1
linux/arch/sparc64/mm/init.c
David S. Miller 1b51d3a08b [SPARC64]: We do not need ZONE_DMA.
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-02-12 15:15:46 -08:00

1990 lines
51 KiB
C

/* $Id: init.c,v 1.209 2002/02/09 19:49:31 davem Exp $
* arch/sparc64/mm/init.c
*
* Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/slab.h>
#include <linux/initrd.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/poison.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/kprobes.h>
#include <linux/cache.h>
#include <linux/sort.h>
#include <asm/head.h>
#include <asm/system.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/iommu.h>
#include <asm/io.h>
#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/dma.h>
#include <asm/starfire.h>
#include <asm/tlb.h>
#include <asm/spitfire.h>
#include <asm/sections.h>
#include <asm/tsb.h>
#include <asm/hypervisor.h>
#include <asm/prom.h>
extern void device_scan(void);
#define MAX_PHYS_ADDRESS (1UL << 42UL)
#define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
#define KPTE_BITMAP_BYTES \
((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
unsigned long kern_linear_pte_xor[2] __read_mostly;
/* A bitmap, one bit for every 256MB of physical memory. If the bit
* is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
* if set we should use a 256MB page (via kern_linear_pte_xor[1]).
*/
unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
/* A special kernel TSB for 4MB and 256MB linear mappings. */
struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
#define MAX_BANKS 32
static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
static int pavail_ents __initdata;
static int pavail_rescan_ents __initdata;
static int cmp_p64(const void *a, const void *b)
{
const struct linux_prom64_registers *x = a, *y = b;
if (x->phys_addr > y->phys_addr)
return 1;
if (x->phys_addr < y->phys_addr)
return -1;
return 0;
}
static void __init read_obp_memory(const char *property,
struct linux_prom64_registers *regs,
int *num_ents)
{
int node = prom_finddevice("/memory");
int prop_size = prom_getproplen(node, property);
int ents, ret, i;
ents = prop_size / sizeof(struct linux_prom64_registers);
if (ents > MAX_BANKS) {
prom_printf("The machine has more %s property entries than "
"this kernel can support (%d).\n",
property, MAX_BANKS);
prom_halt();
}
ret = prom_getproperty(node, property, (char *) regs, prop_size);
if (ret == -1) {
prom_printf("Couldn't get %s property from /memory.\n");
prom_halt();
}
/* Sanitize what we got from the firmware, by page aligning
* everything.
*/
for (i = 0; i < ents; i++) {
unsigned long base, size;
base = regs[i].phys_addr;
size = regs[i].reg_size;
size &= PAGE_MASK;
if (base & ~PAGE_MASK) {
unsigned long new_base = PAGE_ALIGN(base);
size -= new_base - base;
if ((long) size < 0L)
size = 0UL;
base = new_base;
}
regs[i].phys_addr = base;
regs[i].reg_size = size;
}
for (i = 0; i < ents; i++) {
if (regs[i].reg_size == 0UL) {
int j;
for (j = i; j < ents - 1; j++) {
regs[j].phys_addr =
regs[j+1].phys_addr;
regs[j].reg_size =
regs[j+1].reg_size;
}
ents--;
i--;
}
}
*num_ents = ents;
sort(regs, ents, sizeof(struct linux_prom64_registers),
cmp_p64, NULL);
}
unsigned long *sparc64_valid_addr_bitmap __read_mostly;
/* Kernel physical address base and size in bytes. */
unsigned long kern_base __read_mostly;
unsigned long kern_size __read_mostly;
/* get_new_mmu_context() uses "cache + 1". */
DEFINE_SPINLOCK(ctx_alloc_lock);
unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
#define CTX_BMAP_SLOTS (1UL << (CTX_NR_BITS - 6))
unsigned long mmu_context_bmap[CTX_BMAP_SLOTS];
/* References to special section boundaries */
extern char _start[], _end[];
/* Initial ramdisk setup */
extern unsigned long sparc_ramdisk_image64;
extern unsigned int sparc_ramdisk_image;
extern unsigned int sparc_ramdisk_size;
struct page *mem_map_zero __read_mostly;
unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
unsigned long sparc64_kern_pri_context __read_mostly;
unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
unsigned long sparc64_kern_sec_context __read_mostly;
int bigkernel = 0;
struct kmem_cache *pgtable_cache __read_mostly;
static void zero_ctor(void *addr, struct kmem_cache *cache, unsigned long flags)
{
clear_page(addr);
}
extern void tsb_cache_init(void);
void pgtable_cache_init(void)
{
pgtable_cache = kmem_cache_create("pgtable_cache",
PAGE_SIZE, PAGE_SIZE,
SLAB_HWCACHE_ALIGN |
SLAB_MUST_HWCACHE_ALIGN,
zero_ctor,
NULL);
if (!pgtable_cache) {
prom_printf("Could not create pgtable_cache\n");
prom_halt();
}
tsb_cache_init();
}
#ifdef CONFIG_DEBUG_DCFLUSH
atomic_t dcpage_flushes = ATOMIC_INIT(0);
#ifdef CONFIG_SMP
atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
#endif
#endif
inline void flush_dcache_page_impl(struct page *page)
{
BUG_ON(tlb_type == hypervisor);
#ifdef CONFIG_DEBUG_DCFLUSH
atomic_inc(&dcpage_flushes);
#endif
#ifdef DCACHE_ALIASING_POSSIBLE
__flush_dcache_page(page_address(page),
((tlb_type == spitfire) &&
page_mapping(page) != NULL));
#else
if (page_mapping(page) != NULL &&
tlb_type == spitfire)
__flush_icache_page(__pa(page_address(page)));
#endif
}
#define PG_dcache_dirty PG_arch_1
#define PG_dcache_cpu_shift 24UL
#define PG_dcache_cpu_mask (256UL - 1UL)
#if NR_CPUS > 256
#error D-cache dirty tracking and thread_info->cpu need fixing for > 256 cpus
#endif
#define dcache_dirty_cpu(page) \
(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
static __inline__ void set_dcache_dirty(struct page *page, int this_cpu)
{
unsigned long mask = this_cpu;
unsigned long non_cpu_bits;
non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
__asm__ __volatile__("1:\n\t"
"ldx [%2], %%g7\n\t"
"and %%g7, %1, %%g1\n\t"
"or %%g1, %0, %%g1\n\t"
"casx [%2], %%g7, %%g1\n\t"
"cmp %%g7, %%g1\n\t"
"membar #StoreLoad | #StoreStore\n\t"
"bne,pn %%xcc, 1b\n\t"
" nop"
: /* no outputs */
: "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
: "g1", "g7");
}
static __inline__ void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
{
unsigned long mask = (1UL << PG_dcache_dirty);
__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
"1:\n\t"
"ldx [%2], %%g7\n\t"
"srlx %%g7, %4, %%g1\n\t"
"and %%g1, %3, %%g1\n\t"
"cmp %%g1, %0\n\t"
"bne,pn %%icc, 2f\n\t"
" andn %%g7, %1, %%g1\n\t"
"casx [%2], %%g7, %%g1\n\t"
"cmp %%g7, %%g1\n\t"
"membar #StoreLoad | #StoreStore\n\t"
"bne,pn %%xcc, 1b\n\t"
" nop\n"
"2:"
: /* no outputs */
: "r" (cpu), "r" (mask), "r" (&page->flags),
"i" (PG_dcache_cpu_mask),
"i" (PG_dcache_cpu_shift)
: "g1", "g7");
}
static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
{
unsigned long tsb_addr = (unsigned long) ent;
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
tsb_addr = __pa(tsb_addr);
__tsb_insert(tsb_addr, tag, pte);
}
unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
unsigned long _PAGE_SZBITS __read_mostly;
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
{
struct mm_struct *mm;
struct tsb *tsb;
unsigned long tag, flags;
unsigned long tsb_index, tsb_hash_shift;
if (tlb_type != hypervisor) {
unsigned long pfn = pte_pfn(pte);
unsigned long pg_flags;
struct page *page;
if (pfn_valid(pfn) &&
(page = pfn_to_page(pfn), page_mapping(page)) &&
((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
PG_dcache_cpu_mask);
int this_cpu = get_cpu();
/* This is just to optimize away some function calls
* in the SMP case.
*/
if (cpu == this_cpu)
flush_dcache_page_impl(page);
else
smp_flush_dcache_page_impl(page, cpu);
clear_dcache_dirty_cpu(page, cpu);
put_cpu();
}
}
mm = vma->vm_mm;
tsb_index = MM_TSB_BASE;
tsb_hash_shift = PAGE_SHIFT;
spin_lock_irqsave(&mm->context.lock, flags);
#ifdef CONFIG_HUGETLB_PAGE
if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
if ((tlb_type == hypervisor &&
(pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
(tlb_type != hypervisor &&
(pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
tsb_index = MM_TSB_HUGE;
tsb_hash_shift = HPAGE_SHIFT;
}
}
#endif
tsb = mm->context.tsb_block[tsb_index].tsb;
tsb += ((address >> tsb_hash_shift) &
(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
tag = (address >> 22UL);
tsb_insert(tsb, tag, pte_val(pte));
spin_unlock_irqrestore(&mm->context.lock, flags);
}
void flush_dcache_page(struct page *page)
{
struct address_space *mapping;
int this_cpu;
if (tlb_type == hypervisor)
return;
/* Do not bother with the expensive D-cache flush if it
* is merely the zero page. The 'bigcore' testcase in GDB
* causes this case to run millions of times.
*/
if (page == ZERO_PAGE(0))
return;
this_cpu = get_cpu();
mapping = page_mapping(page);
if (mapping && !mapping_mapped(mapping)) {
int dirty = test_bit(PG_dcache_dirty, &page->flags);
if (dirty) {
int dirty_cpu = dcache_dirty_cpu(page);
if (dirty_cpu == this_cpu)
goto out;
smp_flush_dcache_page_impl(page, dirty_cpu);
}
set_dcache_dirty(page, this_cpu);
} else {
/* We could delay the flush for the !page_mapping
* case too. But that case is for exec env/arg
* pages and those are %99 certainly going to get
* faulted into the tlb (and thus flushed) anyways.
*/
flush_dcache_page_impl(page);
}
out:
put_cpu();
}
void __kprobes flush_icache_range(unsigned long start, unsigned long end)
{
/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
if (tlb_type == spitfire) {
unsigned long kaddr;
for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE)
__flush_icache_page(__get_phys(kaddr));
}
}
void show_mem(void)
{
printk("Mem-info:\n");
show_free_areas();
printk("Free swap: %6ldkB\n",
nr_swap_pages << (PAGE_SHIFT-10));
printk("%ld pages of RAM\n", num_physpages);
printk("%lu free pages\n", nr_free_pages());
}
void mmu_info(struct seq_file *m)
{
if (tlb_type == cheetah)
seq_printf(m, "MMU Type\t: Cheetah\n");
else if (tlb_type == cheetah_plus)
seq_printf(m, "MMU Type\t: Cheetah+\n");
else if (tlb_type == spitfire)
seq_printf(m, "MMU Type\t: Spitfire\n");
else if (tlb_type == hypervisor)
seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
else
seq_printf(m, "MMU Type\t: ???\n");
#ifdef CONFIG_DEBUG_DCFLUSH
seq_printf(m, "DCPageFlushes\t: %d\n",
atomic_read(&dcpage_flushes));
#ifdef CONFIG_SMP
seq_printf(m, "DCPageFlushesXC\t: %d\n",
atomic_read(&dcpage_flushes_xcall));
#endif /* CONFIG_SMP */
#endif /* CONFIG_DEBUG_DCFLUSH */
}
struct linux_prom_translation {
unsigned long virt;
unsigned long size;
unsigned long data;
};
/* Exported for kernel TLB miss handling in ktlb.S */
struct linux_prom_translation prom_trans[512] __read_mostly;
unsigned int prom_trans_ents __read_mostly;
/* Exported for SMP bootup purposes. */
unsigned long kern_locked_tte_data;
/* The obp translations are saved based on 8k pagesize, since obp can
* use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
* HI_OBP_ADDRESS range are handled in ktlb.S.
*/
static inline int in_obp_range(unsigned long vaddr)
{
return (vaddr >= LOW_OBP_ADDRESS &&
vaddr < HI_OBP_ADDRESS);
}
static int cmp_ptrans(const void *a, const void *b)
{
const struct linux_prom_translation *x = a, *y = b;
if (x->virt > y->virt)
return 1;
if (x->virt < y->virt)
return -1;
return 0;
}
/* Read OBP translations property into 'prom_trans[]'. */
static void __init read_obp_translations(void)
{
int n, node, ents, first, last, i;
node = prom_finddevice("/virtual-memory");
n = prom_getproplen(node, "translations");
if (unlikely(n == 0 || n == -1)) {
prom_printf("prom_mappings: Couldn't get size.\n");
prom_halt();
}
if (unlikely(n > sizeof(prom_trans))) {
prom_printf("prom_mappings: Size %Zd is too big.\n", n);
prom_halt();
}
if ((n = prom_getproperty(node, "translations",
(char *)&prom_trans[0],
sizeof(prom_trans))) == -1) {
prom_printf("prom_mappings: Couldn't get property.\n");
prom_halt();
}
n = n / sizeof(struct linux_prom_translation);
ents = n;
sort(prom_trans, ents, sizeof(struct linux_prom_translation),
cmp_ptrans, NULL);
/* Now kick out all the non-OBP entries. */
for (i = 0; i < ents; i++) {
if (in_obp_range(prom_trans[i].virt))
break;
}
first = i;
for (; i < ents; i++) {
if (!in_obp_range(prom_trans[i].virt))
break;
}
last = i;
for (i = 0; i < (last - first); i++) {
struct linux_prom_translation *src = &prom_trans[i + first];
struct linux_prom_translation *dest = &prom_trans[i];
*dest = *src;
}
for (; i < ents; i++) {
struct linux_prom_translation *dest = &prom_trans[i];
dest->virt = dest->size = dest->data = 0x0UL;
}
prom_trans_ents = last - first;
if (tlb_type == spitfire) {
/* Clear diag TTE bits. */
for (i = 0; i < prom_trans_ents; i++)
prom_trans[i].data &= ~0x0003fe0000000000UL;
}
}
static void __init hypervisor_tlb_lock(unsigned long vaddr,
unsigned long pte,
unsigned long mmu)
{
register unsigned long func asm("%o5");
register unsigned long arg0 asm("%o0");
register unsigned long arg1 asm("%o1");
register unsigned long arg2 asm("%o2");
register unsigned long arg3 asm("%o3");
func = HV_FAST_MMU_MAP_PERM_ADDR;
arg0 = vaddr;
arg1 = 0;
arg2 = pte;
arg3 = mmu;
__asm__ __volatile__("ta 0x80"
: "=&r" (func), "=&r" (arg0),
"=&r" (arg1), "=&r" (arg2),
"=&r" (arg3)
: "0" (func), "1" (arg0), "2" (arg1),
"3" (arg2), "4" (arg3));
if (arg0 != 0) {
prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
"errors with %lx\n", vaddr, 0, pte, mmu, arg0);
prom_halt();
}
}
static unsigned long kern_large_tte(unsigned long paddr);
static void __init remap_kernel(void)
{
unsigned long phys_page, tte_vaddr, tte_data;
int tlb_ent = sparc64_highest_locked_tlbent();
tte_vaddr = (unsigned long) KERNBASE;
phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
tte_data = kern_large_tte(phys_page);
kern_locked_tte_data = tte_data;
/* Now lock us into the TLBs via Hypervisor or OBP. */
if (tlb_type == hypervisor) {
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
if (bigkernel) {
tte_vaddr += 0x400000;
tte_data += 0x400000;
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
}
} else {
prom_dtlb_load(tlb_ent, tte_data, tte_vaddr);
prom_itlb_load(tlb_ent, tte_data, tte_vaddr);
if (bigkernel) {
tlb_ent -= 1;
prom_dtlb_load(tlb_ent,
tte_data + 0x400000,
tte_vaddr + 0x400000);
prom_itlb_load(tlb_ent,
tte_data + 0x400000,
tte_vaddr + 0x400000);
}
sparc64_highest_unlocked_tlb_ent = tlb_ent - 1;
}
if (tlb_type == cheetah_plus) {
sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
CTX_CHEETAH_PLUS_NUC);
sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
}
}
static void __init inherit_prom_mappings(void)
{
read_obp_translations();
/* Now fixup OBP's idea about where we really are mapped. */
prom_printf("Remapping the kernel... ");
remap_kernel();
prom_printf("done.\n");
}
void prom_world(int enter)
{
if (!enter)
set_fs((mm_segment_t) { get_thread_current_ds() });
__asm__ __volatile__("flushw");
}
#ifdef DCACHE_ALIASING_POSSIBLE
void __flush_dcache_range(unsigned long start, unsigned long end)
{
unsigned long va;
if (tlb_type == spitfire) {
int n = 0;
for (va = start; va < end; va += 32) {
spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
if (++n >= 512)
break;
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
start = __pa(start);
end = __pa(end);
for (va = start; va < end; va += 32)
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (va),
"i" (ASI_DCACHE_INVALIDATE));
}
}
#endif /* DCACHE_ALIASING_POSSIBLE */
/* Caller does TLB context flushing on local CPU if necessary.
* The caller also ensures that CTX_VALID(mm->context) is false.
*
* We must be careful about boundary cases so that we never
* let the user have CTX 0 (nucleus) or we ever use a CTX
* version of zero (and thus NO_CONTEXT would not be caught
* by version mis-match tests in mmu_context.h).
*
* Always invoked with interrupts disabled.
*/
void get_new_mmu_context(struct mm_struct *mm)
{
unsigned long ctx, new_ctx;
unsigned long orig_pgsz_bits;
unsigned long flags;
int new_version;
spin_lock_irqsave(&ctx_alloc_lock, flags);
orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
new_version = 0;
if (new_ctx >= (1 << CTX_NR_BITS)) {
new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
if (new_ctx >= ctx) {
int i;
new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
CTX_FIRST_VERSION;
if (new_ctx == 1)
new_ctx = CTX_FIRST_VERSION;
/* Don't call memset, for 16 entries that's just
* plain silly...
*/
mmu_context_bmap[0] = 3;
mmu_context_bmap[1] = 0;
mmu_context_bmap[2] = 0;
mmu_context_bmap[3] = 0;
for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
mmu_context_bmap[i + 0] = 0;
mmu_context_bmap[i + 1] = 0;
mmu_context_bmap[i + 2] = 0;
mmu_context_bmap[i + 3] = 0;
}
new_version = 1;
goto out;
}
}
mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
out:
tlb_context_cache = new_ctx;
mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
spin_unlock_irqrestore(&ctx_alloc_lock, flags);
if (unlikely(new_version))
smp_new_mmu_context_version();
}
void sparc_ultra_dump_itlb(void)
{
int slot;
if (tlb_type == spitfire) {
printk ("Contents of itlb: ");
for (slot = 0; slot < 14; slot++) printk (" ");
printk ("%2x:%016lx,%016lx\n",
0,
spitfire_get_itlb_tag(0), spitfire_get_itlb_data(0));
for (slot = 1; slot < 64; slot+=3) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
spitfire_get_itlb_tag(slot), spitfire_get_itlb_data(slot),
slot+1,
spitfire_get_itlb_tag(slot+1), spitfire_get_itlb_data(slot+1),
slot+2,
spitfire_get_itlb_tag(slot+2), spitfire_get_itlb_data(slot+2));
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
printk ("Contents of itlb0:\n");
for (slot = 0; slot < 16; slot+=2) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
cheetah_get_litlb_tag(slot), cheetah_get_litlb_data(slot),
slot+1,
cheetah_get_litlb_tag(slot+1), cheetah_get_litlb_data(slot+1));
}
printk ("Contents of itlb2:\n");
for (slot = 0; slot < 128; slot+=2) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
cheetah_get_itlb_tag(slot), cheetah_get_itlb_data(slot),
slot+1,
cheetah_get_itlb_tag(slot+1), cheetah_get_itlb_data(slot+1));
}
}
}
void sparc_ultra_dump_dtlb(void)
{
int slot;
if (tlb_type == spitfire) {
printk ("Contents of dtlb: ");
for (slot = 0; slot < 14; slot++) printk (" ");
printk ("%2x:%016lx,%016lx\n", 0,
spitfire_get_dtlb_tag(0), spitfire_get_dtlb_data(0));
for (slot = 1; slot < 64; slot+=3) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
spitfire_get_dtlb_tag(slot), spitfire_get_dtlb_data(slot),
slot+1,
spitfire_get_dtlb_tag(slot+1), spitfire_get_dtlb_data(slot+1),
slot+2,
spitfire_get_dtlb_tag(slot+2), spitfire_get_dtlb_data(slot+2));
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
printk ("Contents of dtlb0:\n");
for (slot = 0; slot < 16; slot+=2) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
cheetah_get_ldtlb_tag(slot), cheetah_get_ldtlb_data(slot),
slot+1,
cheetah_get_ldtlb_tag(slot+1), cheetah_get_ldtlb_data(slot+1));
}
printk ("Contents of dtlb2:\n");
for (slot = 0; slot < 512; slot+=2) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
cheetah_get_dtlb_tag(slot, 2), cheetah_get_dtlb_data(slot, 2),
slot+1,
cheetah_get_dtlb_tag(slot+1, 2), cheetah_get_dtlb_data(slot+1, 2));
}
if (tlb_type == cheetah_plus) {
printk ("Contents of dtlb3:\n");
for (slot = 0; slot < 512; slot+=2) {
printk ("%2x:%016lx,%016lx %2x:%016lx,%016lx\n",
slot,
cheetah_get_dtlb_tag(slot, 3), cheetah_get_dtlb_data(slot, 3),
slot+1,
cheetah_get_dtlb_tag(slot+1, 3), cheetah_get_dtlb_data(slot+1, 3));
}
}
}
}
extern unsigned long cmdline_memory_size;
/* Find a free area for the bootmem map, avoiding the kernel image
* and the initial ramdisk.
*/
static unsigned long __init choose_bootmap_pfn(unsigned long start_pfn,
unsigned long end_pfn)
{
unsigned long avoid_start, avoid_end, bootmap_size;
int i;
bootmap_size = ((end_pfn - start_pfn) + 7) / 8;
bootmap_size = ALIGN(bootmap_size, sizeof(long));
avoid_start = avoid_end = 0;
#ifdef CONFIG_BLK_DEV_INITRD
avoid_start = initrd_start;
avoid_end = PAGE_ALIGN(initrd_end);
#endif
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("choose_bootmap_pfn: kern[%lx:%lx] avoid[%lx:%lx]\n",
kern_base, PAGE_ALIGN(kern_base + kern_size),
avoid_start, avoid_end);
#endif
for (i = 0; i < pavail_ents; i++) {
unsigned long start, end;
start = pavail[i].phys_addr;
end = start + pavail[i].reg_size;
while (start < end) {
if (start >= kern_base &&
start < PAGE_ALIGN(kern_base + kern_size)) {
start = PAGE_ALIGN(kern_base + kern_size);
continue;
}
if (start >= avoid_start && start < avoid_end) {
start = avoid_end;
continue;
}
if ((end - start) < bootmap_size)
break;
if (start < kern_base &&
(start + bootmap_size) > kern_base) {
start = PAGE_ALIGN(kern_base + kern_size);
continue;
}
if (start < avoid_start &&
(start + bootmap_size) > avoid_start) {
start = avoid_end;
continue;
}
/* OK, it doesn't overlap anything, use it. */
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("choose_bootmap_pfn: Using %lx [%lx]\n",
start >> PAGE_SHIFT, start);
#endif
return start >> PAGE_SHIFT;
}
}
prom_printf("Cannot find free area for bootmap, aborting.\n");
prom_halt();
}
static void __init trim_pavail(unsigned long *cur_size_p,
unsigned long *end_of_phys_p)
{
unsigned long to_trim = *cur_size_p - cmdline_memory_size;
unsigned long avoid_start, avoid_end;
int i;
to_trim = PAGE_ALIGN(to_trim);
avoid_start = avoid_end = 0;
#ifdef CONFIG_BLK_DEV_INITRD
avoid_start = initrd_start;
avoid_end = PAGE_ALIGN(initrd_end);
#endif
/* Trim some pavail[] entries in order to satisfy the
* requested "mem=xxx" kernel command line specification.
*
* We must not trim off the kernel image area nor the
* initial ramdisk range (if any). Also, we must not trim
* any pavail[] entry down to zero in order to preserve
* the invariant that all pavail[] entries have a non-zero
* size which is assumed by all of the code in here.
*/
for (i = 0; i < pavail_ents; i++) {
unsigned long start, end, kern_end;
unsigned long trim_low, trim_high, n;
kern_end = PAGE_ALIGN(kern_base + kern_size);
trim_low = start = pavail[i].phys_addr;
trim_high = end = start + pavail[i].reg_size;
if (kern_base >= start &&
kern_base < end) {
trim_low = kern_base;
if (kern_end >= end)
continue;
}
if (kern_end >= start &&
kern_end < end) {
trim_high = kern_end;
}
if (avoid_start &&
avoid_start >= start &&
avoid_start < end) {
if (trim_low > avoid_start)
trim_low = avoid_start;
if (avoid_end >= end)
continue;
}
if (avoid_end &&
avoid_end >= start &&
avoid_end < end) {
if (trim_high < avoid_end)
trim_high = avoid_end;
}
if (trim_high <= trim_low)
continue;
if (trim_low == start && trim_high == end) {
/* Whole chunk is available for trimming.
* Trim all except one page, in order to keep
* entry non-empty.
*/
n = (end - start) - PAGE_SIZE;
if (n > to_trim)
n = to_trim;
if (n) {
pavail[i].phys_addr += n;
pavail[i].reg_size -= n;
to_trim -= n;
}
} else {
n = (trim_low - start);
if (n > to_trim)
n = to_trim;
if (n) {
pavail[i].phys_addr += n;
pavail[i].reg_size -= n;
to_trim -= n;
}
if (to_trim) {
n = end - trim_high;
if (n > to_trim)
n = to_trim;
if (n) {
pavail[i].reg_size -= n;
to_trim -= n;
}
}
}
if (!to_trim)
break;
}
/* Recalculate. */
*cur_size_p = 0UL;
for (i = 0; i < pavail_ents; i++) {
*end_of_phys_p = pavail[i].phys_addr +
pavail[i].reg_size;
*cur_size_p += pavail[i].reg_size;
}
}
static unsigned long __init bootmem_init(unsigned long *pages_avail,
unsigned long phys_base)
{
unsigned long bootmap_size, end_pfn;
unsigned long end_of_phys_memory = 0UL;
unsigned long bootmap_pfn, bytes_avail, size;
int i;
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("bootmem_init: Scan pavail, ");
#endif
bytes_avail = 0UL;
for (i = 0; i < pavail_ents; i++) {
end_of_phys_memory = pavail[i].phys_addr +
pavail[i].reg_size;
bytes_avail += pavail[i].reg_size;
}
/* Determine the location of the initial ramdisk before trying
* to honor the "mem=xxx" command line argument. We must know
* where the kernel image and the ramdisk image are so that we
* do not trim those two areas from the physical memory map.
*/
#ifdef CONFIG_BLK_DEV_INITRD
/* Now have to check initial ramdisk, so that bootmap does not overwrite it */
if (sparc_ramdisk_image || sparc_ramdisk_image64) {
unsigned long ramdisk_image = sparc_ramdisk_image ?
sparc_ramdisk_image : sparc_ramdisk_image64;
ramdisk_image -= KERNBASE;
initrd_start = ramdisk_image + phys_base;
initrd_end = initrd_start + sparc_ramdisk_size;
if (initrd_end > end_of_phys_memory) {
printk(KERN_CRIT "initrd extends beyond end of memory "
"(0x%016lx > 0x%016lx)\ndisabling initrd\n",
initrd_end, end_of_phys_memory);
initrd_start = 0;
initrd_end = 0;
}
}
#endif
if (cmdline_memory_size &&
bytes_avail > cmdline_memory_size)
trim_pavail(&bytes_avail,
&end_of_phys_memory);
*pages_avail = bytes_avail >> PAGE_SHIFT;
end_pfn = end_of_phys_memory >> PAGE_SHIFT;
/* Initialize the boot-time allocator. */
max_pfn = max_low_pfn = end_pfn;
min_low_pfn = (phys_base >> PAGE_SHIFT);
bootmap_pfn = choose_bootmap_pfn(min_low_pfn, end_pfn);
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("init_bootmem(min[%lx], bootmap[%lx], max[%lx])\n",
min_low_pfn, bootmap_pfn, max_low_pfn);
#endif
bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn,
min_low_pfn, end_pfn);
/* Now register the available physical memory with the
* allocator.
*/
for (i = 0; i < pavail_ents; i++) {
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("free_bootmem(pavail:%d): base[%lx] size[%lx]\n",
i, pavail[i].phys_addr, pavail[i].reg_size);
#endif
free_bootmem(pavail[i].phys_addr, pavail[i].reg_size);
}
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start) {
size = initrd_end - initrd_start;
/* Resert the initrd image area. */
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("reserve_bootmem(initrd): base[%llx] size[%lx]\n",
initrd_start, initrd_end);
#endif
reserve_bootmem(initrd_start, size);
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
initrd_start += PAGE_OFFSET;
initrd_end += PAGE_OFFSET;
}
#endif
/* Reserve the kernel text/data/bss. */
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("reserve_bootmem(kernel): base[%lx] size[%lx]\n", kern_base, kern_size);
#endif
reserve_bootmem(kern_base, kern_size);
*pages_avail -= PAGE_ALIGN(kern_size) >> PAGE_SHIFT;
/* Reserve the bootmem map. We do not account for it
* in pages_avail because we will release that memory
* in free_all_bootmem.
*/
size = bootmap_size;
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("reserve_bootmem(bootmap): base[%lx] size[%lx]\n",
(bootmap_pfn << PAGE_SHIFT), size);
#endif
reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size);
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
for (i = 0; i < pavail_ents; i++) {
unsigned long start_pfn, end_pfn;
start_pfn = pavail[i].phys_addr >> PAGE_SHIFT;
end_pfn = (start_pfn + (pavail[i].reg_size >> PAGE_SHIFT));
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("memory_present(0, %lx, %lx)\n",
start_pfn, end_pfn);
#endif
memory_present(0, start_pfn, end_pfn);
}
sparse_init();
return end_pfn;
}
static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
static int pall_ents __initdata;
#ifdef CONFIG_DEBUG_PAGEALLOC
static unsigned long kernel_map_range(unsigned long pstart, unsigned long pend, pgprot_t prot)
{
unsigned long vstart = PAGE_OFFSET + pstart;
unsigned long vend = PAGE_OFFSET + pend;
unsigned long alloc_bytes = 0UL;
if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
vstart, vend);
prom_halt();
}
while (vstart < vend) {
unsigned long this_end, paddr = __pa(vstart);
pgd_t *pgd = pgd_offset_k(vstart);
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pud = pud_offset(pgd, vstart);
if (pud_none(*pud)) {
pmd_t *new;
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
alloc_bytes += PAGE_SIZE;
pud_populate(&init_mm, pud, new);
}
pmd = pmd_offset(pud, vstart);
if (!pmd_present(*pmd)) {
pte_t *new;
new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
alloc_bytes += PAGE_SIZE;
pmd_populate_kernel(&init_mm, pmd, new);
}
pte = pte_offset_kernel(pmd, vstart);
this_end = (vstart + PMD_SIZE) & PMD_MASK;
if (this_end > vend)
this_end = vend;
while (vstart < this_end) {
pte_val(*pte) = (paddr | pgprot_val(prot));
vstart += PAGE_SIZE;
paddr += PAGE_SIZE;
pte++;
}
}
return alloc_bytes;
}
extern unsigned int kvmap_linear_patch[1];
#endif /* CONFIG_DEBUG_PAGEALLOC */
static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
{
const unsigned long shift_256MB = 28;
const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
const unsigned long size_256MB = (1UL << shift_256MB);
while (start < end) {
long remains;
remains = end - start;
if (remains < size_256MB)
break;
if (start & mask_256MB) {
start = (start + size_256MB) & ~mask_256MB;
continue;
}
while (remains >= size_256MB) {
unsigned long index = start >> shift_256MB;
__set_bit(index, kpte_linear_bitmap);
start += size_256MB;
remains -= size_256MB;
}
}
}
static void __init kernel_physical_mapping_init(void)
{
unsigned long i;
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned long mem_alloced = 0UL;
#endif
read_obp_memory("reg", &pall[0], &pall_ents);
for (i = 0; i < pall_ents; i++) {
unsigned long phys_start, phys_end;
phys_start = pall[i].phys_addr;
phys_end = phys_start + pall[i].reg_size;
mark_kpte_bitmap(phys_start, phys_end);
#ifdef CONFIG_DEBUG_PAGEALLOC
mem_alloced += kernel_map_range(phys_start, phys_end,
PAGE_KERNEL);
#endif
}
#ifdef CONFIG_DEBUG_PAGEALLOC
printk("Allocated %ld bytes for kernel page tables.\n",
mem_alloced);
kvmap_linear_patch[0] = 0x01000000; /* nop */
flushi(&kvmap_linear_patch[0]);
__flush_tlb_all();
#endif
}
#ifdef CONFIG_DEBUG_PAGEALLOC
void kernel_map_pages(struct page *page, int numpages, int enable)
{
unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
kernel_map_range(phys_start, phys_end,
(enable ? PAGE_KERNEL : __pgprot(0)));
flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
PAGE_OFFSET + phys_end);
/* we should perform an IPI and flush all tlbs,
* but that can deadlock->flush only current cpu.
*/
__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
PAGE_OFFSET + phys_end);
}
#endif
unsigned long __init find_ecache_flush_span(unsigned long size)
{
int i;
for (i = 0; i < pavail_ents; i++) {
if (pavail[i].reg_size >= size)
return pavail[i].phys_addr;
}
return ~0UL;
}
static void __init tsb_phys_patch(void)
{
struct tsb_ldquad_phys_patch_entry *pquad;
struct tsb_phys_patch_entry *p;
pquad = &__tsb_ldquad_phys_patch;
while (pquad < &__tsb_ldquad_phys_patch_end) {
unsigned long addr = pquad->addr;
if (tlb_type == hypervisor)
*(unsigned int *) addr = pquad->sun4v_insn;
else
*(unsigned int *) addr = pquad->sun4u_insn;
wmb();
__asm__ __volatile__("flush %0"
: /* no outputs */
: "r" (addr));
pquad++;
}
p = &__tsb_phys_patch;
while (p < &__tsb_phys_patch_end) {
unsigned long addr = p->addr;
*(unsigned int *) addr = p->insn;
wmb();
__asm__ __volatile__("flush %0"
: /* no outputs */
: "r" (addr));
p++;
}
}
/* Don't mark as init, we give this to the Hypervisor. */
static struct hv_tsb_descr ktsb_descr[2];
extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
static void __init sun4v_ktsb_init(void)
{
unsigned long ktsb_pa;
/* First KTSB for PAGE_SIZE mappings. */
ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
switch (PAGE_SIZE) {
case 8 * 1024:
default:
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
break;
case 64 * 1024:
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
break;
case 512 * 1024:
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
break;
case 4 * 1024 * 1024:
ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
break;
};
ktsb_descr[0].assoc = 1;
ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
ktsb_descr[0].ctx_idx = 0;
ktsb_descr[0].tsb_base = ktsb_pa;
ktsb_descr[0].resv = 0;
/* Second KTSB for 4MB/256MB mappings. */
ktsb_pa = (kern_base +
((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
HV_PGSZ_MASK_256MB);
ktsb_descr[1].assoc = 1;
ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
ktsb_descr[1].ctx_idx = 0;
ktsb_descr[1].tsb_base = ktsb_pa;
ktsb_descr[1].resv = 0;
}
void __cpuinit sun4v_ktsb_register(void)
{
register unsigned long func asm("%o5");
register unsigned long arg0 asm("%o0");
register unsigned long arg1 asm("%o1");
unsigned long pa;
pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
func = HV_FAST_MMU_TSB_CTX0;
arg0 = 2;
arg1 = pa;
__asm__ __volatile__("ta %6"
: "=&r" (func), "=&r" (arg0), "=&r" (arg1)
: "0" (func), "1" (arg0), "2" (arg1),
"i" (HV_FAST_TRAP));
}
/* paging_init() sets up the page tables */
extern void cheetah_ecache_flush_init(void);
extern void sun4v_patch_tlb_handlers(void);
static unsigned long last_valid_pfn;
pgd_t swapper_pg_dir[2048];
static void sun4u_pgprot_init(void);
static void sun4v_pgprot_init(void);
void __init paging_init(void)
{
unsigned long end_pfn, pages_avail, shift, phys_base;
unsigned long real_end, i;
kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
/* Invalidate both kernel TSBs. */
memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
if (tlb_type == hypervisor)
sun4v_pgprot_init();
else
sun4u_pgprot_init();
if (tlb_type == cheetah_plus ||
tlb_type == hypervisor)
tsb_phys_patch();
if (tlb_type == hypervisor) {
sun4v_patch_tlb_handlers();
sun4v_ktsb_init();
}
/* Find available physical memory... */
read_obp_memory("available", &pavail[0], &pavail_ents);
phys_base = 0xffffffffffffffffUL;
for (i = 0; i < pavail_ents; i++)
phys_base = min(phys_base, pavail[i].phys_addr);
set_bit(0, mmu_context_bmap);
shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
real_end = (unsigned long)_end;
if ((real_end > ((unsigned long)KERNBASE + 0x400000)))
bigkernel = 1;
if ((real_end > ((unsigned long)KERNBASE + 0x800000))) {
prom_printf("paging_init: Kernel > 8MB, too large.\n");
prom_halt();
}
/* Set kernel pgd to upper alias so physical page computations
* work.
*/
init_mm.pgd += ((shift) / (sizeof(pgd_t)));
memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
/* Now can init the kernel/bad page tables. */
pud_set(pud_offset(&swapper_pg_dir[0], 0),
swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
inherit_prom_mappings();
/* Ok, we can use our TLB miss and window trap handlers safely. */
setup_tba();
__flush_tlb_all();
if (tlb_type == hypervisor)
sun4v_ktsb_register();
/* Setup bootmem... */
pages_avail = 0;
last_valid_pfn = end_pfn = bootmem_init(&pages_avail, phys_base);
max_mapnr = last_valid_pfn;
kernel_physical_mapping_init();
prom_build_devicetree();
{
unsigned long zones_size[MAX_NR_ZONES];
unsigned long zholes_size[MAX_NR_ZONES];
int znum;
for (znum = 0; znum < MAX_NR_ZONES; znum++)
zones_size[znum] = zholes_size[znum] = 0;
zones_size[ZONE_NORMAL] = end_pfn;
zholes_size[ZONE_NORMAL] = end_pfn - pages_avail;
free_area_init_node(0, &contig_page_data, zones_size,
__pa(PAGE_OFFSET) >> PAGE_SHIFT,
zholes_size);
}
device_scan();
}
static void __init taint_real_pages(void)
{
int i;
read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
/* Find changes discovered in the physmem available rescan and
* reserve the lost portions in the bootmem maps.
*/
for (i = 0; i < pavail_ents; i++) {
unsigned long old_start, old_end;
old_start = pavail[i].phys_addr;
old_end = old_start +
pavail[i].reg_size;
while (old_start < old_end) {
int n;
for (n = 0; n < pavail_rescan_ents; n++) {
unsigned long new_start, new_end;
new_start = pavail_rescan[n].phys_addr;
new_end = new_start +
pavail_rescan[n].reg_size;
if (new_start <= old_start &&
new_end >= (old_start + PAGE_SIZE)) {
set_bit(old_start >> 22,
sparc64_valid_addr_bitmap);
goto do_next_page;
}
}
reserve_bootmem(old_start, PAGE_SIZE);
do_next_page:
old_start += PAGE_SIZE;
}
}
}
int __init page_in_phys_avail(unsigned long paddr)
{
int i;
paddr &= PAGE_MASK;
for (i = 0; i < pavail_rescan_ents; i++) {
unsigned long start, end;
start = pavail_rescan[i].phys_addr;
end = start + pavail_rescan[i].reg_size;
if (paddr >= start && paddr < end)
return 1;
}
if (paddr >= kern_base && paddr < (kern_base + kern_size))
return 1;
#ifdef CONFIG_BLK_DEV_INITRD
if (paddr >= __pa(initrd_start) &&
paddr < __pa(PAGE_ALIGN(initrd_end)))
return 1;
#endif
return 0;
}
void __init mem_init(void)
{
unsigned long codepages, datapages, initpages;
unsigned long addr, last;
int i;
i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
i += 1;
sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
if (sparc64_valid_addr_bitmap == NULL) {
prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
prom_halt();
}
memset(sparc64_valid_addr_bitmap, 0, i << 3);
addr = PAGE_OFFSET + kern_base;
last = PAGE_ALIGN(kern_size) + addr;
while (addr < last) {
set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
addr += PAGE_SIZE;
}
taint_real_pages();
high_memory = __va(last_valid_pfn << PAGE_SHIFT);
#ifdef CONFIG_DEBUG_BOOTMEM
prom_printf("mem_init: Calling free_all_bootmem().\n");
#endif
totalram_pages = num_physpages = free_all_bootmem() - 1;
/*
* Set up the zero page, mark it reserved, so that page count
* is not manipulated when freeing the page from user ptes.
*/
mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
if (mem_map_zero == NULL) {
prom_printf("paging_init: Cannot alloc zero page.\n");
prom_halt();
}
SetPageReserved(mem_map_zero);
codepages = (((unsigned long) _etext) - ((unsigned long) _start));
codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
nr_free_pages() << (PAGE_SHIFT-10),
codepages << (PAGE_SHIFT-10),
datapages << (PAGE_SHIFT-10),
initpages << (PAGE_SHIFT-10),
PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
if (tlb_type == cheetah || tlb_type == cheetah_plus)
cheetah_ecache_flush_init();
}
void free_initmem(void)
{
unsigned long addr, initend;
/*
* The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
*/
addr = PAGE_ALIGN((unsigned long)(__init_begin));
initend = (unsigned long)(__init_end) & PAGE_MASK;
for (; addr < initend; addr += PAGE_SIZE) {
unsigned long page;
struct page *p;
page = (addr +
((unsigned long) __va(kern_base)) -
((unsigned long) KERNBASE));
memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
p = virt_to_page(page);
ClearPageReserved(p);
init_page_count(p);
__free_page(p);
num_physpages++;
totalram_pages++;
}
}
#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
if (start < end)
printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
for (; start < end; start += PAGE_SIZE) {
struct page *p = virt_to_page(start);
ClearPageReserved(p);
init_page_count(p);
__free_page(p);
num_physpages++;
totalram_pages++;
}
}
#endif
#define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
#define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
#define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
#define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
pgprot_t PAGE_KERNEL __read_mostly;
EXPORT_SYMBOL(PAGE_KERNEL);
pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
pgprot_t PAGE_COPY __read_mostly;
pgprot_t PAGE_SHARED __read_mostly;
EXPORT_SYMBOL(PAGE_SHARED);
pgprot_t PAGE_EXEC __read_mostly;
unsigned long pg_iobits __read_mostly;
unsigned long _PAGE_IE __read_mostly;
EXPORT_SYMBOL(_PAGE_IE);
unsigned long _PAGE_E __read_mostly;
EXPORT_SYMBOL(_PAGE_E);
unsigned long _PAGE_CACHE __read_mostly;
EXPORT_SYMBOL(_PAGE_CACHE);
static void prot_init_common(unsigned long page_none,
unsigned long page_shared,
unsigned long page_copy,
unsigned long page_readonly,
unsigned long page_exec_bit)
{
PAGE_COPY = __pgprot(page_copy);
PAGE_SHARED = __pgprot(page_shared);
protection_map[0x0] = __pgprot(page_none);
protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
protection_map[0x4] = __pgprot(page_readonly);
protection_map[0x5] = __pgprot(page_readonly);
protection_map[0x6] = __pgprot(page_copy);
protection_map[0x7] = __pgprot(page_copy);
protection_map[0x8] = __pgprot(page_none);
protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
protection_map[0xc] = __pgprot(page_readonly);
protection_map[0xd] = __pgprot(page_readonly);
protection_map[0xe] = __pgprot(page_shared);
protection_map[0xf] = __pgprot(page_shared);
}
static void __init sun4u_pgprot_init(void)
{
unsigned long page_none, page_shared, page_copy, page_readonly;
unsigned long page_exec_bit;
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
_PAGE_CACHE_4U | _PAGE_P_4U |
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
_PAGE_EXEC_4U);
PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
_PAGE_CACHE_4U | _PAGE_P_4U |
__ACCESS_BITS_4U | __DIRTY_BITS_4U |
_PAGE_EXEC_4U | _PAGE_L_4U);
PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
_PAGE_IE = _PAGE_IE_4U;
_PAGE_E = _PAGE_E_4U;
_PAGE_CACHE = _PAGE_CACHE_4U;
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
__ACCESS_BITS_4U | _PAGE_E_4U);
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
0xfffff80000000000;
kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
_PAGE_P_4U | _PAGE_W_4U);
/* XXX Should use 256MB on Panther. XXX */
kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
_PAGE_SZBITS = _PAGE_SZBITS_4U;
_PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
_PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
_PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
__ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
__ACCESS_BITS_4U | _PAGE_EXEC_4U);
page_exec_bit = _PAGE_EXEC_4U;
prot_init_common(page_none, page_shared, page_copy, page_readonly,
page_exec_bit);
}
static void __init sun4v_pgprot_init(void)
{
unsigned long page_none, page_shared, page_copy, page_readonly;
unsigned long page_exec_bit;
PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
_PAGE_CACHE_4V | _PAGE_P_4V |
__ACCESS_BITS_4V | __DIRTY_BITS_4V |
_PAGE_EXEC_4V);
PAGE_KERNEL_LOCKED = PAGE_KERNEL;
PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
_PAGE_IE = _PAGE_IE_4V;
_PAGE_E = _PAGE_E_4V;
_PAGE_CACHE = _PAGE_CACHE_4V;
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
0xfffff80000000000;
kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
_PAGE_P_4V | _PAGE_W_4V);
kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
0xfffff80000000000;
kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
_PAGE_P_4V | _PAGE_W_4V);
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
__ACCESS_BITS_4V | _PAGE_E_4V);
_PAGE_SZBITS = _PAGE_SZBITS_4V;
_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
_PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
_PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
_PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
__ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
__ACCESS_BITS_4V | _PAGE_EXEC_4V);
page_exec_bit = _PAGE_EXEC_4V;
prot_init_common(page_none, page_shared, page_copy, page_readonly,
page_exec_bit);
}
unsigned long pte_sz_bits(unsigned long sz)
{
if (tlb_type == hypervisor) {
switch (sz) {
case 8 * 1024:
default:
return _PAGE_SZ8K_4V;
case 64 * 1024:
return _PAGE_SZ64K_4V;
case 512 * 1024:
return _PAGE_SZ512K_4V;
case 4 * 1024 * 1024:
return _PAGE_SZ4MB_4V;
};
} else {
switch (sz) {
case 8 * 1024:
default:
return _PAGE_SZ8K_4U;
case 64 * 1024:
return _PAGE_SZ64K_4U;
case 512 * 1024:
return _PAGE_SZ512K_4U;
case 4 * 1024 * 1024:
return _PAGE_SZ4MB_4U;
};
}
}
pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
{
pte_t pte;
pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
pte_val(pte) |= (((unsigned long)space) << 32);
pte_val(pte) |= pte_sz_bits(page_size);
return pte;
}
static unsigned long kern_large_tte(unsigned long paddr)
{
unsigned long val;
val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
_PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
_PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
if (tlb_type == hypervisor)
val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
_PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
_PAGE_EXEC_4V | _PAGE_W_4V);
return val | paddr;
}
/*
* Translate PROM's mapping we capture at boot time into physical address.
* The second parameter is only set from prom_callback() invocations.
*/
unsigned long prom_virt_to_phys(unsigned long promva, int *error)
{
unsigned long mask;
int i;
mask = _PAGE_PADDR_4U;
if (tlb_type == hypervisor)
mask = _PAGE_PADDR_4V;
for (i = 0; i < prom_trans_ents; i++) {
struct linux_prom_translation *p = &prom_trans[i];
if (promva >= p->virt &&
promva < (p->virt + p->size)) {
unsigned long base = p->data & mask;
if (error)
*error = 0;
return base + (promva & (8192 - 1));
}
}
if (error)
*error = 1;
return 0UL;
}
/* XXX We should kill off this ugly thing at so me point. XXX */
unsigned long sun4u_get_pte(unsigned long addr)
{
pgd_t *pgdp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
unsigned long mask = _PAGE_PADDR_4U;
if (tlb_type == hypervisor)
mask = _PAGE_PADDR_4V;
if (addr >= PAGE_OFFSET)
return addr & mask;
if ((addr >= LOW_OBP_ADDRESS) && (addr < HI_OBP_ADDRESS))
return prom_virt_to_phys(addr, NULL);
pgdp = pgd_offset_k(addr);
pudp = pud_offset(pgdp, addr);
pmdp = pmd_offset(pudp, addr);
ptep = pte_offset_kernel(pmdp, addr);
return pte_val(*ptep) & mask;
}
/* If not locked, zap it. */
void __flush_tlb_all(void)
{
unsigned long pstate;
int i;
__asm__ __volatile__("flushw\n\t"
"rdpr %%pstate, %0\n\t"
"wrpr %0, %1, %%pstate"
: "=r" (pstate)
: "i" (PSTATE_IE));
if (tlb_type == spitfire) {
for (i = 0; i < 64; i++) {
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
spitfire_put_dtlb_data(i, 0x0UL);
}
/* Spitfire Errata #32 workaround */
/* NOTE: Always runs on spitfire, so no
* cheetah+ page size encodings.
*/
__asm__ __volatile__("stxa %0, [%1] %2\n\t"
"flush %%g6"
: /* No outputs */
: "r" (0),
"r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
"membar #Sync"
: /* no outputs */
: "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
spitfire_put_itlb_data(i, 0x0UL);
}
}
} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
cheetah_flush_dtlb_all();
cheetah_flush_itlb_all();
}
__asm__ __volatile__("wrpr %0, 0, %%pstate"
: : "r" (pstate));
}
#ifdef CONFIG_MEMORY_HOTPLUG
void online_page(struct page *page)
{
ClearPageReserved(page);
init_page_count(page);
__free_page(page);
totalram_pages++;
num_physpages++;
}
int remove_memory(u64 start, u64 size)
{
return -EINVAL;
}
#endif /* CONFIG_MEMORY_HOTPLUG */