM:
{
int v;
if (get_user(v, (int __user *)optval))
return -EFAULT;
v = !!v;
rtnl_lock();
ret = 0;
if (v != net->ipv6.mroute_do_pim) {
net->ipv6.mroute_do_pim = v;
net->ipv6.mroute_do_assert = v;
}
rtnl_unlock();
return ret;
}
#endif
/*
* Spurious command, or MRT6_VERSION which you cannot
* set.
*/
default:
return -ENOPROTOOPT;
}
}
/*
* Getsock opt support for the multicast routing system.
*/
int ip6_mroute_getsockopt(struct sock *sk, int optname, char __user *optval,
int __user *optlen)
{
int olr;
int val;
struct net *net = sock_net(sk);
switch (optname) {
case MRT6_VERSION:
val = 0x0305;
break;
#ifdef CONFIG_IPV6_PIMSM_V2
case MRT6_PIM:
val = net->ipv6.mroute_do_pim;
break;
#endif
case MRT6_ASSERT:
val = net->ipv6.mroute_do_assert;
break;
default:
return -ENOPROTOOPT;
}
if (get_user(olr, optlen))
return -EFAULT;
olr = min_t(int, olr, sizeof(int));
if (olr < 0)
return -EINVAL;
if (put_user(olr, optlen))
return -EFAULT;
if (copy_to_user(optval, &val, olr))
return -EFAULT;
return 0;
}
/*
* The IP multicast ioctl support routines.
*/
int ip6mr_ioctl(struct sock *sk, int cmd, void __user *arg)
{
struct sioc_sg_req6 sr;
struct sioc_mif_req6 vr;
struct mif_device *vif;
struct mfc6_cache *c;
struct net *net = sock_net(sk);
switch (cmd) {
case SIOCGETMIFCNT_IN6:
if (copy_from_user(&vr, arg, sizeof(vr)))
return -EFAULT;
if (vr.mifi >= net->ipv6.maxvif)
return -EINVAL;
read_lock(&mrt_lock);
vif = &net->ipv6.vif6_table[vr.mifi];
if (MIF_EXISTS(net, vr.mifi)) {
vr.icount = vif->pkt_in;
vr.ocount = vif->pkt_out;
vr.ibytes = vif->bytes_in;
vr.obytes = vif->bytes_out;
read_unlock(&mrt_lock);
if (copy_to_user(arg, &vr, sizeof(vr)))
return -EFAULT;
return 0;
}
read_unlock(&mrt_lock);
return -EADDRNOTAVAIL;
case SIOCGETSGCNT_IN6:
if (copy_from_user(&sr, arg, sizeof(sr)))
return -EFAULT;
read_lock(&mrt_lock);
c = ip6mr_cache_find(net, &sr.src.sin6_addr, &sr.grp.sin6_addr);
if (c) {
sr.pktcnt = c->mfc_un.res.pkt;
sr.bytecnt = c->mfc_un.res.bytes;
sr.wrong_if = c->mfc_un.res.wrong_if;
read_unlock(&mrt_lock);
if (copy_to_user(arg, &sr, sizeof(sr)))
return -EFAULT;
return 0;
}
read_unlock(&mrt_lock);
return -EADDRNOTAVAIL;
default:
return -ENOIOCTLCMD;
}
}
static inline int ip6mr_forward2_finish(struct sk_buff *skb)
{
IP6_INC_STATS_BH(dev_net(skb_dst(skb)->dev), ip6_dst_idev(skb_dst(skb)),
IPSTATS_MIB_OUTFORWDATAGRAMS);
return dst_output(skb);
}
/*
* Processing handlers for ip6mr_forward
*/
static int ip6mr_forward2(struct sk_buff *skb, struct mfc6_cache *c, int vifi)
{
struct ipv6hdr *ipv6h;
struct net *net = mfc6_net(c);
struct mif_device *vif = &net->ipv6.vif6_table[vifi];
struct net_device *dev;
struct dst_entry *dst;
struct flowi fl;
if (vif->dev == NULL)
goto out_free;
#ifdef CONFIG_IPV6_PIMSM_V2
if (vif->flags & MIFF_REGISTER) {
vif->pkt_out++;
vif->bytes_out += skb->len;
vif->dev->stats.tx_bytes += skb->len;
vif->dev->stats.tx_packets++;
ip6mr_cache_report(net, skb, vifi, MRT6MSG_WHOLEPKT);
goto out_free;
}
#endif
ipv6h = ipv6_hdr(skb);
fl = (struct flowi) {
.oif = vif->link,
.nl_u = { .ip6_u =
{ .daddr = ipv6h->daddr, }
}
};
dst = ip6_route_output(net, NULL, &fl);
if (!dst)
goto out_free;
skb_dst_drop(skb);
skb_dst_set(skb, dst);
/*
* RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
* not only before forwarding, but after forwarding on all output
* interfaces. It is clear, if mrouter runs a multicasting
* program, it should receive packets not depending to what interface
* program is joined.
* If we will not make it, the program will have to join on all
* interfaces. On the other hand, multihoming host (or router, but
* not mrouter) cannot join to more than one interface - it will
* result in receiving multiple packets.
*/
dev = vif->dev;
skb->dev = dev;
vif->pkt_out++;
vif->bytes_out += skb->len;
/* We are about to write */
/* XXX: extension headers? */
if (skb_cow(skb, sizeof(*ipv6h) + LL_RESERVED_SPACE(dev)))
goto out_free;
ipv6h = ipv6_hdr(skb);
ipv6h->hop_limit--;
IP6CB(skb)->flags |= IP6SKB_FORWARDED;
return NF_HOOK(PF_INET6, NF_INET_FORWARD, skb, skb->dev, dev,
ip6mr_forward2_finish);
out_free:
kfree_skb(skb);
return 0;
}
static int ip6mr_find_vif(struct net_device *dev)
{
struct net *net = dev_net(dev);
int ct;
for (ct = net->ipv6.maxvif - 1; ct >= 0; ct--) {
if (net->ipv6.vif6_table[ct].dev == dev)
break;
}
return ct;
}
static int ip6_mr_forward(struct sk_buff *skb, struct mfc6_cache *cache)
{
int psend = -1;
int vif, ct;
struct net *net = mfc6_net(cache);
vif = cache->mf6c_parent;
cache->mfc_un.res.pkt++;
cache->mfc_un.res.bytes += skb->len;
/*
* Wrong interface: drop packet and (maybe) send PIM assert.
*/
if (net->ipv6.vif6_table[vif].dev != skb->dev) {
int true_vifi;
cache->mfc_un.res.wrong_if++;
true_vifi = ip6mr_find_vif(skb->dev);
if (true_vifi >= 0 && net->ipv6.mroute_do_assert &&
/* pimsm uses asserts, when switching from RPT to SPT,
so that we cannot check that packet arrived on an oif.
It is bad, but otherwise we would need to move pretty
large chunk of pimd to kernel. Ough... --ANK
*/
(net->ipv6.mroute_do_pim ||
cache->mfc_un.res.ttls[true_vifi] < 255) &&
time_after(jiffies,
cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
cache->mfc_un.res.last_assert = jiffies;
ip6mr_cache_report(net, skb, true_vifi, MRT6MSG_WRONGMIF);
}
goto dont_forward;
}
net->ipv6.vif6_table[vif].pkt_in++;
net->ipv6.vif6_table[vif].bytes_in += skb->len;
/*
* Forward the frame
*/
for (ct = cache->mfc_un.res.maxvif - 1; ct >= cache->mfc_un.res.minvif; ct--) {
if (ipv6_hdr(skb)->hop_limit > cache->mfc_un.res.ttls[ct]) {
if (psend != -1) {
struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
if (skb2)
ip6mr_forward2(skb2, cache, psend);
}
psend = ct;
}
}
if (psend != -1) {
ip6mr_forward2(skb, cache, psend);
return 0;
}
dont_forward:
kfree_skb(skb);
return 0;
}
/*
* Multicast packets for forwarding arrive here
*/
int ip6_mr_input(struct sk_buff *skb)
{
struct mfc6_cache *cache;
struct net *net = dev_net(skb->dev);
read_lock(&mrt_lock);
cache = ip6mr_cache_find(net,
&ipv6_hdr(skb)->saddr, &ipv6_hdr(skb)->daddr);
/*
* No usable cache entry
*/
if (cache == NULL) {
int vif;
vif = ip6mr_find_vif(skb->dev);
if (vif >= 0) {
int err = ip6mr_cache_unresolved(net, vif, skb);
read_unlock(&mrt_lock);
return err;
}
read_unlock(&mrt_lock);
kfree_skb(skb);
return -ENODEV;
}
ip6_mr_forward(skb, cache);
read_unlock(&mrt_lock);
return 0;
}
static int
ip6mr_fill_mroute(struct sk_buff *skb, struct mfc6_cache *c, struct rtmsg *rtm)
{
int ct;
struct rtnexthop *nhp;
struct net *net = mfc6_net(c);
u8 *b = skb_tail_pointer(skb);
struct rtattr *mp_head;
/* If cache is unresolved, don't try to parse IIF and OIF */
if (c->mf6c_parent > MAXMIFS)
return -ENOENT;
if (MIF_EXISTS(net, c->mf6c_parent))
RTA_PUT(skb, RTA_IIF, 4, &net->ipv6.vif6_table[c->mf6c_parent].dev->ifindex);
mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
if (MIF_EXISTS(net, ct) && c->mfc_un.res.ttls[ct] < 255) {
if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
goto rtattr_failure;
nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
nhp->rtnh_flags = 0;
nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
nhp->rtnh_ifindex = net->ipv6.vif6_table[ct].dev->ifindex;
nhp->rtnh_len = sizeof(*nhp);
}
}
mp_head->rta_type = RTA_MULTIPATH;
mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
rtm->rtm_type = RTN_MULTICAST;
return 1;
rtattr_failure:
nlmsg_trim(skb, b);
return -EMSGSIZE;
}
int ip6mr_get_route(struct net *net,
struct sk_buff *skb, struct rtmsg *rtm, int nowait)
{
int err;
struct mfc6_cache *cache;
struct rt6_info *rt = (struct rt6_info *)skb_dst(skb);
read_lock(&mrt_lock);
cache = ip6mr_cache_find(net, &rt->rt6i_src.addr, &rt->rt6i_dst.addr);
if (!cache) {
struct sk_buff *skb2;
struct ipv6hdr *iph;
struct net_device *dev;
int vif;
if (nowait) {
read_unlock(&mrt_lock);
return -EAGAIN;
}
dev = skb->dev;
if (dev == NULL || (vif = ip6mr_find_vif(dev)) < 0) {
read_unlock(&mrt_lock);
return -ENODEV;
}
/* really correct? */
skb2 = alloc_skb(sizeof(struct ipv6hdr), GFP_ATOMIC);
if (!skb2) {
read_unlock(&mrt_lock);
return -ENOMEM;
}
skb_reset_transport_header(skb2);
skb_put(skb2, sizeof(struct ipv6hdr));
skb_reset_network_header(skb2);
iph = ipv6_hdr(skb2);
iph->version = 0;
iph->priority = 0;
iph->flow_lbl[0] = 0;
iph->flow_lbl[1] = 0;
iph->flow_lbl[2] = 0;
iph->payload_len = 0;
iph->nexthdr = IPPROTO_NONE;
iph->hop_limit = 0;
ipv6_addr_copy(&iph->saddr, &rt->rt6i_src.addr);
ipv6_addr_copy(&iph->daddr, &rt->rt6i_dst.addr);
err = ip6mr_cache_unresolved(net, vif, skb2);
read_unlock(&mrt_lock);
return err;
}
if (!nowait && (rtm->rtm_flags&RTM_F_NOTIFY))
cache->mfc_flags |= MFC_NOTIFY;
err = ip6mr_fill_mroute(skb, cache, rtm);
read_unlock(&mrt_lock);
return err;
}