1
linux/drivers/dma/uniphier-mdmac.c
Uwe Kleine-König 5d4304a8d5 dmaengine: uniphier-mdmac: Convert to platform remove callback returning void
The .remove() callback for a platform driver returns an int which makes
many driver authors wrongly assume it's possible to do error handling by
returning an error code. However the value returned is ignored (apart
from emitting a warning) and this typically results in resource leaks.

To improve here there is a quest to make the remove callback return
void. In the first step of this quest all drivers are converted to
.remove_new(), which already returns void. Eventually after all drivers
are converted, .remove_new() will be renamed to .remove().

There is an error path that has the above mentioned problem. This patch
only adds a more drastic error message. To properly fix it,
dmaengine_terminate_sync() must be known to have succeeded (or that it's
safe to not call it as other drivers seem to assume).

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Link: https://lore.kernel.org/r/20231105093415.3704633-9-u.kleine-koenig@pengutronix.de
Signed-off-by: Vinod Koul <vkoul@kernel.org>
2023-11-24 18:32:30 +05:30

507 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
//
// Copyright (C) 2018 Socionext Inc.
// Author: Masahiro Yamada <yamada.masahiro@socionext.com>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/types.h>
#include "virt-dma.h"
/* registers common for all channels */
#define UNIPHIER_MDMAC_CMD 0x000 /* issue DMA start/abort */
#define UNIPHIER_MDMAC_CMD_ABORT BIT(31) /* 1: abort, 0: start */
/* per-channel registers */
#define UNIPHIER_MDMAC_CH_OFFSET 0x100
#define UNIPHIER_MDMAC_CH_STRIDE 0x040
#define UNIPHIER_MDMAC_CH_IRQ_STAT 0x010 /* current hw status (RO) */
#define UNIPHIER_MDMAC_CH_IRQ_REQ 0x014 /* latched STAT (WOC) */
#define UNIPHIER_MDMAC_CH_IRQ_EN 0x018 /* IRQ enable mask */
#define UNIPHIER_MDMAC_CH_IRQ_DET 0x01c /* REQ & EN (RO) */
#define UNIPHIER_MDMAC_CH_IRQ__ABORT BIT(13)
#define UNIPHIER_MDMAC_CH_IRQ__DONE BIT(1)
#define UNIPHIER_MDMAC_CH_SRC_MODE 0x020 /* mode of source */
#define UNIPHIER_MDMAC_CH_DEST_MODE 0x024 /* mode of destination */
#define UNIPHIER_MDMAC_CH_MODE__ADDR_INC (0 << 4)
#define UNIPHIER_MDMAC_CH_MODE__ADDR_DEC (1 << 4)
#define UNIPHIER_MDMAC_CH_MODE__ADDR_FIXED (2 << 4)
#define UNIPHIER_MDMAC_CH_SRC_ADDR 0x028 /* source address */
#define UNIPHIER_MDMAC_CH_DEST_ADDR 0x02c /* destination address */
#define UNIPHIER_MDMAC_CH_SIZE 0x030 /* transfer bytes */
#define UNIPHIER_MDMAC_SLAVE_BUSWIDTHS \
(BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
struct uniphier_mdmac_desc {
struct virt_dma_desc vd;
struct scatterlist *sgl;
unsigned int sg_len;
unsigned int sg_cur;
enum dma_transfer_direction dir;
};
struct uniphier_mdmac_chan {
struct virt_dma_chan vc;
struct uniphier_mdmac_device *mdev;
struct uniphier_mdmac_desc *md;
void __iomem *reg_ch_base;
unsigned int chan_id;
};
struct uniphier_mdmac_device {
struct dma_device ddev;
struct clk *clk;
void __iomem *reg_base;
struct uniphier_mdmac_chan channels[];
};
static struct uniphier_mdmac_chan *
to_uniphier_mdmac_chan(struct virt_dma_chan *vc)
{
return container_of(vc, struct uniphier_mdmac_chan, vc);
}
static struct uniphier_mdmac_desc *
to_uniphier_mdmac_desc(struct virt_dma_desc *vd)
{
return container_of(vd, struct uniphier_mdmac_desc, vd);
}
/* mc->vc.lock must be held by caller */
static struct uniphier_mdmac_desc *
uniphier_mdmac_next_desc(struct uniphier_mdmac_chan *mc)
{
struct virt_dma_desc *vd;
vd = vchan_next_desc(&mc->vc);
if (!vd) {
mc->md = NULL;
return NULL;
}
list_del(&vd->node);
mc->md = to_uniphier_mdmac_desc(vd);
return mc->md;
}
/* mc->vc.lock must be held by caller */
static void uniphier_mdmac_handle(struct uniphier_mdmac_chan *mc,
struct uniphier_mdmac_desc *md)
{
struct uniphier_mdmac_device *mdev = mc->mdev;
struct scatterlist *sg;
u32 irq_flag = UNIPHIER_MDMAC_CH_IRQ__DONE;
u32 src_mode, src_addr, dest_mode, dest_addr, chunk_size;
sg = &md->sgl[md->sg_cur];
if (md->dir == DMA_MEM_TO_DEV) {
src_mode = UNIPHIER_MDMAC_CH_MODE__ADDR_INC;
src_addr = sg_dma_address(sg);
dest_mode = UNIPHIER_MDMAC_CH_MODE__ADDR_FIXED;
dest_addr = 0;
} else {
src_mode = UNIPHIER_MDMAC_CH_MODE__ADDR_FIXED;
src_addr = 0;
dest_mode = UNIPHIER_MDMAC_CH_MODE__ADDR_INC;
dest_addr = sg_dma_address(sg);
}
chunk_size = sg_dma_len(sg);
writel(src_mode, mc->reg_ch_base + UNIPHIER_MDMAC_CH_SRC_MODE);
writel(dest_mode, mc->reg_ch_base + UNIPHIER_MDMAC_CH_DEST_MODE);
writel(src_addr, mc->reg_ch_base + UNIPHIER_MDMAC_CH_SRC_ADDR);
writel(dest_addr, mc->reg_ch_base + UNIPHIER_MDMAC_CH_DEST_ADDR);
writel(chunk_size, mc->reg_ch_base + UNIPHIER_MDMAC_CH_SIZE);
/* write 1 to clear */
writel(irq_flag, mc->reg_ch_base + UNIPHIER_MDMAC_CH_IRQ_REQ);
writel(irq_flag, mc->reg_ch_base + UNIPHIER_MDMAC_CH_IRQ_EN);
writel(BIT(mc->chan_id), mdev->reg_base + UNIPHIER_MDMAC_CMD);
}
/* mc->vc.lock must be held by caller */
static void uniphier_mdmac_start(struct uniphier_mdmac_chan *mc)
{
struct uniphier_mdmac_desc *md;
md = uniphier_mdmac_next_desc(mc);
if (md)
uniphier_mdmac_handle(mc, md);
}
/* mc->vc.lock must be held by caller */
static int uniphier_mdmac_abort(struct uniphier_mdmac_chan *mc)
{
struct uniphier_mdmac_device *mdev = mc->mdev;
u32 irq_flag = UNIPHIER_MDMAC_CH_IRQ__ABORT;
u32 val;
/* write 1 to clear */
writel(irq_flag, mc->reg_ch_base + UNIPHIER_MDMAC_CH_IRQ_REQ);
writel(UNIPHIER_MDMAC_CMD_ABORT | BIT(mc->chan_id),
mdev->reg_base + UNIPHIER_MDMAC_CMD);
/*
* Abort should be accepted soon. We poll the bit here instead of
* waiting for the interrupt.
*/
return readl_poll_timeout(mc->reg_ch_base + UNIPHIER_MDMAC_CH_IRQ_REQ,
val, val & irq_flag, 0, 20);
}
static irqreturn_t uniphier_mdmac_interrupt(int irq, void *dev_id)
{
struct uniphier_mdmac_chan *mc = dev_id;
struct uniphier_mdmac_desc *md;
irqreturn_t ret = IRQ_HANDLED;
u32 irq_stat;
spin_lock(&mc->vc.lock);
irq_stat = readl(mc->reg_ch_base + UNIPHIER_MDMAC_CH_IRQ_DET);
/*
* Some channels share a single interrupt line. If the IRQ status is 0,
* this is probably triggered by a different channel.
*/
if (!irq_stat) {
ret = IRQ_NONE;
goto out;
}
/* write 1 to clear */
writel(irq_stat, mc->reg_ch_base + UNIPHIER_MDMAC_CH_IRQ_REQ);
/*
* UNIPHIER_MDMAC_CH_IRQ__DONE interrupt is asserted even when the DMA
* is aborted. To distinguish the normal completion and the abort,
* check mc->md. If it is NULL, we are aborting.
*/
md = mc->md;
if (!md)
goto out;
md->sg_cur++;
if (md->sg_cur >= md->sg_len) {
vchan_cookie_complete(&md->vd);
md = uniphier_mdmac_next_desc(mc);
if (!md)
goto out;
}
uniphier_mdmac_handle(mc, md);
out:
spin_unlock(&mc->vc.lock);
return ret;
}
static void uniphier_mdmac_free_chan_resources(struct dma_chan *chan)
{
vchan_free_chan_resources(to_virt_chan(chan));
}
static struct dma_async_tx_descriptor *
uniphier_mdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len,
enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct virt_dma_chan *vc = to_virt_chan(chan);
struct uniphier_mdmac_desc *md;
if (!is_slave_direction(direction))
return NULL;
md = kzalloc(sizeof(*md), GFP_NOWAIT);
if (!md)
return NULL;
md->sgl = sgl;
md->sg_len = sg_len;
md->dir = direction;
return vchan_tx_prep(vc, &md->vd, flags);
}
static int uniphier_mdmac_terminate_all(struct dma_chan *chan)
{
struct virt_dma_chan *vc = to_virt_chan(chan);
struct uniphier_mdmac_chan *mc = to_uniphier_mdmac_chan(vc);
unsigned long flags;
int ret = 0;
LIST_HEAD(head);
spin_lock_irqsave(&vc->lock, flags);
if (mc->md) {
vchan_terminate_vdesc(&mc->md->vd);
mc->md = NULL;
ret = uniphier_mdmac_abort(mc);
}
vchan_get_all_descriptors(vc, &head);
spin_unlock_irqrestore(&vc->lock, flags);
vchan_dma_desc_free_list(vc, &head);
return ret;
}
static void uniphier_mdmac_synchronize(struct dma_chan *chan)
{
vchan_synchronize(to_virt_chan(chan));
}
static enum dma_status uniphier_mdmac_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct virt_dma_chan *vc;
struct virt_dma_desc *vd;
struct uniphier_mdmac_chan *mc;
struct uniphier_mdmac_desc *md = NULL;
enum dma_status stat;
unsigned long flags;
int i;
stat = dma_cookie_status(chan, cookie, txstate);
/* Return immediately if we do not need to compute the residue. */
if (stat == DMA_COMPLETE || !txstate)
return stat;
vc = to_virt_chan(chan);
spin_lock_irqsave(&vc->lock, flags);
mc = to_uniphier_mdmac_chan(vc);
if (mc->md && mc->md->vd.tx.cookie == cookie) {
/* residue from the on-flight chunk */
txstate->residue = readl(mc->reg_ch_base +
UNIPHIER_MDMAC_CH_SIZE);
md = mc->md;
}
if (!md) {
vd = vchan_find_desc(vc, cookie);
if (vd)
md = to_uniphier_mdmac_desc(vd);
}
if (md) {
/* residue from the queued chunks */
for (i = md->sg_cur; i < md->sg_len; i++)
txstate->residue += sg_dma_len(&md->sgl[i]);
}
spin_unlock_irqrestore(&vc->lock, flags);
return stat;
}
static void uniphier_mdmac_issue_pending(struct dma_chan *chan)
{
struct virt_dma_chan *vc = to_virt_chan(chan);
struct uniphier_mdmac_chan *mc = to_uniphier_mdmac_chan(vc);
unsigned long flags;
spin_lock_irqsave(&vc->lock, flags);
if (vchan_issue_pending(vc) && !mc->md)
uniphier_mdmac_start(mc);
spin_unlock_irqrestore(&vc->lock, flags);
}
static void uniphier_mdmac_desc_free(struct virt_dma_desc *vd)
{
kfree(to_uniphier_mdmac_desc(vd));
}
static int uniphier_mdmac_chan_init(struct platform_device *pdev,
struct uniphier_mdmac_device *mdev,
int chan_id)
{
struct device *dev = &pdev->dev;
struct uniphier_mdmac_chan *mc = &mdev->channels[chan_id];
char *irq_name;
int irq, ret;
irq = platform_get_irq(pdev, chan_id);
if (irq < 0)
return irq;
irq_name = devm_kasprintf(dev, GFP_KERNEL, "uniphier-mio-dmac-ch%d",
chan_id);
if (!irq_name)
return -ENOMEM;
ret = devm_request_irq(dev, irq, uniphier_mdmac_interrupt,
IRQF_SHARED, irq_name, mc);
if (ret)
return ret;
mc->mdev = mdev;
mc->reg_ch_base = mdev->reg_base + UNIPHIER_MDMAC_CH_OFFSET +
UNIPHIER_MDMAC_CH_STRIDE * chan_id;
mc->chan_id = chan_id;
mc->vc.desc_free = uniphier_mdmac_desc_free;
vchan_init(&mc->vc, &mdev->ddev);
return 0;
}
static int uniphier_mdmac_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct uniphier_mdmac_device *mdev;
struct dma_device *ddev;
int nr_chans, ret, i;
nr_chans = platform_irq_count(pdev);
if (nr_chans < 0)
return nr_chans;
ret = dma_set_mask(dev, DMA_BIT_MASK(32));
if (ret)
return ret;
mdev = devm_kzalloc(dev, struct_size(mdev, channels, nr_chans),
GFP_KERNEL);
if (!mdev)
return -ENOMEM;
mdev->reg_base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(mdev->reg_base))
return PTR_ERR(mdev->reg_base);
mdev->clk = devm_clk_get(dev, NULL);
if (IS_ERR(mdev->clk)) {
dev_err(dev, "failed to get clock\n");
return PTR_ERR(mdev->clk);
}
ret = clk_prepare_enable(mdev->clk);
if (ret)
return ret;
ddev = &mdev->ddev;
ddev->dev = dev;
dma_cap_set(DMA_PRIVATE, ddev->cap_mask);
ddev->src_addr_widths = UNIPHIER_MDMAC_SLAVE_BUSWIDTHS;
ddev->dst_addr_widths = UNIPHIER_MDMAC_SLAVE_BUSWIDTHS;
ddev->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
ddev->device_free_chan_resources = uniphier_mdmac_free_chan_resources;
ddev->device_prep_slave_sg = uniphier_mdmac_prep_slave_sg;
ddev->device_terminate_all = uniphier_mdmac_terminate_all;
ddev->device_synchronize = uniphier_mdmac_synchronize;
ddev->device_tx_status = uniphier_mdmac_tx_status;
ddev->device_issue_pending = uniphier_mdmac_issue_pending;
INIT_LIST_HEAD(&ddev->channels);
for (i = 0; i < nr_chans; i++) {
ret = uniphier_mdmac_chan_init(pdev, mdev, i);
if (ret)
goto disable_clk;
}
ret = dma_async_device_register(ddev);
if (ret)
goto disable_clk;
ret = of_dma_controller_register(dev->of_node, of_dma_xlate_by_chan_id,
ddev);
if (ret)
goto unregister_dmac;
platform_set_drvdata(pdev, mdev);
return 0;
unregister_dmac:
dma_async_device_unregister(ddev);
disable_clk:
clk_disable_unprepare(mdev->clk);
return ret;
}
static void uniphier_mdmac_remove(struct platform_device *pdev)
{
struct uniphier_mdmac_device *mdev = platform_get_drvdata(pdev);
struct dma_chan *chan;
int ret;
/*
* Before reaching here, almost all descriptors have been freed by the
* ->device_free_chan_resources() hook. However, each channel might
* be still holding one descriptor that was on-flight at that moment.
* Terminate it to make sure this hardware is no longer running. Then,
* free the channel resources once again to avoid memory leak.
*/
list_for_each_entry(chan, &mdev->ddev.channels, device_node) {
ret = dmaengine_terminate_sync(chan);
if (ret) {
/*
* This results in resource leakage and maybe also
* use-after-free errors as e.g. *mdev is kfreed.
*/
dev_alert(&pdev->dev, "Failed to terminate channel %d (%pe)\n",
chan->chan_id, ERR_PTR(ret));
return;
}
uniphier_mdmac_free_chan_resources(chan);
}
of_dma_controller_free(pdev->dev.of_node);
dma_async_device_unregister(&mdev->ddev);
clk_disable_unprepare(mdev->clk);
}
static const struct of_device_id uniphier_mdmac_match[] = {
{ .compatible = "socionext,uniphier-mio-dmac" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, uniphier_mdmac_match);
static struct platform_driver uniphier_mdmac_driver = {
.probe = uniphier_mdmac_probe,
.remove_new = uniphier_mdmac_remove,
.driver = {
.name = "uniphier-mio-dmac",
.of_match_table = uniphier_mdmac_match,
},
};
module_platform_driver(uniphier_mdmac_driver);
MODULE_AUTHOR("Masahiro Yamada <yamada.masahiro@socionext.com>");
MODULE_DESCRIPTION("UniPhier MIO DMAC driver");
MODULE_LICENSE("GPL v2");