1
linux/arch/arm/mach-tegra/pcie.c
Linus Torvalds f85f19de90 Merge branch 'linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci-2.6
* 'linux-next' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci-2.6:
  PCI: remove printks about disabled bridge windows
  PCI: fold pci_calc_resource_flags() into decode_bar()
  PCI: treat mem BAR type "11" (reserved) as 32-bit, not 64-bit, BAR
  PCI: correct pcie_set_readrq write size
  PCI: pciehp: change wait time for valid configuration access
  x86/PCI: Preserve existing pci=bfsort whitelist for Dell systems
  PCI: ARI is a PCIe v2 feature
  x86/PCI: quirks: Use pci_dev->revision
  PCI: Make the struct pci_dev * argument of pci_fixup_irqs const.
  PCI hotplug: cpqphp: use pci_dev->vendor
  PCI hotplug: cpqphp: use pci_dev->subsystem_{vendor|device}
  x86/PCI: config space accessor functions should not ignore the segment argument
  PCI: Assign values to 'pci_obff_signal_type' enumeration constants
  x86/PCI: reduce severity of host bridge window conflict warnings
  PCI: enumerate the PCI device only removed out PCI hieratchy of OS when re-scanning PCI
  PCI: PCIe AER: add aer_recover_queue
  x86/PCI: select direct access mode for mmconfig option
  PCI hotplug: Rename is_ejectable which also exists in dock.c
2011-07-29 23:35:05 -07:00

936 lines
24 KiB
C

/*
* arch/arm/mach-tegra/pci.c
*
* PCIe host controller driver for TEGRA(2) SOCs
*
* Copyright (c) 2010, CompuLab, Ltd.
* Author: Mike Rapoport <mike@compulab.co.il>
*
* Based on NVIDIA PCIe driver
* Copyright (c) 2008-2009, NVIDIA Corporation.
*
* Bits taken from arch/arm/mach-dove/pcie.c
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <asm/sizes.h>
#include <asm/mach/pci.h>
#include <mach/pinmux.h>
#include <mach/iomap.h>
#include <mach/clk.h>
#include <mach/powergate.h>
/* register definitions */
#define AFI_OFFSET 0x3800
#define PADS_OFFSET 0x3000
#define RP0_OFFSET 0x0000
#define RP1_OFFSET 0x1000
#define AFI_AXI_BAR0_SZ 0x00
#define AFI_AXI_BAR1_SZ 0x04
#define AFI_AXI_BAR2_SZ 0x08
#define AFI_AXI_BAR3_SZ 0x0c
#define AFI_AXI_BAR4_SZ 0x10
#define AFI_AXI_BAR5_SZ 0x14
#define AFI_AXI_BAR0_START 0x18
#define AFI_AXI_BAR1_START 0x1c
#define AFI_AXI_BAR2_START 0x20
#define AFI_AXI_BAR3_START 0x24
#define AFI_AXI_BAR4_START 0x28
#define AFI_AXI_BAR5_START 0x2c
#define AFI_FPCI_BAR0 0x30
#define AFI_FPCI_BAR1 0x34
#define AFI_FPCI_BAR2 0x38
#define AFI_FPCI_BAR3 0x3c
#define AFI_FPCI_BAR4 0x40
#define AFI_FPCI_BAR5 0x44
#define AFI_CACHE_BAR0_SZ 0x48
#define AFI_CACHE_BAR0_ST 0x4c
#define AFI_CACHE_BAR1_SZ 0x50
#define AFI_CACHE_BAR1_ST 0x54
#define AFI_MSI_BAR_SZ 0x60
#define AFI_MSI_FPCI_BAR_ST 0x64
#define AFI_MSI_AXI_BAR_ST 0x68
#define AFI_CONFIGURATION 0xac
#define AFI_CONFIGURATION_EN_FPCI (1 << 0)
#define AFI_FPCI_ERROR_MASKS 0xb0
#define AFI_INTR_MASK 0xb4
#define AFI_INTR_MASK_INT_MASK (1 << 0)
#define AFI_INTR_MASK_MSI_MASK (1 << 8)
#define AFI_INTR_CODE 0xb8
#define AFI_INTR_CODE_MASK 0xf
#define AFI_INTR_MASTER_ABORT 4
#define AFI_INTR_LEGACY 6
#define AFI_INTR_SIGNATURE 0xbc
#define AFI_SM_INTR_ENABLE 0xc4
#define AFI_AFI_INTR_ENABLE 0xc8
#define AFI_INTR_EN_INI_SLVERR (1 << 0)
#define AFI_INTR_EN_INI_DECERR (1 << 1)
#define AFI_INTR_EN_TGT_SLVERR (1 << 2)
#define AFI_INTR_EN_TGT_DECERR (1 << 3)
#define AFI_INTR_EN_TGT_WRERR (1 << 4)
#define AFI_INTR_EN_DFPCI_DECERR (1 << 5)
#define AFI_INTR_EN_AXI_DECERR (1 << 6)
#define AFI_INTR_EN_FPCI_TIMEOUT (1 << 7)
#define AFI_PCIE_CONFIG 0x0f8
#define AFI_PCIE_CONFIG_PCIEC0_DISABLE_DEVICE (1 << 1)
#define AFI_PCIE_CONFIG_PCIEC1_DISABLE_DEVICE (1 << 2)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK (0xf << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE (0x0 << 20)
#define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL (0x1 << 20)
#define AFI_FUSE 0x104
#define AFI_FUSE_PCIE_T0_GEN2_DIS (1 << 2)
#define AFI_PEX0_CTRL 0x110
#define AFI_PEX1_CTRL 0x118
#define AFI_PEX_CTRL_RST (1 << 0)
#define AFI_PEX_CTRL_REFCLK_EN (1 << 3)
#define RP_VEND_XP 0x00000F00
#define RP_VEND_XP_DL_UP (1 << 30)
#define RP_LINK_CONTROL_STATUS 0x00000090
#define RP_LINK_CONTROL_STATUS_LINKSTAT_MASK 0x3fff0000
#define PADS_CTL_SEL 0x0000009C
#define PADS_CTL 0x000000A0
#define PADS_CTL_IDDQ_1L (1 << 0)
#define PADS_CTL_TX_DATA_EN_1L (1 << 6)
#define PADS_CTL_RX_DATA_EN_1L (1 << 10)
#define PADS_PLL_CTL 0x000000B8
#define PADS_PLL_CTL_RST_B4SM (1 << 1)
#define PADS_PLL_CTL_LOCKDET (1 << 8)
#define PADS_PLL_CTL_REFCLK_MASK (0x3 << 16)
#define PADS_PLL_CTL_REFCLK_INTERNAL_CML (0 << 16)
#define PADS_PLL_CTL_REFCLK_INTERNAL_CMOS (1 << 16)
#define PADS_PLL_CTL_REFCLK_EXTERNAL (2 << 16)
#define PADS_PLL_CTL_TXCLKREF_MASK (0x1 << 20)
#define PADS_PLL_CTL_TXCLKREF_DIV10 (0 << 20)
#define PADS_PLL_CTL_TXCLKREF_DIV5 (1 << 20)
/* PMC access is required for PCIE xclk (un)clamping */
#define PMC_SCRATCH42 0x144
#define PMC_SCRATCH42_PCX_CLAMP (1 << 0)
static void __iomem *reg_pmc_base = IO_ADDRESS(TEGRA_PMC_BASE);
#define pmc_writel(value, reg) \
__raw_writel(value, (u32)reg_pmc_base + (reg))
#define pmc_readl(reg) \
__raw_readl((u32)reg_pmc_base + (reg))
/*
* Tegra2 defines 1GB in the AXI address map for PCIe.
*
* That address space is split into different regions, with sizes and
* offsets as follows:
*
* 0x80000000 - 0x80003fff - PCI controller registers
* 0x80004000 - 0x80103fff - PCI configuration space
* 0x80104000 - 0x80203fff - PCI extended configuration space
* 0x80203fff - 0x803fffff - unused
* 0x80400000 - 0x8040ffff - downstream IO
* 0x80410000 - 0x8fffffff - unused
* 0x90000000 - 0x9fffffff - non-prefetchable memory
* 0xa0000000 - 0xbfffffff - prefetchable memory
*/
#define TEGRA_PCIE_BASE 0x80000000
#define PCIE_REGS_SZ SZ_16K
#define PCIE_CFG_OFF PCIE_REGS_SZ
#define PCIE_CFG_SZ SZ_1M
#define PCIE_EXT_CFG_OFF (PCIE_CFG_SZ + PCIE_CFG_OFF)
#define PCIE_EXT_CFG_SZ SZ_1M
#define PCIE_IOMAP_SZ (PCIE_REGS_SZ + PCIE_CFG_SZ + PCIE_EXT_CFG_SZ)
#define MMIO_BASE (TEGRA_PCIE_BASE + SZ_4M)
#define MMIO_SIZE SZ_64K
#define MEM_BASE_0 (TEGRA_PCIE_BASE + SZ_256M)
#define MEM_SIZE_0 SZ_128M
#define MEM_BASE_1 (MEM_BASE_0 + MEM_SIZE_0)
#define MEM_SIZE_1 SZ_128M
#define PREFETCH_MEM_BASE_0 (MEM_BASE_1 + MEM_SIZE_1)
#define PREFETCH_MEM_SIZE_0 SZ_128M
#define PREFETCH_MEM_BASE_1 (PREFETCH_MEM_BASE_0 + PREFETCH_MEM_SIZE_0)
#define PREFETCH_MEM_SIZE_1 SZ_128M
#define PCIE_CONF_BUS(b) ((b) << 16)
#define PCIE_CONF_DEV(d) ((d) << 11)
#define PCIE_CONF_FUNC(f) ((f) << 8)
#define PCIE_CONF_REG(r) \
(((r) & ~0x3) | (((r) < 256) ? PCIE_CFG_OFF : PCIE_EXT_CFG_OFF))
struct tegra_pcie_port {
int index;
u8 root_bus_nr;
void __iomem *base;
bool link_up;
char io_space_name[16];
char mem_space_name[16];
char prefetch_space_name[20];
struct resource res[3];
};
struct tegra_pcie_info {
struct tegra_pcie_port port[2];
int num_ports;
void __iomem *regs;
struct resource res_mmio;
struct clk *pex_clk;
struct clk *afi_clk;
struct clk *pcie_xclk;
struct clk *pll_e;
};
static struct tegra_pcie_info tegra_pcie = {
.res_mmio = {
.name = "PCI IO",
.start = MMIO_BASE,
.end = MMIO_BASE + MMIO_SIZE - 1,
.flags = IORESOURCE_MEM,
},
};
void __iomem *tegra_pcie_io_base;
EXPORT_SYMBOL(tegra_pcie_io_base);
static inline void afi_writel(u32 value, unsigned long offset)
{
writel(value, offset + AFI_OFFSET + tegra_pcie.regs);
}
static inline u32 afi_readl(unsigned long offset)
{
return readl(offset + AFI_OFFSET + tegra_pcie.regs);
}
static inline void pads_writel(u32 value, unsigned long offset)
{
writel(value, offset + PADS_OFFSET + tegra_pcie.regs);
}
static inline u32 pads_readl(unsigned long offset)
{
return readl(offset + PADS_OFFSET + tegra_pcie.regs);
}
static struct tegra_pcie_port *bus_to_port(int bus)
{
int i;
for (i = tegra_pcie.num_ports - 1; i >= 0; i--) {
int rbus = tegra_pcie.port[i].root_bus_nr;
if (rbus != -1 && rbus == bus)
break;
}
return i >= 0 ? tegra_pcie.port + i : NULL;
}
static int tegra_pcie_read_conf(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *val)
{
struct tegra_pcie_port *pp = bus_to_port(bus->number);
void __iomem *addr;
if (pp) {
if (devfn != 0) {
*val = 0xffffffff;
return PCIBIOS_DEVICE_NOT_FOUND;
}
addr = pp->base + (where & ~0x3);
} else {
addr = tegra_pcie.regs + (PCIE_CONF_BUS(bus->number) +
PCIE_CONF_DEV(PCI_SLOT(devfn)) +
PCIE_CONF_FUNC(PCI_FUNC(devfn)) +
PCIE_CONF_REG(where));
}
*val = readl(addr);
if (size == 1)
*val = (*val >> (8 * (where & 3))) & 0xff;
else if (size == 2)
*val = (*val >> (8 * (where & 3))) & 0xffff;
return PCIBIOS_SUCCESSFUL;
}
static int tegra_pcie_write_conf(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 val)
{
struct tegra_pcie_port *pp = bus_to_port(bus->number);
void __iomem *addr;
u32 mask;
u32 tmp;
if (pp) {
if (devfn != 0)
return PCIBIOS_DEVICE_NOT_FOUND;
addr = pp->base + (where & ~0x3);
} else {
addr = tegra_pcie.regs + (PCIE_CONF_BUS(bus->number) +
PCIE_CONF_DEV(PCI_SLOT(devfn)) +
PCIE_CONF_FUNC(PCI_FUNC(devfn)) +
PCIE_CONF_REG(where));
}
if (size == 4) {
writel(val, addr);
return PCIBIOS_SUCCESSFUL;
}
if (size == 2)
mask = ~(0xffff << ((where & 0x3) * 8));
else if (size == 1)
mask = ~(0xff << ((where & 0x3) * 8));
else
return PCIBIOS_BAD_REGISTER_NUMBER;
tmp = readl(addr) & mask;
tmp |= val << ((where & 0x3) * 8);
writel(tmp, addr);
return PCIBIOS_SUCCESSFUL;
}
static struct pci_ops tegra_pcie_ops = {
.read = tegra_pcie_read_conf,
.write = tegra_pcie_write_conf,
};
static void __devinit tegra_pcie_fixup_bridge(struct pci_dev *dev)
{
u16 reg;
if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
pci_read_config_word(dev, PCI_COMMAND, &reg);
reg |= (PCI_COMMAND_IO | PCI_COMMAND_MEMORY |
PCI_COMMAND_MASTER | PCI_COMMAND_SERR);
pci_write_config_word(dev, PCI_COMMAND, reg);
}
}
DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, tegra_pcie_fixup_bridge);
/* Tegra PCIE root complex wrongly reports device class */
static void __devinit tegra_pcie_fixup_class(struct pci_dev *dev)
{
dev->class = PCI_CLASS_BRIDGE_PCI << 8;
}
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf0, tegra_pcie_fixup_class);
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf1, tegra_pcie_fixup_class);
/* Tegra PCIE requires relaxed ordering */
static void __devinit tegra_pcie_relax_enable(struct pci_dev *dev)
{
u16 val16;
int pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
if (pos <= 0) {
dev_err(&dev->dev, "skipping relaxed ordering fixup\n");
return;
}
pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &val16);
val16 |= PCI_EXP_DEVCTL_RELAX_EN;
pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, val16);
}
DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, tegra_pcie_relax_enable);
static int tegra_pcie_setup(int nr, struct pci_sys_data *sys)
{
struct tegra_pcie_port *pp;
if (nr >= tegra_pcie.num_ports)
return 0;
pp = tegra_pcie.port + nr;
pp->root_bus_nr = sys->busnr;
/*
* IORESOURCE_IO
*/
snprintf(pp->io_space_name, sizeof(pp->io_space_name),
"PCIe %d I/O", pp->index);
pp->io_space_name[sizeof(pp->io_space_name) - 1] = 0;
pp->res[0].name = pp->io_space_name;
if (pp->index == 0) {
pp->res[0].start = PCIBIOS_MIN_IO;
pp->res[0].end = pp->res[0].start + SZ_32K - 1;
} else {
pp->res[0].start = PCIBIOS_MIN_IO + SZ_32K;
pp->res[0].end = IO_SPACE_LIMIT;
}
pp->res[0].flags = IORESOURCE_IO;
if (request_resource(&ioport_resource, &pp->res[0]))
panic("Request PCIe IO resource failed\n");
sys->resource[0] = &pp->res[0];
/*
* IORESOURCE_MEM
*/
snprintf(pp->mem_space_name, sizeof(pp->mem_space_name),
"PCIe %d MEM", pp->index);
pp->mem_space_name[sizeof(pp->mem_space_name) - 1] = 0;
pp->res[1].name = pp->mem_space_name;
if (pp->index == 0) {
pp->res[1].start = MEM_BASE_0;
pp->res[1].end = pp->res[1].start + MEM_SIZE_0 - 1;
} else {
pp->res[1].start = MEM_BASE_1;
pp->res[1].end = pp->res[1].start + MEM_SIZE_1 - 1;
}
pp->res[1].flags = IORESOURCE_MEM;
if (request_resource(&iomem_resource, &pp->res[1]))
panic("Request PCIe Memory resource failed\n");
sys->resource[1] = &pp->res[1];
/*
* IORESOURCE_MEM | IORESOURCE_PREFETCH
*/
snprintf(pp->prefetch_space_name, sizeof(pp->prefetch_space_name),
"PCIe %d PREFETCH MEM", pp->index);
pp->prefetch_space_name[sizeof(pp->prefetch_space_name) - 1] = 0;
pp->res[2].name = pp->prefetch_space_name;
if (pp->index == 0) {
pp->res[2].start = PREFETCH_MEM_BASE_0;
pp->res[2].end = pp->res[2].start + PREFETCH_MEM_SIZE_0 - 1;
} else {
pp->res[2].start = PREFETCH_MEM_BASE_1;
pp->res[2].end = pp->res[2].start + PREFETCH_MEM_SIZE_1 - 1;
}
pp->res[2].flags = IORESOURCE_MEM | IORESOURCE_PREFETCH;
if (request_resource(&iomem_resource, &pp->res[2]))
panic("Request PCIe Prefetch Memory resource failed\n");
sys->resource[2] = &pp->res[2];
return 1;
}
static int tegra_pcie_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
{
return INT_PCIE_INTR;
}
static struct pci_bus __init *tegra_pcie_scan_bus(int nr,
struct pci_sys_data *sys)
{
struct tegra_pcie_port *pp;
if (nr >= tegra_pcie.num_ports)
return 0;
pp = tegra_pcie.port + nr;
pp->root_bus_nr = sys->busnr;
return pci_scan_bus(sys->busnr, &tegra_pcie_ops, sys);
}
static struct hw_pci tegra_pcie_hw __initdata = {
.nr_controllers = 2,
.setup = tegra_pcie_setup,
.scan = tegra_pcie_scan_bus,
.swizzle = pci_std_swizzle,
.map_irq = tegra_pcie_map_irq,
};
static irqreturn_t tegra_pcie_isr(int irq, void *arg)
{
const char *err_msg[] = {
"Unknown",
"AXI slave error",
"AXI decode error",
"Target abort",
"Master abort",
"Invalid write",
"Response decoding error",
"AXI response decoding error",
"Transcation timeout",
};
u32 code, signature;
code = afi_readl(AFI_INTR_CODE) & AFI_INTR_CODE_MASK;
signature = afi_readl(AFI_INTR_SIGNATURE);
afi_writel(0, AFI_INTR_CODE);
if (code == AFI_INTR_LEGACY)
return IRQ_NONE;
if (code >= ARRAY_SIZE(err_msg))
code = 0;
/*
* do not pollute kernel log with master abort reports since they
* happen a lot during enumeration
*/
if (code == AFI_INTR_MASTER_ABORT)
pr_debug("PCIE: %s, signature: %08x\n", err_msg[code], signature);
else
pr_err("PCIE: %s, signature: %08x\n", err_msg[code], signature);
return IRQ_HANDLED;
}
static void tegra_pcie_setup_translations(void)
{
u32 fpci_bar;
u32 size;
u32 axi_address;
/* Bar 0: config Bar */
fpci_bar = ((u32)0xfdff << 16);
size = PCIE_CFG_SZ;
axi_address = TEGRA_PCIE_BASE + PCIE_CFG_OFF;
afi_writel(axi_address, AFI_AXI_BAR0_START);
afi_writel(size >> 12, AFI_AXI_BAR0_SZ);
afi_writel(fpci_bar, AFI_FPCI_BAR0);
/* Bar 1: extended config Bar */
fpci_bar = ((u32)0xfe1 << 20);
size = PCIE_EXT_CFG_SZ;
axi_address = TEGRA_PCIE_BASE + PCIE_EXT_CFG_OFF;
afi_writel(axi_address, AFI_AXI_BAR1_START);
afi_writel(size >> 12, AFI_AXI_BAR1_SZ);
afi_writel(fpci_bar, AFI_FPCI_BAR1);
/* Bar 2: downstream IO bar */
fpci_bar = ((__u32)0xfdfc << 16);
size = MMIO_SIZE;
axi_address = MMIO_BASE;
afi_writel(axi_address, AFI_AXI_BAR2_START);
afi_writel(size >> 12, AFI_AXI_BAR2_SZ);
afi_writel(fpci_bar, AFI_FPCI_BAR2);
/* Bar 3: prefetchable memory BAR */
fpci_bar = (((PREFETCH_MEM_BASE_0 >> 12) & 0x0fffffff) << 4) | 0x1;
size = PREFETCH_MEM_SIZE_0 + PREFETCH_MEM_SIZE_1;
axi_address = PREFETCH_MEM_BASE_0;
afi_writel(axi_address, AFI_AXI_BAR3_START);
afi_writel(size >> 12, AFI_AXI_BAR3_SZ);
afi_writel(fpci_bar, AFI_FPCI_BAR3);
/* Bar 4: non prefetchable memory BAR */
fpci_bar = (((MEM_BASE_0 >> 12) & 0x0FFFFFFF) << 4) | 0x1;
size = MEM_SIZE_0 + MEM_SIZE_1;
axi_address = MEM_BASE_0;
afi_writel(axi_address, AFI_AXI_BAR4_START);
afi_writel(size >> 12, AFI_AXI_BAR4_SZ);
afi_writel(fpci_bar, AFI_FPCI_BAR4);
/* Bar 5: NULL out the remaining BAR as it is not used */
fpci_bar = 0;
size = 0;
axi_address = 0;
afi_writel(axi_address, AFI_AXI_BAR5_START);
afi_writel(size >> 12, AFI_AXI_BAR5_SZ);
afi_writel(fpci_bar, AFI_FPCI_BAR5);
/* map all upstream transactions as uncached */
afi_writel(PHYS_OFFSET, AFI_CACHE_BAR0_ST);
afi_writel(0, AFI_CACHE_BAR0_SZ);
afi_writel(0, AFI_CACHE_BAR1_ST);
afi_writel(0, AFI_CACHE_BAR1_SZ);
/* No MSI */
afi_writel(0, AFI_MSI_FPCI_BAR_ST);
afi_writel(0, AFI_MSI_BAR_SZ);
afi_writel(0, AFI_MSI_AXI_BAR_ST);
afi_writel(0, AFI_MSI_BAR_SZ);
}
static void tegra_pcie_enable_controller(void)
{
u32 val, reg;
int i;
/* Enable slot clock and pulse the reset signals */
for (i = 0, reg = AFI_PEX0_CTRL; i < 2; i++, reg += 0x8) {
val = afi_readl(reg) | AFI_PEX_CTRL_REFCLK_EN;
afi_writel(val, reg);
val &= ~AFI_PEX_CTRL_RST;
afi_writel(val, reg);
val = afi_readl(reg) | AFI_PEX_CTRL_RST;
afi_writel(val, reg);
}
/* Enable dual controller and both ports */
val = afi_readl(AFI_PCIE_CONFIG);
val &= ~(AFI_PCIE_CONFIG_PCIEC0_DISABLE_DEVICE |
AFI_PCIE_CONFIG_PCIEC1_DISABLE_DEVICE |
AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK);
val |= AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL;
afi_writel(val, AFI_PCIE_CONFIG);
val = afi_readl(AFI_FUSE) & ~AFI_FUSE_PCIE_T0_GEN2_DIS;
afi_writel(val, AFI_FUSE);
/* Initialze internal PHY, enable up to 16 PCIE lanes */
pads_writel(0x0, PADS_CTL_SEL);
/* override IDDQ to 1 on all 4 lanes */
val = pads_readl(PADS_CTL) | PADS_CTL_IDDQ_1L;
pads_writel(val, PADS_CTL);
/*
* set up PHY PLL inputs select PLLE output as refclock,
* set TX ref sel to div10 (not div5)
*/
val = pads_readl(PADS_PLL_CTL);
val &= ~(PADS_PLL_CTL_REFCLK_MASK | PADS_PLL_CTL_TXCLKREF_MASK);
val |= (PADS_PLL_CTL_REFCLK_INTERNAL_CML | PADS_PLL_CTL_TXCLKREF_DIV10);
pads_writel(val, PADS_PLL_CTL);
/* take PLL out of reset */
val = pads_readl(PADS_PLL_CTL) | PADS_PLL_CTL_RST_B4SM;
pads_writel(val, PADS_PLL_CTL);
/*
* Hack, set the clock voltage to the DEFAULT provided by hw folks.
* This doesn't exist in the documentation
*/
pads_writel(0xfa5cfa5c, 0xc8);
/* Wait for the PLL to lock */
do {
val = pads_readl(PADS_PLL_CTL);
} while (!(val & PADS_PLL_CTL_LOCKDET));
/* turn off IDDQ override */
val = pads_readl(PADS_CTL) & ~PADS_CTL_IDDQ_1L;
pads_writel(val, PADS_CTL);
/* enable TX/RX data */
val = pads_readl(PADS_CTL);
val |= (PADS_CTL_TX_DATA_EN_1L | PADS_CTL_RX_DATA_EN_1L);
pads_writel(val, PADS_CTL);
/* Take the PCIe interface module out of reset */
tegra_periph_reset_deassert(tegra_pcie.pcie_xclk);
/* Finally enable PCIe */
val = afi_readl(AFI_CONFIGURATION) | AFI_CONFIGURATION_EN_FPCI;
afi_writel(val, AFI_CONFIGURATION);
val = (AFI_INTR_EN_INI_SLVERR | AFI_INTR_EN_INI_DECERR |
AFI_INTR_EN_TGT_SLVERR | AFI_INTR_EN_TGT_DECERR |
AFI_INTR_EN_TGT_WRERR | AFI_INTR_EN_DFPCI_DECERR);
afi_writel(val, AFI_AFI_INTR_ENABLE);
afi_writel(0xffffffff, AFI_SM_INTR_ENABLE);
/* FIXME: No MSI for now, only INT */
afi_writel(AFI_INTR_MASK_INT_MASK, AFI_INTR_MASK);
/* Disable all execptions */
afi_writel(0, AFI_FPCI_ERROR_MASKS);
return;
}
static void tegra_pcie_xclk_clamp(bool clamp)
{
u32 reg;
reg = pmc_readl(PMC_SCRATCH42) & ~PMC_SCRATCH42_PCX_CLAMP;
if (clamp)
reg |= PMC_SCRATCH42_PCX_CLAMP;
pmc_writel(reg, PMC_SCRATCH42);
}
static void tegra_pcie_power_off(void)
{
tegra_periph_reset_assert(tegra_pcie.pcie_xclk);
tegra_periph_reset_assert(tegra_pcie.afi_clk);
tegra_periph_reset_assert(tegra_pcie.pex_clk);
tegra_powergate_power_off(TEGRA_POWERGATE_PCIE);
tegra_pcie_xclk_clamp(true);
}
static int tegra_pcie_power_regate(void)
{
int err;
tegra_pcie_power_off();
tegra_pcie_xclk_clamp(true);
tegra_periph_reset_assert(tegra_pcie.pcie_xclk);
tegra_periph_reset_assert(tegra_pcie.afi_clk);
err = tegra_powergate_sequence_power_up(TEGRA_POWERGATE_PCIE,
tegra_pcie.pex_clk);
if (err) {
pr_err("PCIE: powerup sequence failed: %d\n", err);
return err;
}
tegra_periph_reset_deassert(tegra_pcie.afi_clk);
tegra_pcie_xclk_clamp(false);
clk_enable(tegra_pcie.afi_clk);
clk_enable(tegra_pcie.pex_clk);
return clk_enable(tegra_pcie.pll_e);
}
static int tegra_pcie_clocks_get(void)
{
int err;
tegra_pcie.pex_clk = clk_get(NULL, "pex");
if (IS_ERR(tegra_pcie.pex_clk))
return PTR_ERR(tegra_pcie.pex_clk);
tegra_pcie.afi_clk = clk_get(NULL, "afi");
if (IS_ERR(tegra_pcie.afi_clk)) {
err = PTR_ERR(tegra_pcie.afi_clk);
goto err_afi_clk;
}
tegra_pcie.pcie_xclk = clk_get(NULL, "pcie_xclk");
if (IS_ERR(tegra_pcie.pcie_xclk)) {
err = PTR_ERR(tegra_pcie.pcie_xclk);
goto err_pcie_xclk;
}
tegra_pcie.pll_e = clk_get_sys(NULL, "pll_e");
if (IS_ERR(tegra_pcie.pll_e)) {
err = PTR_ERR(tegra_pcie.pll_e);
goto err_pll_e;
}
return 0;
err_pll_e:
clk_put(tegra_pcie.pcie_xclk);
err_pcie_xclk:
clk_put(tegra_pcie.afi_clk);
err_afi_clk:
clk_put(tegra_pcie.pex_clk);
return err;
}
static void tegra_pcie_clocks_put(void)
{
clk_put(tegra_pcie.pll_e);
clk_put(tegra_pcie.pcie_xclk);
clk_put(tegra_pcie.afi_clk);
clk_put(tegra_pcie.pex_clk);
}
static int __init tegra_pcie_get_resources(void)
{
struct resource *res_mmio = &tegra_pcie.res_mmio;
int err;
err = tegra_pcie_clocks_get();
if (err) {
pr_err("PCIE: failed to get clocks: %d\n", err);
return err;
}
err = tegra_pcie_power_regate();
if (err) {
pr_err("PCIE: failed to power up: %d\n", err);
goto err_pwr_on;
}
tegra_pcie.regs = ioremap_nocache(TEGRA_PCIE_BASE, PCIE_IOMAP_SZ);
if (tegra_pcie.regs == NULL) {
pr_err("PCIE: Failed to map PCI/AFI registers\n");
err = -ENOMEM;
goto err_map_reg;
}
err = request_resource(&iomem_resource, res_mmio);
if (err) {
pr_err("PCIE: Failed to request resources: %d\n", err);
goto err_req_io;
}
tegra_pcie_io_base = ioremap_nocache(res_mmio->start,
resource_size(res_mmio));
if (tegra_pcie_io_base == NULL) {
pr_err("PCIE: Failed to map IO\n");
err = -ENOMEM;
goto err_map_io;
}
err = request_irq(INT_PCIE_INTR, tegra_pcie_isr,
IRQF_SHARED, "PCIE", &tegra_pcie);
if (err) {
pr_err("PCIE: Failed to register IRQ: %d\n", err);
goto err_irq;
}
set_irq_flags(INT_PCIE_INTR, IRQF_VALID);
return 0;
err_irq:
iounmap(tegra_pcie_io_base);
err_map_io:
release_resource(&tegra_pcie.res_mmio);
err_req_io:
iounmap(tegra_pcie.regs);
err_map_reg:
tegra_pcie_power_off();
err_pwr_on:
tegra_pcie_clocks_put();
return err;
}
/*
* FIXME: If there are no PCIe cards attached, then calling this function
* can result in the increase of the bootup time as there are big timeout
* loops.
*/
#define TEGRA_PCIE_LINKUP_TIMEOUT 200 /* up to 1.2 seconds */
static bool tegra_pcie_check_link(struct tegra_pcie_port *pp, int idx,
u32 reset_reg)
{
u32 reg;
int retries = 3;
int timeout;
do {
timeout = TEGRA_PCIE_LINKUP_TIMEOUT;
while (timeout) {
reg = readl(pp->base + RP_VEND_XP);
if (reg & RP_VEND_XP_DL_UP)
break;
mdelay(1);
timeout--;
}
if (!timeout) {
pr_err("PCIE: port %d: link down, retrying\n", idx);
goto retry;
}
timeout = TEGRA_PCIE_LINKUP_TIMEOUT;
while (timeout) {
reg = readl(pp->base + RP_LINK_CONTROL_STATUS);
if (reg & 0x20000000)
return true;
mdelay(1);
timeout--;
}
retry:
/* Pulse the PEX reset */
reg = afi_readl(reset_reg) | AFI_PEX_CTRL_RST;
afi_writel(reg, reset_reg);
mdelay(1);
reg = afi_readl(reset_reg) & ~AFI_PEX_CTRL_RST;
afi_writel(reg, reset_reg);
retries--;
} while (retries);
return false;
}
static void __init tegra_pcie_add_port(int index, u32 offset, u32 reset_reg)
{
struct tegra_pcie_port *pp;
pp = tegra_pcie.port + tegra_pcie.num_ports;
pp->index = -1;
pp->base = tegra_pcie.regs + offset;
pp->link_up = tegra_pcie_check_link(pp, index, reset_reg);
if (!pp->link_up) {
pp->base = NULL;
printk(KERN_INFO "PCIE: port %d: link down, ignoring\n", index);
return;
}
tegra_pcie.num_ports++;
pp->index = index;
pp->root_bus_nr = -1;
memset(pp->res, 0, sizeof(pp->res));
}
int __init tegra_pcie_init(bool init_port0, bool init_port1)
{
int err;
if (!(init_port0 || init_port1))
return -ENODEV;
pcibios_min_mem = 0;
err = tegra_pcie_get_resources();
if (err)
return err;
tegra_pcie_enable_controller();
/* setup the AFI address translations */
tegra_pcie_setup_translations();
if (init_port0)
tegra_pcie_add_port(0, RP0_OFFSET, AFI_PEX0_CTRL);
if (init_port1)
tegra_pcie_add_port(1, RP1_OFFSET, AFI_PEX1_CTRL);
pci_common_init(&tegra_pcie_hw);
return 0;
}