1
linux/drivers/ata/pata_cmd64x.c
Alan Cox d43744390e pata_cmd64x: implement serialization as per notes
Daniela Engert pointed out that there are some implementation notes for the
643 and 646 that deal with certain serialization rules. In theory we don't
need them because they apply when the motherboard decides not to retry PCI
requests for long enough and the chip is busy doing a DMA transfer on the
other channel.

The rule basically is "don't touch the taskfile of the other channel while
a DMA is in progress". To implement that we need to

- not issue a command on a channel when there is a DMA command queued
- not issue a DMA command on a channel when there are PIO commands queued
- use the alternative access to the interrupt source so that we do not
  touch altstatus or status on shared IRQ.

Updated to remote extra conditional check Bartlomiej noted and to remove
the variables for irq checks as the CMD648 doesn't have the underlying problem.

Signed-off-by: Alan Cox <alan@linux.intel.com>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2009-12-03 02:46:36 -05:00

541 lines
13 KiB
C

/*
* pata_cmd64x.c - CMD64x PATA for new ATA layer
* (C) 2005 Red Hat Inc
* Alan Cox <alan@lxorguk.ukuu.org.uk>
*
* Based upon
* linux/drivers/ide/pci/cmd64x.c Version 1.30 Sept 10, 2002
*
* cmd64x.c: Enable interrupts at initialization time on Ultra/PCI machines.
* Note, this driver is not used at all on other systems because
* there the "BIOS" has done all of the following already.
* Due to massive hardware bugs, UltraDMA is only supported
* on the 646U2 and not on the 646U.
*
* Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be)
* Copyright (C) 1998 David S. Miller (davem@redhat.com)
*
* Copyright (C) 1999-2002 Andre Hedrick <andre@linux-ide.org>
*
* TODO
* Testing work
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <scsi/scsi_host.h>
#include <linux/libata.h>
#define DRV_NAME "pata_cmd64x"
#define DRV_VERSION "0.3.1"
/*
* CMD64x specific registers definition.
*/
enum {
CFR = 0x50,
CFR_INTR_CH0 = 0x02,
CNTRL = 0x51,
CNTRL_DIS_RA0 = 0x40,
CNTRL_DIS_RA1 = 0x80,
CNTRL_ENA_2ND = 0x08,
CMDTIM = 0x52,
ARTTIM0 = 0x53,
DRWTIM0 = 0x54,
ARTTIM1 = 0x55,
DRWTIM1 = 0x56,
ARTTIM23 = 0x57,
ARTTIM23_DIS_RA2 = 0x04,
ARTTIM23_DIS_RA3 = 0x08,
ARTTIM23_INTR_CH1 = 0x10,
ARTTIM2 = 0x57,
ARTTIM3 = 0x57,
DRWTIM23 = 0x58,
DRWTIM2 = 0x58,
BRST = 0x59,
DRWTIM3 = 0x5b,
BMIDECR0 = 0x70,
MRDMODE = 0x71,
MRDMODE_INTR_CH0 = 0x04,
MRDMODE_INTR_CH1 = 0x08,
MRDMODE_BLK_CH0 = 0x10,
MRDMODE_BLK_CH1 = 0x20,
BMIDESR0 = 0x72,
UDIDETCR0 = 0x73,
DTPR0 = 0x74,
BMIDECR1 = 0x78,
BMIDECSR = 0x79,
BMIDESR1 = 0x7A,
UDIDETCR1 = 0x7B,
DTPR1 = 0x7C
};
static int cmd648_cable_detect(struct ata_port *ap)
{
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
u8 r;
/* Check cable detect bits */
pci_read_config_byte(pdev, BMIDECSR, &r);
if (r & (1 << ap->port_no))
return ATA_CBL_PATA80;
return ATA_CBL_PATA40;
}
/**
* cmd64x_set_piomode - set PIO and MWDMA timing
* @ap: ATA interface
* @adev: ATA device
* @mode: mode
*
* Called to do the PIO and MWDMA mode setup.
*/
static void cmd64x_set_timing(struct ata_port *ap, struct ata_device *adev, u8 mode)
{
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
struct ata_timing t;
const unsigned long T = 1000000 / 33;
const u8 setup_data[] = { 0x40, 0x40, 0x40, 0x80, 0x00 };
u8 reg;
/* Port layout is not logical so use a table */
const u8 arttim_port[2][2] = {
{ ARTTIM0, ARTTIM1 },
{ ARTTIM23, ARTTIM23 }
};
const u8 drwtim_port[2][2] = {
{ DRWTIM0, DRWTIM1 },
{ DRWTIM2, DRWTIM3 }
};
int arttim = arttim_port[ap->port_no][adev->devno];
int drwtim = drwtim_port[ap->port_no][adev->devno];
/* ata_timing_compute is smart and will produce timings for MWDMA
that don't violate the drives PIO capabilities. */
if (ata_timing_compute(adev, mode, &t, T, 0) < 0) {
printk(KERN_ERR DRV_NAME ": mode computation failed.\n");
return;
}
if (ap->port_no) {
/* Slave has shared address setup */
struct ata_device *pair = ata_dev_pair(adev);
if (pair) {
struct ata_timing tp;
ata_timing_compute(pair, pair->pio_mode, &tp, T, 0);
ata_timing_merge(&t, &tp, &t, ATA_TIMING_SETUP);
}
}
printk(KERN_DEBUG DRV_NAME ": active %d recovery %d setup %d.\n",
t.active, t.recover, t.setup);
if (t.recover > 16) {
t.active += t.recover - 16;
t.recover = 16;
}
if (t.active > 16)
t.active = 16;
/* Now convert the clocks into values we can actually stuff into
the chip */
if (t.recover > 1)
t.recover--;
else
t.recover = 15;
if (t.setup > 4)
t.setup = 0xC0;
else
t.setup = setup_data[t.setup];
t.active &= 0x0F; /* 0 = 16 */
/* Load setup timing */
pci_read_config_byte(pdev, arttim, &reg);
reg &= 0x3F;
reg |= t.setup;
pci_write_config_byte(pdev, arttim, reg);
/* Load active/recovery */
pci_write_config_byte(pdev, drwtim, (t.active << 4) | t.recover);
}
/**
* cmd64x_set_piomode - set initial PIO mode data
* @ap: ATA interface
* @adev: ATA device
*
* Used when configuring the devices ot set the PIO timings. All the
* actual work is done by the PIO/MWDMA setting helper
*/
static void cmd64x_set_piomode(struct ata_port *ap, struct ata_device *adev)
{
cmd64x_set_timing(ap, adev, adev->pio_mode);
}
/**
* cmd64x_set_dmamode - set initial DMA mode data
* @ap: ATA interface
* @adev: ATA device
*
* Called to do the DMA mode setup.
*/
static void cmd64x_set_dmamode(struct ata_port *ap, struct ata_device *adev)
{
static const u8 udma_data[] = {
0x30, 0x20, 0x10, 0x20, 0x10, 0x00
};
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
u8 regU, regD;
int pciU = UDIDETCR0 + 8 * ap->port_no;
int pciD = BMIDESR0 + 8 * ap->port_no;
int shift = 2 * adev->devno;
pci_read_config_byte(pdev, pciD, &regD);
pci_read_config_byte(pdev, pciU, &regU);
/* DMA bits off */
regD &= ~(0x20 << adev->devno);
/* DMA control bits */
regU &= ~(0x30 << shift);
/* DMA timing bits */
regU &= ~(0x05 << adev->devno);
if (adev->dma_mode >= XFER_UDMA_0) {
/* Merge the timing value */
regU |= udma_data[adev->dma_mode - XFER_UDMA_0] << shift;
/* Merge the control bits */
regU |= 1 << adev->devno; /* UDMA on */
if (adev->dma_mode > 2) /* 15nS timing */
regU |= 4 << adev->devno;
} else {
regU &= ~ (1 << adev->devno); /* UDMA off */
cmd64x_set_timing(ap, adev, adev->dma_mode);
}
regD |= 0x20 << adev->devno;
pci_write_config_byte(pdev, pciU, regU);
pci_write_config_byte(pdev, pciD, regD);
}
/**
* cmd648_dma_stop - DMA stop callback
* @qc: Command in progress
*
* DMA has completed.
*/
static void cmd648_bmdma_stop(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct pci_dev *pdev = to_pci_dev(ap->host->dev);
u8 dma_intr;
int dma_mask = ap->port_no ? ARTTIM23_INTR_CH1 : CFR_INTR_CH0;
int dma_reg = ap->port_no ? ARTTIM2 : CFR;
ata_bmdma_stop(qc);
pci_read_config_byte(pdev, dma_reg, &dma_intr);
pci_write_config_byte(pdev, dma_reg, dma_intr | dma_mask);
}
/**
* cmd64x_bmdma_stop - DMA stop callback
* @qc: Command in progress
*
* Track the completion of live DMA commands and clear the
* host->private_data DMA tracking flag as we do.
*/
static void cmd64x_bmdma_stop(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
ata_bmdma_stop(qc);
WARN_ON(ap->host->private_data != ap);
ap->host->private_data = NULL;
}
/**
* cmd64x_qc_defer - Defer logic for chip limits
* @qc: queued command
*
* Decide whether we can issue the command. Called under the host lock.
*/
static int cmd64x_qc_defer(struct ata_queued_cmd *qc)
{
struct ata_host *host = qc->ap->host;
struct ata_port *alt = host->ports[1 ^ qc->ap->port_no];
int rc;
int dma = 0;
/* Apply the ATA rules first */
rc = ata_std_qc_defer(qc);
if (rc)
return rc;
if (qc->tf.protocol == ATAPI_PROT_DMA ||
qc->tf.protocol == ATA_PROT_DMA)
dma = 1;
/* If the other port is not live then issue the command */
if (alt == NULL || !alt->qc_active) {
if (dma)
host->private_data = qc->ap;
return 0;
}
/* If there is a live DMA command then wait */
if (host->private_data != NULL)
return ATA_DEFER_PORT;
if (dma)
/* Cannot overlap our DMA command */
return ATA_DEFER_PORT;
return 0;
}
/**
* cmd64x_interrupt - ATA host interrupt handler
* @irq: irq line (unused)
* @dev_instance: pointer to our ata_host information structure
*
* Our interrupt handler for PCI IDE devices. Calls
* ata_sff_host_intr() for each port that is flagging an IRQ. We cannot
* use the defaults as we need to avoid touching status/altstatus during
* a DMA.
*
* LOCKING:
* Obtains host lock during operation.
*
* RETURNS:
* IRQ_NONE or IRQ_HANDLED.
*/
irqreturn_t cmd64x_interrupt(int irq, void *dev_instance)
{
struct ata_host *host = dev_instance;
struct pci_dev *pdev = to_pci_dev(host->dev);
unsigned int i;
unsigned int handled = 0;
unsigned long flags;
static const u8 irq_reg[2] = { CFR, ARTTIM23 };
static const u8 irq_mask[2] = { 1 << 2, 1 << 4 };
/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
spin_lock_irqsave(&host->lock, flags);
for (i = 0; i < host->n_ports; i++) {
struct ata_port *ap;
u8 reg;
pci_read_config_byte(pdev, irq_reg[i], &reg);
ap = host->ports[i];
if (ap && (reg & irq_mask[i]) &&
!(ap->flags & ATA_FLAG_DISABLED)) {
struct ata_queued_cmd *qc;
qc = ata_qc_from_tag(ap, ap->link.active_tag);
if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
(qc->flags & ATA_QCFLAG_ACTIVE))
handled |= ata_sff_host_intr(ap, qc);
}
}
spin_unlock_irqrestore(&host->lock, flags);
return IRQ_RETVAL(handled);
}
static struct scsi_host_template cmd64x_sht = {
ATA_BMDMA_SHT(DRV_NAME),
};
static const struct ata_port_operations cmd64x_base_ops = {
.inherits = &ata_bmdma_port_ops,
.set_piomode = cmd64x_set_piomode,
.set_dmamode = cmd64x_set_dmamode,
.bmdma_stop = cmd64x_bmdma_stop,
.qc_defer = cmd64x_qc_defer,
};
static struct ata_port_operations cmd64x_port_ops = {
.inherits = &cmd64x_base_ops,
.cable_detect = ata_cable_40wire,
};
static struct ata_port_operations cmd646r1_port_ops = {
.inherits = &cmd64x_base_ops,
.cable_detect = ata_cable_40wire,
};
static struct ata_port_operations cmd648_port_ops = {
.inherits = &cmd64x_base_ops,
.bmdma_stop = cmd648_bmdma_stop,
.cable_detect = cmd648_cable_detect,
.qc_defer = ata_std_qc_defer
};
static int cmd64x_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
{
u32 class_rev;
static const struct ata_port_info cmd_info[6] = {
{ /* CMD 643 - no UDMA */
.flags = ATA_FLAG_SLAVE_POSS,
.pio_mask = ATA_PIO4,
.mwdma_mask = ATA_MWDMA2,
.port_ops = &cmd64x_port_ops
},
{ /* CMD 646 with broken UDMA */
.flags = ATA_FLAG_SLAVE_POSS,
.pio_mask = ATA_PIO4,
.mwdma_mask = ATA_MWDMA2,
.port_ops = &cmd64x_port_ops
},
{ /* CMD 646 with working UDMA */
.flags = ATA_FLAG_SLAVE_POSS,
.pio_mask = ATA_PIO4,
.mwdma_mask = ATA_MWDMA2,
.udma_mask = ATA_UDMA2,
.port_ops = &cmd64x_port_ops
},
{ /* CMD 646 rev 1 */
.flags = ATA_FLAG_SLAVE_POSS,
.pio_mask = ATA_PIO4,
.mwdma_mask = ATA_MWDMA2,
.port_ops = &cmd646r1_port_ops
},
{ /* CMD 648 */
.flags = ATA_FLAG_SLAVE_POSS,
.pio_mask = ATA_PIO4,
.mwdma_mask = ATA_MWDMA2,
.udma_mask = ATA_UDMA4,
.port_ops = &cmd648_port_ops
},
{ /* CMD 649 */
.flags = ATA_FLAG_SLAVE_POSS,
.pio_mask = ATA_PIO4,
.mwdma_mask = ATA_MWDMA2,
.udma_mask = ATA_UDMA5,
.port_ops = &cmd648_port_ops
}
};
const struct ata_port_info *ppi[] = { &cmd_info[id->driver_data], NULL };
u8 mrdmode;
int rc;
struct ata_host *host;
rc = pcim_enable_device(pdev);
if (rc)
return rc;
pci_read_config_dword(pdev, PCI_CLASS_REVISION, &class_rev);
class_rev &= 0xFF;
if (id->driver_data == 0) /* 643 */
ata_pci_bmdma_clear_simplex(pdev);
if (pdev->device == PCI_DEVICE_ID_CMD_646) {
/* Does UDMA work ? */
if (class_rev > 4)
ppi[0] = &cmd_info[2];
/* Early rev with other problems ? */
else if (class_rev == 1)
ppi[0] = &cmd_info[3];
}
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
pci_read_config_byte(pdev, MRDMODE, &mrdmode);
mrdmode &= ~ 0x30; /* IRQ set up */
mrdmode |= 0x02; /* Memory read line enable */
pci_write_config_byte(pdev, MRDMODE, mrdmode);
/* PPC specific fixup copied from old driver */
#ifdef CONFIG_PPC
pci_write_config_byte(pdev, UDIDETCR0, 0xF0);
#endif
rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
if (rc)
return rc;
/* We use this pointer to track the AP which has DMA running */
host->private_data = NULL;
pci_set_master(pdev);
return ata_pci_sff_activate_host(host, cmd64x_interrupt, &cmd64x_sht);
}
#ifdef CONFIG_PM
static int cmd64x_reinit_one(struct pci_dev *pdev)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
u8 mrdmode;
int rc;
rc = ata_pci_device_do_resume(pdev);
if (rc)
return rc;
pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
pci_read_config_byte(pdev, MRDMODE, &mrdmode);
mrdmode &= ~ 0x30; /* IRQ set up */
mrdmode |= 0x02; /* Memory read line enable */
pci_write_config_byte(pdev, MRDMODE, mrdmode);
#ifdef CONFIG_PPC
pci_write_config_byte(pdev, UDIDETCR0, 0xF0);
#endif
ata_host_resume(host);
return 0;
}
#endif
static const struct pci_device_id cmd64x[] = {
{ PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_643), 0 },
{ PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_646), 1 },
{ PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_648), 4 },
{ PCI_VDEVICE(CMD, PCI_DEVICE_ID_CMD_649), 5 },
{ },
};
static struct pci_driver cmd64x_pci_driver = {
.name = DRV_NAME,
.id_table = cmd64x,
.probe = cmd64x_init_one,
.remove = ata_pci_remove_one,
#ifdef CONFIG_PM
.suspend = ata_pci_device_suspend,
.resume = cmd64x_reinit_one,
#endif
};
static int __init cmd64x_init(void)
{
return pci_register_driver(&cmd64x_pci_driver);
}
static void __exit cmd64x_exit(void)
{
pci_unregister_driver(&cmd64x_pci_driver);
}
MODULE_AUTHOR("Alan Cox");
MODULE_DESCRIPTION("low-level driver for CMD64x series PATA controllers");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(pci, cmd64x);
MODULE_VERSION(DRV_VERSION);
module_init(cmd64x_init);
module_exit(cmd64x_exit);