1
linux/tools/perf/builtin-sched.c
Ingo Molnar d9340c1db3 perf sched: Display time in milliseconds, reorganize output
After:

-----------------------------------------------------------------------------------
 Task              |  runtime ms | switches | average delay ms | maximum delay ms |
-----------------------------------------------------------------------------------
 migration/0       |    0.000 ms |        1 | avg:    0.047 ms | max:    0.047 ms |
 ksoftirqd/0       |    0.000 ms |        1 | avg:    0.039 ms | max:    0.039 ms |
 migration/1       |    0.000 ms |        3 | avg:    0.013 ms | max:    0.016 ms |
 migration/3       |    0.000 ms |        2 | avg:    0.003 ms | max:    0.004 ms |
 migration/4       |    0.000 ms |        1 | avg:    0.022 ms | max:    0.022 ms |
 distccd           |    0.000 ms |        1 | avg:    0.004 ms | max:    0.004 ms |
 distccd           |    0.000 ms |        1 | avg:    0.014 ms | max:    0.014 ms |
 distccd           |    0.000 ms |        2 | avg:    0.000 ms | max:    0.000 ms |
 distccd           |    0.000 ms |        2 | avg:    0.012 ms | max:    0.019 ms |
 distccd           |    0.000 ms |        1 | avg:    0.002 ms | max:    0.002 ms |
 as                |    0.000 ms |        2 | avg:    0.019 ms | max:    0.019 ms |
 as                |    0.000 ms |        3 | avg:    0.015 ms | max:    0.017 ms |
 as                |    0.000 ms |        1 | avg:    0.009 ms | max:    0.009 ms |
 perf              |    0.000 ms |        1 | avg:    0.001 ms | max:    0.001 ms |
 gcc               |    0.000 ms |        1 | avg:    0.021 ms | max:    0.021 ms |
 run-mozilla.sh    |    0.000 ms |        2 | avg:    0.010 ms | max:    0.017 ms |
 mozilla-plugin-   |    0.000 ms |        1 | avg:    0.006 ms | max:    0.006 ms |
 gcc               |    0.000 ms |        2 | avg:    0.013 ms | max:    0.013 ms |
-----------------------------------------------------------------------------------

(The runtime ms column is not filled in yet.)

Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
2009-09-13 10:22:44 +02:00

1476 lines
32 KiB
C

#include "builtin.h"
#include "util/util.h"
#include "util/cache.h"
#include "util/symbol.h"
#include "util/thread.h"
#include "util/header.h"
#include "util/parse-options.h"
#include "perf.h"
#include "util/debug.h"
#include "util/trace-event.h"
#include <sys/types.h>
#define MAX_CPUS 4096
static char const *input_name = "perf.data";
static int input;
static unsigned long page_size;
static unsigned long mmap_window = 32;
static unsigned long total_comm = 0;
static struct rb_root threads;
static struct thread *last_match;
static struct perf_header *header;
static u64 sample_type;
static int replay_mode;
static int lat_mode;
/*
* Scheduler benchmarks
*/
#include <sys/resource.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/prctl.h>
#include <linux/unistd.h>
#include <semaphore.h>
#include <pthread.h>
#include <signal.h>
#include <values.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <assert.h>
#include <fcntl.h>
#include <time.h>
#include <math.h>
#include <stdio.h>
#define PR_SET_NAME 15 /* Set process name */
#define BUG_ON(x) assert(!(x))
#define DEBUG 0
typedef unsigned long long nsec_t;
static nsec_t run_measurement_overhead;
static nsec_t sleep_measurement_overhead;
static nsec_t get_nsecs(void)
{
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec * 1000000000ULL + ts.tv_nsec;
}
static void burn_nsecs(nsec_t nsecs)
{
nsec_t T0 = get_nsecs(), T1;
do {
T1 = get_nsecs();
} while (T1 + run_measurement_overhead < T0 + nsecs);
}
static void sleep_nsecs(nsec_t nsecs)
{
struct timespec ts;
ts.tv_nsec = nsecs % 999999999;
ts.tv_sec = nsecs / 999999999;
nanosleep(&ts, NULL);
}
static void calibrate_run_measurement_overhead(void)
{
nsec_t T0, T1, delta, min_delta = 1000000000ULL;
int i;
for (i = 0; i < 10; i++) {
T0 = get_nsecs();
burn_nsecs(0);
T1 = get_nsecs();
delta = T1-T0;
min_delta = min(min_delta, delta);
}
run_measurement_overhead = min_delta;
printf("run measurement overhead: %Ld nsecs\n", min_delta);
}
static void calibrate_sleep_measurement_overhead(void)
{
nsec_t T0, T1, delta, min_delta = 1000000000ULL;
int i;
for (i = 0; i < 10; i++) {
T0 = get_nsecs();
sleep_nsecs(10000);
T1 = get_nsecs();
delta = T1-T0;
min_delta = min(min_delta, delta);
}
min_delta -= 10000;
sleep_measurement_overhead = min_delta;
printf("sleep measurement overhead: %Ld nsecs\n", min_delta);
}
#define COMM_LEN 20
#define SYM_LEN 129
#define MAX_PID 65536
static unsigned long nr_tasks;
struct sched_event;
struct task_desc {
unsigned long nr;
unsigned long pid;
char comm[COMM_LEN];
unsigned long nr_events;
unsigned long curr_event;
struct sched_event **events;
pthread_t thread;
sem_t sleep_sem;
sem_t ready_for_work;
sem_t work_done_sem;
nsec_t cpu_usage;
};
enum sched_event_type {
SCHED_EVENT_RUN,
SCHED_EVENT_SLEEP,
SCHED_EVENT_WAKEUP,
};
struct sched_event {
enum sched_event_type type;
nsec_t timestamp;
nsec_t duration;
unsigned long nr;
int specific_wait;
sem_t *wait_sem;
struct task_desc *wakee;
};
static struct task_desc *pid_to_task[MAX_PID];
static struct task_desc **tasks;
static pthread_mutex_t start_work_mutex = PTHREAD_MUTEX_INITIALIZER;
static nsec_t start_time;
static pthread_mutex_t work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER;
static unsigned long nr_run_events;
static unsigned long nr_sleep_events;
static unsigned long nr_wakeup_events;
static unsigned long nr_sleep_corrections;
static unsigned long nr_run_events_optimized;
static struct sched_event *
get_new_event(struct task_desc *task, nsec_t timestamp)
{
struct sched_event *event = calloc(1, sizeof(*event));
unsigned long idx = task->nr_events;
size_t size;
event->timestamp = timestamp;
event->nr = idx;
task->nr_events++;
size = sizeof(struct sched_event *) * task->nr_events;
task->events = realloc(task->events, size);
BUG_ON(!task->events);
task->events[idx] = event;
return event;
}
static struct sched_event *last_event(struct task_desc *task)
{
if (!task->nr_events)
return NULL;
return task->events[task->nr_events - 1];
}
static void
add_sched_event_run(struct task_desc *task, nsec_t timestamp, u64 duration)
{
struct sched_event *event, *curr_event = last_event(task);
/*
* optimize an existing RUN event by merging this one
* to it:
*/
if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
nr_run_events_optimized++;
curr_event->duration += duration;
return;
}
event = get_new_event(task, timestamp);
event->type = SCHED_EVENT_RUN;
event->duration = duration;
nr_run_events++;
}
static unsigned long targetless_wakeups;
static unsigned long multitarget_wakeups;
static void
add_sched_event_wakeup(struct task_desc *task, nsec_t timestamp,
struct task_desc *wakee)
{
struct sched_event *event, *wakee_event;
event = get_new_event(task, timestamp);
event->type = SCHED_EVENT_WAKEUP;
event->wakee = wakee;
wakee_event = last_event(wakee);
if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
targetless_wakeups++;
return;
}
if (wakee_event->wait_sem) {
multitarget_wakeups++;
return;
}
wakee_event->wait_sem = calloc(1, sizeof(*wakee_event->wait_sem));
sem_init(wakee_event->wait_sem, 0, 0);
wakee_event->specific_wait = 1;
event->wait_sem = wakee_event->wait_sem;
nr_wakeup_events++;
}
static void
add_sched_event_sleep(struct task_desc *task, nsec_t timestamp,
u64 task_state __used)
{
struct sched_event *event = get_new_event(task, timestamp);
event->type = SCHED_EVENT_SLEEP;
nr_sleep_events++;
}
static struct task_desc *register_pid(unsigned long pid, const char *comm)
{
struct task_desc *task;
BUG_ON(pid >= MAX_PID);
task = pid_to_task[pid];
if (task)
return task;
task = calloc(1, sizeof(*task));
task->pid = pid;
task->nr = nr_tasks;
strcpy(task->comm, comm);
/*
* every task starts in sleeping state - this gets ignored
* if there's no wakeup pointing to this sleep state:
*/
add_sched_event_sleep(task, 0, 0);
pid_to_task[pid] = task;
nr_tasks++;
tasks = realloc(tasks, nr_tasks*sizeof(struct task_task *));
BUG_ON(!tasks);
tasks[task->nr] = task;
if (verbose)
printf("registered task #%ld, PID %ld (%s)\n", nr_tasks, pid, comm);
return task;
}
static void print_task_traces(void)
{
struct task_desc *task;
unsigned long i;
for (i = 0; i < nr_tasks; i++) {
task = tasks[i];
printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
task->nr, task->comm, task->pid, task->nr_events);
}
}
static void add_cross_task_wakeups(void)
{
struct task_desc *task1, *task2;
unsigned long i, j;
for (i = 0; i < nr_tasks; i++) {
task1 = tasks[i];
j = i + 1;
if (j == nr_tasks)
j = 0;
task2 = tasks[j];
add_sched_event_wakeup(task1, 0, task2);
}
}
static void
process_sched_event(struct task_desc *this_task __used, struct sched_event *event)
{
int ret = 0;
nsec_t now;
long long delta;
now = get_nsecs();
delta = start_time + event->timestamp - now;
switch (event->type) {
case SCHED_EVENT_RUN:
burn_nsecs(event->duration);
break;
case SCHED_EVENT_SLEEP:
if (event->wait_sem)
ret = sem_wait(event->wait_sem);
BUG_ON(ret);
break;
case SCHED_EVENT_WAKEUP:
if (event->wait_sem)
ret = sem_post(event->wait_sem);
BUG_ON(ret);
break;
default:
BUG_ON(1);
}
}
static nsec_t get_cpu_usage_nsec_parent(void)
{
struct rusage ru;
nsec_t sum;
int err;
err = getrusage(RUSAGE_SELF, &ru);
BUG_ON(err);
sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3;
sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3;
return sum;
}
static nsec_t get_cpu_usage_nsec_self(void)
{
char filename [] = "/proc/1234567890/sched";
unsigned long msecs, nsecs;
char *line = NULL;
nsec_t total = 0;
size_t len = 0;
ssize_t chars;
FILE *file;
int ret;
sprintf(filename, "/proc/%d/sched", getpid());
file = fopen(filename, "r");
BUG_ON(!file);
while ((chars = getline(&line, &len, file)) != -1) {
ret = sscanf(line, "se.sum_exec_runtime : %ld.%06ld\n",
&msecs, &nsecs);
if (ret == 2) {
total = msecs*1e6 + nsecs;
break;
}
}
if (line)
free(line);
fclose(file);
return total;
}
static void *thread_func(void *ctx)
{
struct task_desc *this_task = ctx;
nsec_t cpu_usage_0, cpu_usage_1;
unsigned long i, ret;
char comm2[22];
sprintf(comm2, ":%s", this_task->comm);
prctl(PR_SET_NAME, comm2);
again:
ret = sem_post(&this_task->ready_for_work);
BUG_ON(ret);
ret = pthread_mutex_lock(&start_work_mutex);
BUG_ON(ret);
ret = pthread_mutex_unlock(&start_work_mutex);
BUG_ON(ret);
cpu_usage_0 = get_cpu_usage_nsec_self();
for (i = 0; i < this_task->nr_events; i++) {
this_task->curr_event = i;
process_sched_event(this_task, this_task->events[i]);
}
cpu_usage_1 = get_cpu_usage_nsec_self();
this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
ret = sem_post(&this_task->work_done_sem);
BUG_ON(ret);
ret = pthread_mutex_lock(&work_done_wait_mutex);
BUG_ON(ret);
ret = pthread_mutex_unlock(&work_done_wait_mutex);
BUG_ON(ret);
goto again;
}
static void create_tasks(void)
{
struct task_desc *task;
pthread_attr_t attr;
unsigned long i;
int err;
err = pthread_attr_init(&attr);
BUG_ON(err);
err = pthread_attr_setstacksize(&attr, (size_t)(16*1024));
BUG_ON(err);
err = pthread_mutex_lock(&start_work_mutex);
BUG_ON(err);
err = pthread_mutex_lock(&work_done_wait_mutex);
BUG_ON(err);
for (i = 0; i < nr_tasks; i++) {
task = tasks[i];
sem_init(&task->sleep_sem, 0, 0);
sem_init(&task->ready_for_work, 0, 0);
sem_init(&task->work_done_sem, 0, 0);
task->curr_event = 0;
err = pthread_create(&task->thread, &attr, thread_func, task);
BUG_ON(err);
}
}
static nsec_t cpu_usage;
static nsec_t runavg_cpu_usage;
static nsec_t parent_cpu_usage;
static nsec_t runavg_parent_cpu_usage;
static void wait_for_tasks(void)
{
nsec_t cpu_usage_0, cpu_usage_1;
struct task_desc *task;
unsigned long i, ret;
start_time = get_nsecs();
cpu_usage = 0;
pthread_mutex_unlock(&work_done_wait_mutex);
for (i = 0; i < nr_tasks; i++) {
task = tasks[i];
ret = sem_wait(&task->ready_for_work);
BUG_ON(ret);
sem_init(&task->ready_for_work, 0, 0);
}
ret = pthread_mutex_lock(&work_done_wait_mutex);
BUG_ON(ret);
cpu_usage_0 = get_cpu_usage_nsec_parent();
pthread_mutex_unlock(&start_work_mutex);
for (i = 0; i < nr_tasks; i++) {
task = tasks[i];
ret = sem_wait(&task->work_done_sem);
BUG_ON(ret);
sem_init(&task->work_done_sem, 0, 0);
cpu_usage += task->cpu_usage;
task->cpu_usage = 0;
}
cpu_usage_1 = get_cpu_usage_nsec_parent();
if (!runavg_cpu_usage)
runavg_cpu_usage = cpu_usage;
runavg_cpu_usage = (runavg_cpu_usage*9 + cpu_usage)/10;
parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
if (!runavg_parent_cpu_usage)
runavg_parent_cpu_usage = parent_cpu_usage;
runavg_parent_cpu_usage = (runavg_parent_cpu_usage*9 +
parent_cpu_usage)/10;
ret = pthread_mutex_lock(&start_work_mutex);
BUG_ON(ret);
for (i = 0; i < nr_tasks; i++) {
task = tasks[i];
sem_init(&task->sleep_sem, 0, 0);
task->curr_event = 0;
}
}
static int read_events(void);
static unsigned long nr_runs;
static nsec_t sum_runtime;
static nsec_t sum_fluct;
static nsec_t run_avg;
static void run_one_test(void)
{
nsec_t T0, T1, delta, avg_delta, fluct, std_dev;
T0 = get_nsecs();
wait_for_tasks();
T1 = get_nsecs();
delta = T1 - T0;
sum_runtime += delta;
nr_runs++;
avg_delta = sum_runtime / nr_runs;
if (delta < avg_delta)
fluct = avg_delta - delta;
else
fluct = delta - avg_delta;
sum_fluct += fluct;
std_dev = sum_fluct / nr_runs / sqrt(nr_runs);
if (!run_avg)
run_avg = delta;
run_avg = (run_avg*9 + delta)/10;
printf("#%-3ld: %0.3f, ",
nr_runs, (double)delta/1000000.0);
#if 0
printf("%0.2f +- %0.2f, ",
(double)avg_delta/1e6, (double)std_dev/1e6);
#endif
printf("ravg: %0.2f, ",
(double)run_avg/1e6);
printf("cpu: %0.2f / %0.2f",
(double)cpu_usage/1e6, (double)runavg_cpu_usage/1e6);
#if 0
/*
* rusage statistics done by the parent, these are less
* accurate than the sum_exec_runtime based statistics:
*/
printf(" [%0.2f / %0.2f]",
(double)parent_cpu_usage/1e6,
(double)runavg_parent_cpu_usage/1e6);
#endif
printf("\n");
if (nr_sleep_corrections)
printf(" (%ld sleep corrections)\n", nr_sleep_corrections);
nr_sleep_corrections = 0;
}
static void test_calibrations(void)
{
nsec_t T0, T1;
T0 = get_nsecs();
burn_nsecs(1e6);
T1 = get_nsecs();
printf("the run test took %Ld nsecs\n", T1-T0);
T0 = get_nsecs();
sleep_nsecs(1e6);
T1 = get_nsecs();
printf("the sleep test took %Ld nsecs\n", T1-T0);
}
static void __cmd_replay(void)
{
long nr_iterations = 10, i;
calibrate_run_measurement_overhead();
calibrate_sleep_measurement_overhead();
test_calibrations();
read_events();
printf("nr_run_events: %ld\n", nr_run_events);
printf("nr_sleep_events: %ld\n", nr_sleep_events);
printf("nr_wakeup_events: %ld\n", nr_wakeup_events);
if (targetless_wakeups)
printf("target-less wakeups: %ld\n", targetless_wakeups);
if (multitarget_wakeups)
printf("multi-target wakeups: %ld\n", multitarget_wakeups);
if (nr_run_events_optimized)
printf("run events optimized: %ld\n",
nr_run_events_optimized);
print_task_traces();
add_cross_task_wakeups();
create_tasks();
printf("------------------------------------------------------------\n");
for (i = 0; i < nr_iterations; i++)
run_one_test();
}
static int
process_comm_event(event_t *event, unsigned long offset, unsigned long head)
{
struct thread *thread;
thread = threads__findnew(event->comm.pid, &threads, &last_match);
dump_printf("%p [%p]: PERF_EVENT_COMM: %s:%d\n",
(void *)(offset + head),
(void *)(long)(event->header.size),
event->comm.comm, event->comm.pid);
if (thread == NULL ||
thread__set_comm(thread, event->comm.comm)) {
dump_printf("problem processing PERF_EVENT_COMM, skipping event.\n");
return -1;
}
total_comm++;
return 0;
}
struct raw_event_sample {
u32 size;
char data[0];
};
#define FILL_FIELD(ptr, field, event, data) \
ptr.field = (typeof(ptr.field)) raw_field_value(event, #field, data)
#define FILL_ARRAY(ptr, array, event, data) \
do { \
void *__array = raw_field_ptr(event, #array, data); \
memcpy(ptr.array, __array, sizeof(ptr.array)); \
} while(0)
#define FILL_COMMON_FIELDS(ptr, event, data) \
do { \
FILL_FIELD(ptr, common_type, event, data); \
FILL_FIELD(ptr, common_flags, event, data); \
FILL_FIELD(ptr, common_preempt_count, event, data); \
FILL_FIELD(ptr, common_pid, event, data); \
FILL_FIELD(ptr, common_tgid, event, data); \
} while (0)
struct trace_switch_event {
u32 size;
u16 common_type;
u8 common_flags;
u8 common_preempt_count;
u32 common_pid;
u32 common_tgid;
char prev_comm[16];
u32 prev_pid;
u32 prev_prio;
u64 prev_state;
char next_comm[16];
u32 next_pid;
u32 next_prio;
};
struct trace_wakeup_event {
u32 size;
u16 common_type;
u8 common_flags;
u8 common_preempt_count;
u32 common_pid;
u32 common_tgid;
char comm[16];
u32 pid;
u32 prio;
u32 success;
u32 cpu;
};
struct trace_fork_event {
u32 size;
u16 common_type;
u8 common_flags;
u8 common_preempt_count;
u32 common_pid;
u32 common_tgid;
char parent_comm[16];
u32 parent_pid;
char child_comm[16];
u32 child_pid;
};
struct trace_sched_handler {
void (*switch_event)(struct trace_switch_event *,
struct event *,
int cpu,
u64 timestamp,
struct thread *thread);
void (*wakeup_event)(struct trace_wakeup_event *,
struct event *,
int cpu,
u64 timestamp,
struct thread *thread);
void (*fork_event)(struct trace_fork_event *,
struct event *,
int cpu,
u64 timestamp,
struct thread *thread);
};
static void
replay_wakeup_event(struct trace_wakeup_event *wakeup_event,
struct event *event,
int cpu __used,
u64 timestamp __used,
struct thread *thread __used)
{
struct task_desc *waker, *wakee;
if (verbose) {
printf("sched_wakeup event %p\n", event);
printf(" ... pid %d woke up %s/%d\n",
wakeup_event->common_pid,
wakeup_event->comm,
wakeup_event->pid);
}
waker = register_pid(wakeup_event->common_pid, "<unknown>");
wakee = register_pid(wakeup_event->pid, wakeup_event->comm);
add_sched_event_wakeup(waker, timestamp, wakee);
}
static unsigned long cpu_last_switched[MAX_CPUS];
static void
replay_switch_event(struct trace_switch_event *switch_event,
struct event *event,
int cpu,
u64 timestamp,
struct thread *thread __used)
{
struct task_desc *prev, *next;
u64 timestamp0;
s64 delta;
if (verbose)
printf("sched_switch event %p\n", event);
if (cpu >= MAX_CPUS || cpu < 0)
return;
timestamp0 = cpu_last_switched[cpu];
if (timestamp0)
delta = timestamp - timestamp0;
else
delta = 0;
if (delta < 0)
die("hm, delta: %Ld < 0 ?\n", delta);
if (verbose) {
printf(" ... switch from %s/%d to %s/%d [ran %Ld nsecs]\n",
switch_event->prev_comm, switch_event->prev_pid,
switch_event->next_comm, switch_event->next_pid,
delta);
}
prev = register_pid(switch_event->prev_pid, switch_event->prev_comm);
next = register_pid(switch_event->next_pid, switch_event->next_comm);
cpu_last_switched[cpu] = timestamp;
add_sched_event_run(prev, timestamp, delta);
add_sched_event_sleep(prev, timestamp, switch_event->prev_state);
}
static void
replay_fork_event(struct trace_fork_event *fork_event,
struct event *event,
int cpu __used,
u64 timestamp __used,
struct thread *thread __used)
{
if (verbose) {
printf("sched_fork event %p\n", event);
printf("... parent: %s/%d\n", fork_event->parent_comm, fork_event->parent_pid);
printf("... child: %s/%d\n", fork_event->child_comm, fork_event->child_pid);
}
register_pid(fork_event->parent_pid, fork_event->parent_comm);
register_pid(fork_event->child_pid, fork_event->child_comm);
}
static struct trace_sched_handler replay_ops = {
.wakeup_event = replay_wakeup_event,
.switch_event = replay_switch_event,
.fork_event = replay_fork_event,
};
#define TASK_STATE_TO_CHAR_STR "RSDTtZX"
enum thread_state {
THREAD_SLEEPING,
THREAD_WAKED_UP,
THREAD_SCHED_IN,
THREAD_IGNORE
};
struct lat_snapshot {
struct list_head list;
enum thread_state state;
u64 wake_up_time;
u64 sched_in_time;
};
struct thread_latency {
struct list_head snapshot_list;
struct thread *thread;
struct rb_node node;
};
static struct rb_root lat_snapshot_root;
static struct thread_latency *
thread_latency_search(struct rb_root *root, struct thread *thread)
{
struct rb_node *node = root->rb_node;
while (node) {
struct thread_latency *lat;
lat = container_of(node, struct thread_latency, node);
if (thread->pid < lat->thread->pid)
node = node->rb_left;
else if (thread->pid > lat->thread->pid)
node = node->rb_right;
else {
return lat;
}
}
return NULL;
}
static void
__thread_latency_insert(struct rb_root *root, struct thread_latency *data)
{
struct rb_node **new = &(root->rb_node), *parent = NULL;
while (*new) {
struct thread_latency *this;
this = container_of(*new, struct thread_latency, node);
parent = *new;
if (data->thread->pid < this->thread->pid)
new = &((*new)->rb_left);
else if (data->thread->pid > this->thread->pid)
new = &((*new)->rb_right);
else
die("Double thread insertion\n");
}
rb_link_node(&data->node, parent, new);
rb_insert_color(&data->node, root);
}
static void thread_latency_insert(struct thread *thread)
{
struct thread_latency *lat;
lat = calloc(sizeof(*lat), 1);
if (!lat)
die("No memory");
lat->thread = thread;
INIT_LIST_HEAD(&lat->snapshot_list);
__thread_latency_insert(&lat_snapshot_root, lat);
}
static void
latency_fork_event(struct trace_fork_event *fork_event __used,
struct event *event __used,
int cpu __used,
u64 timestamp __used,
struct thread *thread __used)
{
/* should insert the newcomer */
}
static char sched_out_state(struct trace_switch_event *switch_event)
{
const char *str = TASK_STATE_TO_CHAR_STR;
return str[switch_event->prev_state];
}
static void
lat_sched_out(struct thread_latency *lat,
struct trace_switch_event *switch_event)
{
struct lat_snapshot *snapshot;
if (sched_out_state(switch_event) == 'R')
return;
snapshot = calloc(sizeof(*snapshot), 1);
if (!snapshot)
die("Non memory");
list_add_tail(&snapshot->list, &lat->snapshot_list);
}
static void
lat_sched_in(struct thread_latency *lat, u64 timestamp)
{
struct lat_snapshot *snapshot;
if (list_empty(&lat->snapshot_list))
return;
snapshot = list_entry(lat->snapshot_list.prev, struct lat_snapshot,
list);
if (snapshot->state != THREAD_WAKED_UP)
return;
if (timestamp < snapshot->wake_up_time) {
snapshot->state = THREAD_IGNORE;
return;
}
snapshot->state = THREAD_SCHED_IN;
snapshot->sched_in_time = timestamp;
}
static void
latency_switch_event(struct trace_switch_event *switch_event,
struct event *event __used,
int cpu __used,
u64 timestamp,
struct thread *thread __used)
{
struct thread_latency *out_lat, *in_lat;
struct thread *sched_out, *sched_in;
sched_out = threads__findnew(switch_event->prev_pid, &threads, &last_match);
sched_in = threads__findnew(switch_event->next_pid, &threads, &last_match);
in_lat = thread_latency_search(&lat_snapshot_root, sched_in);
if (!in_lat) {
thread_latency_insert(sched_in);
in_lat = thread_latency_search(&lat_snapshot_root, sched_in);
if (!in_lat)
die("Internal latency tree error");
}
out_lat = thread_latency_search(&lat_snapshot_root, sched_out);
if (!out_lat) {
thread_latency_insert(sched_out);
out_lat = thread_latency_search(&lat_snapshot_root, sched_out);
if (!out_lat)
die("Internal latency tree error");
}
lat_sched_in(in_lat, timestamp);
lat_sched_out(out_lat, switch_event);
}
static void
latency_wakeup_event(struct trace_wakeup_event *wakeup_event,
struct event *event __used,
int cpu __used,
u64 timestamp,
struct thread *thread __used)
{
struct thread_latency *lat;
struct lat_snapshot *snapshot;
struct thread *wakee;
/* Note for later, it may be interesting to observe the failing cases */
if (!wakeup_event->success)
return;
wakee = threads__findnew(wakeup_event->pid, &threads, &last_match);
lat = thread_latency_search(&lat_snapshot_root, wakee);
if (!lat) {
thread_latency_insert(wakee);
return;
}
if (list_empty(&lat->snapshot_list))
return;
snapshot = list_entry(lat->snapshot_list.prev, struct lat_snapshot,
list);
if (snapshot->state != THREAD_SLEEPING)
return;
snapshot->state = THREAD_WAKED_UP;
snapshot->wake_up_time = timestamp;
}
static struct trace_sched_handler lat_ops = {
.wakeup_event = latency_wakeup_event,
.switch_event = latency_switch_event,
.fork_event = latency_fork_event,
};
static void output_lat_thread(struct thread_latency *lat)
{
struct lat_snapshot *shot;
int count = 0;
int i;
int ret;
u64 max = 0, avg;
u64 total = 0, delta;
list_for_each_entry(shot, &lat->snapshot_list, list) {
if (shot->state != THREAD_SCHED_IN)
continue;
count++;
delta = shot->sched_in_time - shot->wake_up_time;
if (delta > max)
max = delta;
total += delta;
}
if (!count)
return;
ret = printf(" %s ", lat->thread->comm);
for (i = 0; i < 19 - ret; i++)
printf(" ");
avg = total / count;
printf("|%9.3f ms |%9d | avg:%9.3f ms | max:%9.3f ms |\n",
0.0, count, (double)avg/1e9, (double)max/1e9);
}
static void __cmd_lat(void)
{
struct rb_node *next;
setup_pager();
read_events();
printf("-----------------------------------------------------------------------------------\n");
printf(" Task | runtime ms | switches | average delay ms | maximum delay ms |\n");
printf("-----------------------------------------------------------------------------------\n");
next = rb_first(&lat_snapshot_root);
while (next) {
struct thread_latency *lat;
lat = rb_entry(next, struct thread_latency, node);
output_lat_thread(lat);
next = rb_next(next);
}
printf("-----------------------------------------------------------------------------------\n");
}
static struct trace_sched_handler *trace_handler;
static void
process_sched_wakeup_event(struct raw_event_sample *raw,
struct event *event,
int cpu __used,
u64 timestamp __used,
struct thread *thread __used)
{
struct trace_wakeup_event wakeup_event;
FILL_COMMON_FIELDS(wakeup_event, event, raw->data);
FILL_ARRAY(wakeup_event, comm, event, raw->data);
FILL_FIELD(wakeup_event, pid, event, raw->data);
FILL_FIELD(wakeup_event, prio, event, raw->data);
FILL_FIELD(wakeup_event, success, event, raw->data);
FILL_FIELD(wakeup_event, cpu, event, raw->data);
trace_handler->wakeup_event(&wakeup_event, event, cpu, timestamp, thread);
}
static void
process_sched_switch_event(struct raw_event_sample *raw,
struct event *event,
int cpu __used,
u64 timestamp __used,
struct thread *thread __used)
{
struct trace_switch_event switch_event;
FILL_COMMON_FIELDS(switch_event, event, raw->data);
FILL_ARRAY(switch_event, prev_comm, event, raw->data);
FILL_FIELD(switch_event, prev_pid, event, raw->data);
FILL_FIELD(switch_event, prev_prio, event, raw->data);
FILL_FIELD(switch_event, prev_state, event, raw->data);
FILL_ARRAY(switch_event, next_comm, event, raw->data);
FILL_FIELD(switch_event, next_pid, event, raw->data);
FILL_FIELD(switch_event, next_prio, event, raw->data);
trace_handler->switch_event(&switch_event, event, cpu, timestamp, thread);
}
static void
process_sched_fork_event(struct raw_event_sample *raw,
struct event *event,
int cpu __used,
u64 timestamp __used,
struct thread *thread __used)
{
struct trace_fork_event fork_event;
FILL_COMMON_FIELDS(fork_event, event, raw->data);
FILL_ARRAY(fork_event, parent_comm, event, raw->data);
FILL_FIELD(fork_event, parent_pid, event, raw->data);
FILL_ARRAY(fork_event, child_comm, event, raw->data);
FILL_FIELD(fork_event, child_pid, event, raw->data);
trace_handler->fork_event(&fork_event, event, cpu, timestamp, thread);
}
static void
process_sched_exit_event(struct event *event,
int cpu __used,
u64 timestamp __used,
struct thread *thread __used)
{
if (verbose)
printf("sched_exit event %p\n", event);
}
static void
process_raw_event(event_t *raw_event __used, void *more_data,
int cpu, u64 timestamp, struct thread *thread)
{
struct raw_event_sample *raw = more_data;
struct event *event;
int type;
type = trace_parse_common_type(raw->data);
event = trace_find_event(type);
if (!strcmp(event->name, "sched_switch"))
process_sched_switch_event(raw, event, cpu, timestamp, thread);
if (!strcmp(event->name, "sched_wakeup"))
process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
if (!strcmp(event->name, "sched_wakeup_new"))
process_sched_wakeup_event(raw, event, cpu, timestamp, thread);
if (!strcmp(event->name, "sched_process_fork"))
process_sched_fork_event(raw, event, cpu, timestamp, thread);
if (!strcmp(event->name, "sched_process_exit"))
process_sched_exit_event(event, cpu, timestamp, thread);
}
static int
process_sample_event(event_t *event, unsigned long offset, unsigned long head)
{
char level;
int show = 0;
struct dso *dso = NULL;
struct thread *thread;
u64 ip = event->ip.ip;
u64 timestamp = -1;
u32 cpu = -1;
u64 period = 1;
void *more_data = event->ip.__more_data;
int cpumode;
thread = threads__findnew(event->ip.pid, &threads, &last_match);
if (sample_type & PERF_SAMPLE_TIME) {
timestamp = *(u64 *)more_data;
more_data += sizeof(u64);
}
if (sample_type & PERF_SAMPLE_CPU) {
cpu = *(u32 *)more_data;
more_data += sizeof(u32);
more_data += sizeof(u32); /* reserved */
}
if (sample_type & PERF_SAMPLE_PERIOD) {
period = *(u64 *)more_data;
more_data += sizeof(u64);
}
dump_printf("%p [%p]: PERF_EVENT_SAMPLE (IP, %d): %d/%d: %p period: %Ld\n",
(void *)(offset + head),
(void *)(long)(event->header.size),
event->header.misc,
event->ip.pid, event->ip.tid,
(void *)(long)ip,
(long long)period);
dump_printf(" ... thread: %s:%d\n", thread->comm, thread->pid);
if (thread == NULL) {
eprintf("problem processing %d event, skipping it.\n",
event->header.type);
return -1;
}
cpumode = event->header.misc & PERF_EVENT_MISC_CPUMODE_MASK;
if (cpumode == PERF_EVENT_MISC_KERNEL) {
show = SHOW_KERNEL;
level = 'k';
dso = kernel_dso;
dump_printf(" ...... dso: %s\n", dso->name);
} else if (cpumode == PERF_EVENT_MISC_USER) {
show = SHOW_USER;
level = '.';
} else {
show = SHOW_HV;
level = 'H';
dso = hypervisor_dso;
dump_printf(" ...... dso: [hypervisor]\n");
}
if (sample_type & PERF_SAMPLE_RAW)
process_raw_event(event, more_data, cpu, timestamp, thread);
return 0;
}
static int
process_event(event_t *event, unsigned long offset, unsigned long head)
{
trace_event(event);
switch (event->header.type) {
case PERF_EVENT_MMAP ... PERF_EVENT_LOST:
return 0;
case PERF_EVENT_COMM:
return process_comm_event(event, offset, head);
case PERF_EVENT_EXIT ... PERF_EVENT_READ:
return 0;
case PERF_EVENT_SAMPLE:
return process_sample_event(event, offset, head);
case PERF_EVENT_MAX:
default:
return -1;
}
return 0;
}
static int read_events(void)
{
int ret, rc = EXIT_FAILURE;
unsigned long offset = 0;
unsigned long head = 0;
struct stat perf_stat;
event_t *event;
uint32_t size;
char *buf;
trace_report();
register_idle_thread(&threads, &last_match);
input = open(input_name, O_RDONLY);
if (input < 0) {
perror("failed to open file");
exit(-1);
}
ret = fstat(input, &perf_stat);
if (ret < 0) {
perror("failed to stat file");
exit(-1);
}
if (!perf_stat.st_size) {
fprintf(stderr, "zero-sized file, nothing to do!\n");
exit(0);
}
header = perf_header__read(input);
head = header->data_offset;
sample_type = perf_header__sample_type(header);
if (!(sample_type & PERF_SAMPLE_RAW))
die("No trace sample to read. Did you call perf record "
"without -R?");
if (load_kernel() < 0) {
perror("failed to load kernel symbols");
return EXIT_FAILURE;
}
remap:
buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
MAP_SHARED, input, offset);
if (buf == MAP_FAILED) {
perror("failed to mmap file");
exit(-1);
}
more:
event = (event_t *)(buf + head);
size = event->header.size;
if (!size)
size = 8;
if (head + event->header.size >= page_size * mmap_window) {
unsigned long shift = page_size * (head / page_size);
int res;
res = munmap(buf, page_size * mmap_window);
assert(res == 0);
offset += shift;
head -= shift;
goto remap;
}
size = event->header.size;
if (!size || process_event(event, offset, head) < 0) {
/*
* assume we lost track of the stream, check alignment, and
* increment a single u64 in the hope to catch on again 'soon'.
*/
if (unlikely(head & 7))
head &= ~7ULL;
size = 8;
}
head += size;
if (offset + head < (unsigned long)perf_stat.st_size)
goto more;
rc = EXIT_SUCCESS;
close(input);
return rc;
}
static const char * const sched_usage[] = {
"perf sched [<options>] <command>",
NULL
};
static const struct option options[] = {
OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
"dump raw trace in ASCII"),
OPT_BOOLEAN('r', "replay", &replay_mode,
"replay sched behaviour from traces"),
OPT_BOOLEAN('l', "latency", &lat_mode,
"measure various latencies"),
OPT_BOOLEAN('v', "verbose", &verbose,
"be more verbose (show symbol address, etc)"),
OPT_END()
};
int cmd_sched(int argc, const char **argv, const char *prefix __used)
{
symbol__init();
page_size = getpagesize();
argc = parse_options(argc, argv, options, sched_usage, 0);
if (argc) {
/*
* Special case: if there's an argument left then assume tha
* it's a symbol filter:
*/
if (argc > 1)
usage_with_options(sched_usage, options);
}
if (replay_mode)
trace_handler = &replay_ops;
else if (lat_mode)
trace_handler = &lat_ops;
else
usage_with_options(sched_usage, options);
if (replay_mode)
__cmd_replay();
else if (lat_mode)
__cmd_lat();
return 0;
}