1
linux/drivers/pci/irq.c
Ilpo Järvinen 1e8cc8e6bd PCI: Place interrupt related code into irq.c
Interrupt related code is spread into irq.c, pci.c, and setup-irq.c.
Group them into pre-existing irq.c.

Link: https://lore.kernel.org/r/20240129113655.3368-1-ilpo.jarvinen@linux.intel.com
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
2024-01-29 17:01:31 -06:00

281 lines
7.6 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* PCI IRQ handling code
*
* Copyright (c) 2008 James Bottomley <James.Bottomley@HansenPartnership.com>
* Copyright (C) 2017 Christoph Hellwig.
*/
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include "pci.h"
/**
* pci_request_irq - allocate an interrupt line for a PCI device
* @dev: PCI device to operate on
* @nr: device-relative interrupt vector index (0-based).
* @handler: Function to be called when the IRQ occurs.
* Primary handler for threaded interrupts.
* If NULL and thread_fn != NULL the default primary handler is
* installed.
* @thread_fn: Function called from the IRQ handler thread
* If NULL, no IRQ thread is created
* @dev_id: Cookie passed back to the handler function
* @fmt: Printf-like format string naming the handler
*
* This call allocates interrupt resources and enables the interrupt line and
* IRQ handling. From the point this call is made @handler and @thread_fn may
* be invoked. All interrupts requested using this function might be shared.
*
* @dev_id must not be NULL and must be globally unique.
*/
int pci_request_irq(struct pci_dev *dev, unsigned int nr, irq_handler_t handler,
irq_handler_t thread_fn, void *dev_id, const char *fmt, ...)
{
va_list ap;
int ret;
char *devname;
unsigned long irqflags = IRQF_SHARED;
if (!handler)
irqflags |= IRQF_ONESHOT;
va_start(ap, fmt);
devname = kvasprintf(GFP_KERNEL, fmt, ap);
va_end(ap);
if (!devname)
return -ENOMEM;
ret = request_threaded_irq(pci_irq_vector(dev, nr), handler, thread_fn,
irqflags, devname, dev_id);
if (ret)
kfree(devname);
return ret;
}
EXPORT_SYMBOL(pci_request_irq);
/**
* pci_free_irq - free an interrupt allocated with pci_request_irq
* @dev: PCI device to operate on
* @nr: device-relative interrupt vector index (0-based).
* @dev_id: Device identity to free
*
* Remove an interrupt handler. The handler is removed and if the interrupt
* line is no longer in use by any driver it is disabled. The caller must
* ensure the interrupt is disabled on the device before calling this function.
* The function does not return until any executing interrupts for this IRQ
* have completed.
*
* This function must not be called from interrupt context.
*/
void pci_free_irq(struct pci_dev *dev, unsigned int nr, void *dev_id)
{
kfree(free_irq(pci_irq_vector(dev, nr), dev_id));
}
EXPORT_SYMBOL(pci_free_irq);
/**
* pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
* @dev: the PCI device
* @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
*
* Perform INTx swizzling for a device behind one level of bridge. This is
* required by section 9.1 of the PCI-to-PCI bridge specification for devices
* behind bridges on add-in cards. For devices with ARI enabled, the slot
* number is always 0 (see the Implementation Note in section 2.2.8.1 of
* the PCI Express Base Specification, Revision 2.1)
*/
u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
{
int slot;
if (pci_ari_enabled(dev->bus))
slot = 0;
else
slot = PCI_SLOT(dev->devfn);
return (((pin - 1) + slot) % 4) + 1;
}
int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
{
u8 pin;
pin = dev->pin;
if (!pin)
return -1;
while (!pci_is_root_bus(dev->bus)) {
pin = pci_swizzle_interrupt_pin(dev, pin);
dev = dev->bus->self;
}
*bridge = dev;
return pin;
}
/**
* pci_common_swizzle - swizzle INTx all the way to root bridge
* @dev: the PCI device
* @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
*
* Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
* bridges all the way up to a PCI root bus.
*/
u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
{
u8 pin = *pinp;
while (!pci_is_root_bus(dev->bus)) {
pin = pci_swizzle_interrupt_pin(dev, pin);
dev = dev->bus->self;
}
*pinp = pin;
return PCI_SLOT(dev->devfn);
}
EXPORT_SYMBOL_GPL(pci_common_swizzle);
void pci_assign_irq(struct pci_dev *dev)
{
u8 pin;
u8 slot = -1;
int irq = 0;
struct pci_host_bridge *hbrg = pci_find_host_bridge(dev->bus);
if (!(hbrg->map_irq)) {
pci_dbg(dev, "runtime IRQ mapping not provided by arch\n");
return;
}
/*
* If this device is not on the primary bus, we need to figure out
* which interrupt pin it will come in on. We know which slot it
* will come in on because that slot is where the bridge is. Each
* time the interrupt line passes through a PCI-PCI bridge we must
* apply the swizzle function.
*/
pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
/* Cope with illegal. */
if (pin > 4)
pin = 1;
if (pin) {
/* Follow the chain of bridges, swizzling as we go. */
if (hbrg->swizzle_irq)
slot = (*(hbrg->swizzle_irq))(dev, &pin);
/*
* If a swizzling function is not used, map_irq() must
* ignore slot.
*/
irq = (*(hbrg->map_irq))(dev, slot, pin);
if (irq == -1)
irq = 0;
}
dev->irq = irq;
pci_dbg(dev, "assign IRQ: got %d\n", dev->irq);
/*
* Always tell the device, so the driver knows what is the real IRQ
* to use; the device does not use it.
*/
pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
}
static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
{
struct pci_bus *bus = dev->bus;
bool mask_updated = true;
u32 cmd_status_dword;
u16 origcmd, newcmd;
unsigned long flags;
bool irq_pending;
/*
* We do a single dword read to retrieve both command and status.
* Document assumptions that make this possible.
*/
BUILD_BUG_ON(PCI_COMMAND % 4);
BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
raw_spin_lock_irqsave(&pci_lock, flags);
bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
/*
* Check interrupt status register to see whether our device
* triggered the interrupt (when masking) or the next IRQ is
* already pending (when unmasking).
*/
if (mask != irq_pending) {
mask_updated = false;
goto done;
}
origcmd = cmd_status_dword;
newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
if (mask)
newcmd |= PCI_COMMAND_INTX_DISABLE;
if (newcmd != origcmd)
bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
done:
raw_spin_unlock_irqrestore(&pci_lock, flags);
return mask_updated;
}
/**
* pci_check_and_mask_intx - mask INTx on pending interrupt
* @dev: the PCI device to operate on
*
* Check if the device dev has its INTx line asserted, mask it and return
* true in that case. False is returned if no interrupt was pending.
*/
bool pci_check_and_mask_intx(struct pci_dev *dev)
{
return pci_check_and_set_intx_mask(dev, true);
}
EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
/**
* pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
* @dev: the PCI device to operate on
*
* Check if the device dev has its INTx line asserted, unmask it if not and
* return true. False is returned and the mask remains active if there was
* still an interrupt pending.
*/
bool pci_check_and_unmask_intx(struct pci_dev *dev)
{
return pci_check_and_set_intx_mask(dev, false);
}
EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
/**
* pcibios_penalize_isa_irq - penalize an ISA IRQ
* @irq: ISA IRQ to penalize
* @active: IRQ active or not
*
* Permits the platform to provide architecture-specific functionality when
* penalizing ISA IRQs. This is the default implementation. Architecture
* implementations can override this.
*/
void __weak pcibios_penalize_isa_irq(int irq, int active) {}
int __weak pcibios_alloc_irq(struct pci_dev *dev)
{
return 0;
}
void __weak pcibios_free_irq(struct pci_dev *dev)
{
}