1
linux/drivers/net/ethernet/oa_tc6.c
Parthiban Veerasooran afd42170c8 net: ethernet: oa_tc6: add helper function to enable zero align rx frame
Zero align receive frame feature can be enabled to align all receive
ethernet frames data to start at the beginning of any receive data chunk
payload with a start word offset (SWO) of zero. Receive frames may begin
anywhere within the receive data chunk payload when this feature is not
enabled.

Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: Parthiban Veerasooran <Parthiban.Veerasooran@microchip.com>
Link: https://patch.msgid.link/20240909082514.262942-13-Parthiban.Veerasooran@microchip.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-09-11 20:53:45 -07:00

1362 lines
35 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-2.0+
/*
* OPEN Alliance 10BASET1x MACPHY Serial Interface framework
*
* Author: Parthiban Veerasooran <parthiban.veerasooran@microchip.com>
*/
#include <linux/bitfield.h>
#include <linux/iopoll.h>
#include <linux/mdio.h>
#include <linux/phy.h>
#include <linux/oa_tc6.h>
/* OPEN Alliance TC6 registers */
/* Standard Capabilities Register */
#define OA_TC6_REG_STDCAP 0x0002
#define STDCAP_DIRECT_PHY_REG_ACCESS BIT(8)
/* Reset Control and Status Register */
#define OA_TC6_REG_RESET 0x0003
#define RESET_SWRESET BIT(0) /* Software Reset */
/* Configuration Register #0 */
#define OA_TC6_REG_CONFIG0 0x0004
#define CONFIG0_SYNC BIT(15)
#define CONFIG0_ZARFE_ENABLE BIT(12)
/* Status Register #0 */
#define OA_TC6_REG_STATUS0 0x0008
#define STATUS0_RESETC BIT(6) /* Reset Complete */
#define STATUS0_HEADER_ERROR BIT(5)
#define STATUS0_LOSS_OF_FRAME_ERROR BIT(4)
#define STATUS0_RX_BUFFER_OVERFLOW_ERROR BIT(3)
#define STATUS0_TX_PROTOCOL_ERROR BIT(0)
/* Buffer Status Register */
#define OA_TC6_REG_BUFFER_STATUS 0x000B
#define BUFFER_STATUS_TX_CREDITS_AVAILABLE GENMASK(15, 8)
#define BUFFER_STATUS_RX_CHUNKS_AVAILABLE GENMASK(7, 0)
/* Interrupt Mask Register #0 */
#define OA_TC6_REG_INT_MASK0 0x000C
#define INT_MASK0_HEADER_ERR_MASK BIT(5)
#define INT_MASK0_LOSS_OF_FRAME_ERR_MASK BIT(4)
#define INT_MASK0_RX_BUFFER_OVERFLOW_ERR_MASK BIT(3)
#define INT_MASK0_TX_PROTOCOL_ERR_MASK BIT(0)
/* PHY Clause 22 registers base address and mask */
#define OA_TC6_PHY_STD_REG_ADDR_BASE 0xFF00
#define OA_TC6_PHY_STD_REG_ADDR_MASK 0x1F
/* Control command header */
#define OA_TC6_CTRL_HEADER_DATA_NOT_CTRL BIT(31)
#define OA_TC6_CTRL_HEADER_WRITE_NOT_READ BIT(29)
#define OA_TC6_CTRL_HEADER_MEM_MAP_SELECTOR GENMASK(27, 24)
#define OA_TC6_CTRL_HEADER_ADDR GENMASK(23, 8)
#define OA_TC6_CTRL_HEADER_LENGTH GENMASK(7, 1)
#define OA_TC6_CTRL_HEADER_PARITY BIT(0)
/* Data header */
#define OA_TC6_DATA_HEADER_DATA_NOT_CTRL BIT(31)
#define OA_TC6_DATA_HEADER_DATA_VALID BIT(21)
#define OA_TC6_DATA_HEADER_START_VALID BIT(20)
#define OA_TC6_DATA_HEADER_START_WORD_OFFSET GENMASK(19, 16)
#define OA_TC6_DATA_HEADER_END_VALID BIT(14)
#define OA_TC6_DATA_HEADER_END_BYTE_OFFSET GENMASK(13, 8)
#define OA_TC6_DATA_HEADER_PARITY BIT(0)
/* Data footer */
#define OA_TC6_DATA_FOOTER_EXTENDED_STS BIT(31)
#define OA_TC6_DATA_FOOTER_RXD_HEADER_BAD BIT(30)
#define OA_TC6_DATA_FOOTER_CONFIG_SYNC BIT(29)
#define OA_TC6_DATA_FOOTER_RX_CHUNKS GENMASK(28, 24)
#define OA_TC6_DATA_FOOTER_DATA_VALID BIT(21)
#define OA_TC6_DATA_FOOTER_START_VALID BIT(20)
#define OA_TC6_DATA_FOOTER_START_WORD_OFFSET GENMASK(19, 16)
#define OA_TC6_DATA_FOOTER_END_VALID BIT(14)
#define OA_TC6_DATA_FOOTER_END_BYTE_OFFSET GENMASK(13, 8)
#define OA_TC6_DATA_FOOTER_TX_CREDITS GENMASK(5, 1)
/* PHY Clause 45 registers memory map selector (MMS) as per table 6 in the
* OPEN Alliance specification.
*/
#define OA_TC6_PHY_C45_PCS_MMS2 2 /* MMD 3 */
#define OA_TC6_PHY_C45_PMA_PMD_MMS3 3 /* MMD 1 */
#define OA_TC6_PHY_C45_VS_PLCA_MMS4 4 /* MMD 31 */
#define OA_TC6_PHY_C45_AUTO_NEG_MMS5 5 /* MMD 7 */
#define OA_TC6_PHY_C45_POWER_UNIT_MMS6 6 /* MMD 13 */
#define OA_TC6_CTRL_HEADER_SIZE 4
#define OA_TC6_CTRL_REG_VALUE_SIZE 4
#define OA_TC6_CTRL_IGNORED_SIZE 4
#define OA_TC6_CTRL_MAX_REGISTERS 128
#define OA_TC6_CTRL_SPI_BUF_SIZE (OA_TC6_CTRL_HEADER_SIZE +\
(OA_TC6_CTRL_MAX_REGISTERS *\
OA_TC6_CTRL_REG_VALUE_SIZE) +\
OA_TC6_CTRL_IGNORED_SIZE)
#define OA_TC6_CHUNK_PAYLOAD_SIZE 64
#define OA_TC6_DATA_HEADER_SIZE 4
#define OA_TC6_CHUNK_SIZE (OA_TC6_DATA_HEADER_SIZE +\
OA_TC6_CHUNK_PAYLOAD_SIZE)
#define OA_TC6_MAX_TX_CHUNKS 48
#define OA_TC6_SPI_DATA_BUF_SIZE (OA_TC6_MAX_TX_CHUNKS *\
OA_TC6_CHUNK_SIZE)
#define STATUS0_RESETC_POLL_DELAY 1000
#define STATUS0_RESETC_POLL_TIMEOUT 1000000
/* Internal structure for MAC-PHY drivers */
struct oa_tc6 {
struct device *dev;
struct net_device *netdev;
struct phy_device *phydev;
struct mii_bus *mdiobus;
struct spi_device *spi;
struct mutex spi_ctrl_lock; /* Protects spi control transfer */
void *spi_ctrl_tx_buf;
void *spi_ctrl_rx_buf;
void *spi_data_tx_buf;
void *spi_data_rx_buf;
struct sk_buff *ongoing_tx_skb;
struct sk_buff *waiting_tx_skb;
struct sk_buff *rx_skb;
struct task_struct *spi_thread;
wait_queue_head_t spi_wq;
u16 tx_skb_offset;
u16 spi_data_tx_buf_offset;
u16 tx_credits;
u8 rx_chunks_available;
bool rx_buf_overflow;
bool int_flag;
};
enum oa_tc6_header_type {
OA_TC6_CTRL_HEADER,
OA_TC6_DATA_HEADER,
};
enum oa_tc6_register_op {
OA_TC6_CTRL_REG_READ = 0,
OA_TC6_CTRL_REG_WRITE = 1,
};
enum oa_tc6_data_valid_info {
OA_TC6_DATA_INVALID,
OA_TC6_DATA_VALID,
};
enum oa_tc6_data_start_valid_info {
OA_TC6_DATA_START_INVALID,
OA_TC6_DATA_START_VALID,
};
enum oa_tc6_data_end_valid_info {
OA_TC6_DATA_END_INVALID,
OA_TC6_DATA_END_VALID,
};
static int oa_tc6_spi_transfer(struct oa_tc6 *tc6,
enum oa_tc6_header_type header_type, u16 length)
{
struct spi_transfer xfer = { 0 };
struct spi_message msg;
if (header_type == OA_TC6_DATA_HEADER) {
xfer.tx_buf = tc6->spi_data_tx_buf;
xfer.rx_buf = tc6->spi_data_rx_buf;
} else {
xfer.tx_buf = tc6->spi_ctrl_tx_buf;
xfer.rx_buf = tc6->spi_ctrl_rx_buf;
}
xfer.len = length;
spi_message_init(&msg);
spi_message_add_tail(&xfer, &msg);
return spi_sync(tc6->spi, &msg);
}
static int oa_tc6_get_parity(u32 p)
{
/* Public domain code snippet, lifted from
* http://www-graphics.stanford.edu/~seander/bithacks.html
*/
p ^= p >> 1;
p ^= p >> 2;
p = (p & 0x11111111U) * 0x11111111U;
/* Odd parity is used here */
return !((p >> 28) & 1);
}
static __be32 oa_tc6_prepare_ctrl_header(u32 addr, u8 length,
enum oa_tc6_register_op reg_op)
{
u32 header;
header = FIELD_PREP(OA_TC6_CTRL_HEADER_DATA_NOT_CTRL,
OA_TC6_CTRL_HEADER) |
FIELD_PREP(OA_TC6_CTRL_HEADER_WRITE_NOT_READ, reg_op) |
FIELD_PREP(OA_TC6_CTRL_HEADER_MEM_MAP_SELECTOR, addr >> 16) |
FIELD_PREP(OA_TC6_CTRL_HEADER_ADDR, addr) |
FIELD_PREP(OA_TC6_CTRL_HEADER_LENGTH, length - 1);
header |= FIELD_PREP(OA_TC6_CTRL_HEADER_PARITY,
oa_tc6_get_parity(header));
return cpu_to_be32(header);
}
static void oa_tc6_update_ctrl_write_data(struct oa_tc6 *tc6, u32 value[],
u8 length)
{
__be32 *tx_buf = tc6->spi_ctrl_tx_buf + OA_TC6_CTRL_HEADER_SIZE;
for (int i = 0; i < length; i++)
*tx_buf++ = cpu_to_be32(value[i]);
}
static u16 oa_tc6_calculate_ctrl_buf_size(u8 length)
{
/* Control command consists 4 bytes header + 4 bytes register value for
* each register + 4 bytes ignored value.
*/
return OA_TC6_CTRL_HEADER_SIZE + OA_TC6_CTRL_REG_VALUE_SIZE * length +
OA_TC6_CTRL_IGNORED_SIZE;
}
static void oa_tc6_prepare_ctrl_spi_buf(struct oa_tc6 *tc6, u32 address,
u32 value[], u8 length,
enum oa_tc6_register_op reg_op)
{
__be32 *tx_buf = tc6->spi_ctrl_tx_buf;
*tx_buf = oa_tc6_prepare_ctrl_header(address, length, reg_op);
if (reg_op == OA_TC6_CTRL_REG_WRITE)
oa_tc6_update_ctrl_write_data(tc6, value, length);
}
static int oa_tc6_check_ctrl_write_reply(struct oa_tc6 *tc6, u8 size)
{
u8 *tx_buf = tc6->spi_ctrl_tx_buf;
u8 *rx_buf = tc6->spi_ctrl_rx_buf;
rx_buf += OA_TC6_CTRL_IGNORED_SIZE;
/* The echoed control write must match with the one that was
* transmitted.
*/
if (memcmp(tx_buf, rx_buf, size - OA_TC6_CTRL_IGNORED_SIZE))
return -EPROTO;
return 0;
}
static int oa_tc6_check_ctrl_read_reply(struct oa_tc6 *tc6, u8 size)
{
u32 *rx_buf = tc6->spi_ctrl_rx_buf + OA_TC6_CTRL_IGNORED_SIZE;
u32 *tx_buf = tc6->spi_ctrl_tx_buf;
/* The echoed control read header must match with the one that was
* transmitted.
*/
if (*tx_buf != *rx_buf)
return -EPROTO;
return 0;
}
static void oa_tc6_copy_ctrl_read_data(struct oa_tc6 *tc6, u32 value[],
u8 length)
{
__be32 *rx_buf = tc6->spi_ctrl_rx_buf + OA_TC6_CTRL_IGNORED_SIZE +
OA_TC6_CTRL_HEADER_SIZE;
for (int i = 0; i < length; i++)
value[i] = be32_to_cpu(*rx_buf++);
}
static int oa_tc6_perform_ctrl(struct oa_tc6 *tc6, u32 address, u32 value[],
u8 length, enum oa_tc6_register_op reg_op)
{
u16 size;
int ret;
/* Prepare control command and copy to SPI control buffer */
oa_tc6_prepare_ctrl_spi_buf(tc6, address, value, length, reg_op);
size = oa_tc6_calculate_ctrl_buf_size(length);
/* Perform SPI transfer */
ret = oa_tc6_spi_transfer(tc6, OA_TC6_CTRL_HEADER, size);
if (ret) {
dev_err(&tc6->spi->dev, "SPI transfer failed for control: %d\n",
ret);
return ret;
}
/* Check echoed/received control write command reply for errors */
if (reg_op == OA_TC6_CTRL_REG_WRITE)
return oa_tc6_check_ctrl_write_reply(tc6, size);
/* Check echoed/received control read command reply for errors */
ret = oa_tc6_check_ctrl_read_reply(tc6, size);
if (ret)
return ret;
oa_tc6_copy_ctrl_read_data(tc6, value, length);
return 0;
}
/**
* oa_tc6_read_registers - function for reading multiple consecutive registers.
* @tc6: oa_tc6 struct.
* @address: address of the first register to be read in the MAC-PHY.
* @value: values to be read from the starting register address @address.
* @length: number of consecutive registers to be read from @address.
*
* Maximum of 128 consecutive registers can be read starting at @address.
*
* Return: 0 on success otherwise failed.
*/
int oa_tc6_read_registers(struct oa_tc6 *tc6, u32 address, u32 value[],
u8 length)
{
int ret;
if (!length || length > OA_TC6_CTRL_MAX_REGISTERS) {
dev_err(&tc6->spi->dev, "Invalid register length parameter\n");
return -EINVAL;
}
mutex_lock(&tc6->spi_ctrl_lock);
ret = oa_tc6_perform_ctrl(tc6, address, value, length,
OA_TC6_CTRL_REG_READ);
mutex_unlock(&tc6->spi_ctrl_lock);
return ret;
}
EXPORT_SYMBOL_GPL(oa_tc6_read_registers);
/**
* oa_tc6_read_register - function for reading a MAC-PHY register.
* @tc6: oa_tc6 struct.
* @address: register address of the MAC-PHY to be read.
* @value: value read from the @address register address of the MAC-PHY.
*
* Return: 0 on success otherwise failed.
*/
int oa_tc6_read_register(struct oa_tc6 *tc6, u32 address, u32 *value)
{
return oa_tc6_read_registers(tc6, address, value, 1);
}
EXPORT_SYMBOL_GPL(oa_tc6_read_register);
/**
* oa_tc6_write_registers - function for writing multiple consecutive registers.
* @tc6: oa_tc6 struct.
* @address: address of the first register to be written in the MAC-PHY.
* @value: values to be written from the starting register address @address.
* @length: number of consecutive registers to be written from @address.
*
* Maximum of 128 consecutive registers can be written starting at @address.
*
* Return: 0 on success otherwise failed.
*/
int oa_tc6_write_registers(struct oa_tc6 *tc6, u32 address, u32 value[],
u8 length)
{
int ret;
if (!length || length > OA_TC6_CTRL_MAX_REGISTERS) {
dev_err(&tc6->spi->dev, "Invalid register length parameter\n");
return -EINVAL;
}
mutex_lock(&tc6->spi_ctrl_lock);
ret = oa_tc6_perform_ctrl(tc6, address, value, length,
OA_TC6_CTRL_REG_WRITE);
mutex_unlock(&tc6->spi_ctrl_lock);
return ret;
}
EXPORT_SYMBOL_GPL(oa_tc6_write_registers);
/**
* oa_tc6_write_register - function for writing a MAC-PHY register.
* @tc6: oa_tc6 struct.
* @address: register address of the MAC-PHY to be written.
* @value: value to be written in the @address register address of the MAC-PHY.
*
* Return: 0 on success otherwise failed.
*/
int oa_tc6_write_register(struct oa_tc6 *tc6, u32 address, u32 value)
{
return oa_tc6_write_registers(tc6, address, &value, 1);
}
EXPORT_SYMBOL_GPL(oa_tc6_write_register);
static int oa_tc6_check_phy_reg_direct_access_capability(struct oa_tc6 *tc6)
{
u32 regval;
int ret;
ret = oa_tc6_read_register(tc6, OA_TC6_REG_STDCAP, &regval);
if (ret)
return ret;
if (!(regval & STDCAP_DIRECT_PHY_REG_ACCESS))
return -ENODEV;
return 0;
}
static void oa_tc6_handle_link_change(struct net_device *netdev)
{
phy_print_status(netdev->phydev);
}
static int oa_tc6_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
{
struct oa_tc6 *tc6 = bus->priv;
u32 regval;
bool ret;
ret = oa_tc6_read_register(tc6, OA_TC6_PHY_STD_REG_ADDR_BASE |
(regnum & OA_TC6_PHY_STD_REG_ADDR_MASK),
&regval);
if (ret)
return ret;
return regval;
}
static int oa_tc6_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
u16 val)
{
struct oa_tc6 *tc6 = bus->priv;
return oa_tc6_write_register(tc6, OA_TC6_PHY_STD_REG_ADDR_BASE |
(regnum & OA_TC6_PHY_STD_REG_ADDR_MASK),
val);
}
static int oa_tc6_get_phy_c45_mms(int devnum)
{
switch (devnum) {
case MDIO_MMD_PCS:
return OA_TC6_PHY_C45_PCS_MMS2;
case MDIO_MMD_PMAPMD:
return OA_TC6_PHY_C45_PMA_PMD_MMS3;
case MDIO_MMD_VEND2:
return OA_TC6_PHY_C45_VS_PLCA_MMS4;
case MDIO_MMD_AN:
return OA_TC6_PHY_C45_AUTO_NEG_MMS5;
case MDIO_MMD_POWER_UNIT:
return OA_TC6_PHY_C45_POWER_UNIT_MMS6;
default:
return -EOPNOTSUPP;
}
}
static int oa_tc6_mdiobus_read_c45(struct mii_bus *bus, int addr, int devnum,
int regnum)
{
struct oa_tc6 *tc6 = bus->priv;
u32 regval;
int ret;
ret = oa_tc6_get_phy_c45_mms(devnum);
if (ret < 0)
return ret;
ret = oa_tc6_read_register(tc6, (ret << 16) | regnum, &regval);
if (ret)
return ret;
return regval;
}
static int oa_tc6_mdiobus_write_c45(struct mii_bus *bus, int addr, int devnum,
int regnum, u16 val)
{
struct oa_tc6 *tc6 = bus->priv;
int ret;
ret = oa_tc6_get_phy_c45_mms(devnum);
if (ret < 0)
return ret;
return oa_tc6_write_register(tc6, (ret << 16) | regnum, val);
}
static int oa_tc6_mdiobus_register(struct oa_tc6 *tc6)
{
int ret;
tc6->mdiobus = mdiobus_alloc();
if (!tc6->mdiobus) {
netdev_err(tc6->netdev, "MDIO bus alloc failed\n");
return -ENOMEM;
}
tc6->mdiobus->priv = tc6;
tc6->mdiobus->read = oa_tc6_mdiobus_read;
tc6->mdiobus->write = oa_tc6_mdiobus_write;
/* OPEN Alliance 10BASE-T1x compliance MAC-PHYs will have both C22 and
* C45 registers space. If the PHY is discovered via C22 bus protocol it
* assumes it uses C22 protocol and always uses C22 registers indirect
* access to access C45 registers. This is because, we don't have a
* clean separation between C22/C45 register space and C22/C45 MDIO bus
* protocols. Resulting, PHY C45 registers direct access can't be used
* which can save multiple SPI bus access. To support this feature, PHY
* drivers can set .read_mmd/.write_mmd in the PHY driver to call
* .read_c45/.write_c45. Ex: drivers/net/phy/microchip_t1s.c
*/
tc6->mdiobus->read_c45 = oa_tc6_mdiobus_read_c45;
tc6->mdiobus->write_c45 = oa_tc6_mdiobus_write_c45;
tc6->mdiobus->name = "oa-tc6-mdiobus";
tc6->mdiobus->parent = tc6->dev;
snprintf(tc6->mdiobus->id, ARRAY_SIZE(tc6->mdiobus->id), "%s",
dev_name(&tc6->spi->dev));
ret = mdiobus_register(tc6->mdiobus);
if (ret) {
netdev_err(tc6->netdev, "Could not register MDIO bus\n");
mdiobus_free(tc6->mdiobus);
return ret;
}
return 0;
}
static void oa_tc6_mdiobus_unregister(struct oa_tc6 *tc6)
{
mdiobus_unregister(tc6->mdiobus);
mdiobus_free(tc6->mdiobus);
}
static int oa_tc6_phy_init(struct oa_tc6 *tc6)
{
int ret;
ret = oa_tc6_check_phy_reg_direct_access_capability(tc6);
if (ret) {
netdev_err(tc6->netdev,
"Direct PHY register access is not supported by the MAC-PHY\n");
return ret;
}
ret = oa_tc6_mdiobus_register(tc6);
if (ret)
return ret;
tc6->phydev = phy_find_first(tc6->mdiobus);
if (!tc6->phydev) {
netdev_err(tc6->netdev, "No PHY found\n");
oa_tc6_mdiobus_unregister(tc6);
return -ENODEV;
}
tc6->phydev->is_internal = true;
ret = phy_connect_direct(tc6->netdev, tc6->phydev,
&oa_tc6_handle_link_change,
PHY_INTERFACE_MODE_INTERNAL);
if (ret) {
netdev_err(tc6->netdev, "Can't attach PHY to %s\n",
tc6->mdiobus->id);
oa_tc6_mdiobus_unregister(tc6);
return ret;
}
phy_attached_info(tc6->netdev->phydev);
return 0;
}
static void oa_tc6_phy_exit(struct oa_tc6 *tc6)
{
phy_disconnect(tc6->phydev);
oa_tc6_mdiobus_unregister(tc6);
}
static int oa_tc6_read_status0(struct oa_tc6 *tc6)
{
u32 regval;
int ret;
ret = oa_tc6_read_register(tc6, OA_TC6_REG_STATUS0, &regval);
if (ret) {
dev_err(&tc6->spi->dev, "STATUS0 register read failed: %d\n",
ret);
return 0;
}
return regval;
}
static int oa_tc6_sw_reset_macphy(struct oa_tc6 *tc6)
{
u32 regval = RESET_SWRESET;
int ret;
ret = oa_tc6_write_register(tc6, OA_TC6_REG_RESET, regval);
if (ret)
return ret;
/* Poll for soft reset complete for every 1ms until 1s timeout */
ret = readx_poll_timeout(oa_tc6_read_status0, tc6, regval,
regval & STATUS0_RESETC,
STATUS0_RESETC_POLL_DELAY,
STATUS0_RESETC_POLL_TIMEOUT);
if (ret)
return -ENODEV;
/* Clear the reset complete status */
return oa_tc6_write_register(tc6, OA_TC6_REG_STATUS0, regval);
}
static int oa_tc6_unmask_macphy_error_interrupts(struct oa_tc6 *tc6)
{
u32 regval;
int ret;
ret = oa_tc6_read_register(tc6, OA_TC6_REG_INT_MASK0, &regval);
if (ret)
return ret;
regval &= ~(INT_MASK0_TX_PROTOCOL_ERR_MASK |
INT_MASK0_RX_BUFFER_OVERFLOW_ERR_MASK |
INT_MASK0_LOSS_OF_FRAME_ERR_MASK |
INT_MASK0_HEADER_ERR_MASK);
return oa_tc6_write_register(tc6, OA_TC6_REG_INT_MASK0, regval);
}
static int oa_tc6_enable_data_transfer(struct oa_tc6 *tc6)
{
u32 value;
int ret;
ret = oa_tc6_read_register(tc6, OA_TC6_REG_CONFIG0, &value);
if (ret)
return ret;
/* Enable configuration synchronization for data transfer */
value |= CONFIG0_SYNC;
return oa_tc6_write_register(tc6, OA_TC6_REG_CONFIG0, value);
}
static void oa_tc6_cleanup_ongoing_rx_skb(struct oa_tc6 *tc6)
{
if (tc6->rx_skb) {
tc6->netdev->stats.rx_dropped++;
kfree_skb(tc6->rx_skb);
tc6->rx_skb = NULL;
}
}
static void oa_tc6_cleanup_ongoing_tx_skb(struct oa_tc6 *tc6)
{
if (tc6->ongoing_tx_skb) {
tc6->netdev->stats.tx_dropped++;
kfree_skb(tc6->ongoing_tx_skb);
tc6->ongoing_tx_skb = NULL;
}
}
static int oa_tc6_process_extended_status(struct oa_tc6 *tc6)
{
u32 value;
int ret;
ret = oa_tc6_read_register(tc6, OA_TC6_REG_STATUS0, &value);
if (ret) {
netdev_err(tc6->netdev, "STATUS0 register read failed: %d\n",
ret);
return ret;
}
/* Clear the error interrupts status */
ret = oa_tc6_write_register(tc6, OA_TC6_REG_STATUS0, value);
if (ret) {
netdev_err(tc6->netdev, "STATUS0 register write failed: %d\n",
ret);
return ret;
}
if (FIELD_GET(STATUS0_RX_BUFFER_OVERFLOW_ERROR, value)) {
tc6->rx_buf_overflow = true;
oa_tc6_cleanup_ongoing_rx_skb(tc6);
net_err_ratelimited("%s: Receive buffer overflow error\n",
tc6->netdev->name);
return -EAGAIN;
}
if (FIELD_GET(STATUS0_TX_PROTOCOL_ERROR, value)) {
netdev_err(tc6->netdev, "Transmit protocol error\n");
return -ENODEV;
}
/* TODO: Currently loss of frame and header errors are treated as
* non-recoverable errors. They will be handled in the next version.
*/
if (FIELD_GET(STATUS0_LOSS_OF_FRAME_ERROR, value)) {
netdev_err(tc6->netdev, "Loss of frame error\n");
return -ENODEV;
}
if (FIELD_GET(STATUS0_HEADER_ERROR, value)) {
netdev_err(tc6->netdev, "Header error\n");
return -ENODEV;
}
return 0;
}
static int oa_tc6_process_rx_chunk_footer(struct oa_tc6 *tc6, u32 footer)
{
/* Process rx chunk footer for the following,
* 1. tx credits
* 2. errors if any from MAC-PHY
* 3. receive chunks available
*/
tc6->tx_credits = FIELD_GET(OA_TC6_DATA_FOOTER_TX_CREDITS, footer);
tc6->rx_chunks_available = FIELD_GET(OA_TC6_DATA_FOOTER_RX_CHUNKS,
footer);
if (FIELD_GET(OA_TC6_DATA_FOOTER_EXTENDED_STS, footer)) {
int ret = oa_tc6_process_extended_status(tc6);
if (ret)
return ret;
}
/* TODO: Currently received header bad and configuration unsync errors
* are treated as non-recoverable errors. They will be handled in the
* next version.
*/
if (FIELD_GET(OA_TC6_DATA_FOOTER_RXD_HEADER_BAD, footer)) {
netdev_err(tc6->netdev, "Rxd header bad error\n");
return -ENODEV;
}
if (!FIELD_GET(OA_TC6_DATA_FOOTER_CONFIG_SYNC, footer)) {
netdev_err(tc6->netdev, "Config unsync error\n");
return -ENODEV;
}
return 0;
}
static void oa_tc6_submit_rx_skb(struct oa_tc6 *tc6)
{
tc6->rx_skb->protocol = eth_type_trans(tc6->rx_skb, tc6->netdev);
tc6->netdev->stats.rx_packets++;
tc6->netdev->stats.rx_bytes += tc6->rx_skb->len;
netif_rx(tc6->rx_skb);
tc6->rx_skb = NULL;
}
static void oa_tc6_update_rx_skb(struct oa_tc6 *tc6, u8 *payload, u8 length)
{
memcpy(skb_put(tc6->rx_skb, length), payload, length);
}
static int oa_tc6_allocate_rx_skb(struct oa_tc6 *tc6)
{
tc6->rx_skb = netdev_alloc_skb_ip_align(tc6->netdev, tc6->netdev->mtu +
ETH_HLEN + ETH_FCS_LEN);
if (!tc6->rx_skb) {
tc6->netdev->stats.rx_dropped++;
return -ENOMEM;
}
return 0;
}
static int oa_tc6_prcs_complete_rx_frame(struct oa_tc6 *tc6, u8 *payload,
u16 size)
{
int ret;
ret = oa_tc6_allocate_rx_skb(tc6);
if (ret)
return ret;
oa_tc6_update_rx_skb(tc6, payload, size);
oa_tc6_submit_rx_skb(tc6);
return 0;
}
static int oa_tc6_prcs_rx_frame_start(struct oa_tc6 *tc6, u8 *payload, u16 size)
{
int ret;
ret = oa_tc6_allocate_rx_skb(tc6);
if (ret)
return ret;
oa_tc6_update_rx_skb(tc6, payload, size);
return 0;
}
static void oa_tc6_prcs_rx_frame_end(struct oa_tc6 *tc6, u8 *payload, u16 size)
{
oa_tc6_update_rx_skb(tc6, payload, size);
oa_tc6_submit_rx_skb(tc6);
}
static void oa_tc6_prcs_ongoing_rx_frame(struct oa_tc6 *tc6, u8 *payload,
u32 footer)
{
oa_tc6_update_rx_skb(tc6, payload, OA_TC6_CHUNK_PAYLOAD_SIZE);
}
static int oa_tc6_prcs_rx_chunk_payload(struct oa_tc6 *tc6, u8 *data,
u32 footer)
{
u8 start_byte_offset = FIELD_GET(OA_TC6_DATA_FOOTER_START_WORD_OFFSET,
footer) * sizeof(u32);
u8 end_byte_offset = FIELD_GET(OA_TC6_DATA_FOOTER_END_BYTE_OFFSET,
footer);
bool start_valid = FIELD_GET(OA_TC6_DATA_FOOTER_START_VALID, footer);
bool end_valid = FIELD_GET(OA_TC6_DATA_FOOTER_END_VALID, footer);
u16 size;
/* Restart the new rx frame after receiving rx buffer overflow error */
if (start_valid && tc6->rx_buf_overflow)
tc6->rx_buf_overflow = false;
if (tc6->rx_buf_overflow)
return 0;
/* Process the chunk with complete rx frame */
if (start_valid && end_valid && start_byte_offset < end_byte_offset) {
size = end_byte_offset + 1 - start_byte_offset;
return oa_tc6_prcs_complete_rx_frame(tc6,
&data[start_byte_offset],
size);
}
/* Process the chunk with only rx frame start */
if (start_valid && !end_valid) {
size = OA_TC6_CHUNK_PAYLOAD_SIZE - start_byte_offset;
return oa_tc6_prcs_rx_frame_start(tc6,
&data[start_byte_offset],
size);
}
/* Process the chunk with only rx frame end */
if (end_valid && !start_valid) {
size = end_byte_offset + 1;
oa_tc6_prcs_rx_frame_end(tc6, data, size);
return 0;
}
/* Process the chunk with previous rx frame end and next rx frame
* start.
*/
if (start_valid && end_valid && start_byte_offset > end_byte_offset) {
/* After rx buffer overflow error received, there might be a
* possibility of getting an end valid of a previously
* incomplete rx frame along with the new rx frame start valid.
*/
if (tc6->rx_skb) {
size = end_byte_offset + 1;
oa_tc6_prcs_rx_frame_end(tc6, data, size);
}
size = OA_TC6_CHUNK_PAYLOAD_SIZE - start_byte_offset;
return oa_tc6_prcs_rx_frame_start(tc6,
&data[start_byte_offset],
size);
}
/* Process the chunk with ongoing rx frame data */
oa_tc6_prcs_ongoing_rx_frame(tc6, data, footer);
return 0;
}
static u32 oa_tc6_get_rx_chunk_footer(struct oa_tc6 *tc6, u16 footer_offset)
{
u8 *rx_buf = tc6->spi_data_rx_buf;
__be32 footer;
footer = *((__be32 *)&rx_buf[footer_offset]);
return be32_to_cpu(footer);
}
static int oa_tc6_process_spi_data_rx_buf(struct oa_tc6 *tc6, u16 length)
{
u16 no_of_rx_chunks = length / OA_TC6_CHUNK_SIZE;
u32 footer;
int ret;
/* All the rx chunks in the receive SPI data buffer are examined here */
for (int i = 0; i < no_of_rx_chunks; i++) {
/* Last 4 bytes in each received chunk consist footer info */
footer = oa_tc6_get_rx_chunk_footer(tc6, i * OA_TC6_CHUNK_SIZE +
OA_TC6_CHUNK_PAYLOAD_SIZE);
ret = oa_tc6_process_rx_chunk_footer(tc6, footer);
if (ret)
return ret;
/* If there is a data valid chunks then process it for the
* information needed to determine the validity and the location
* of the receive frame data.
*/
if (FIELD_GET(OA_TC6_DATA_FOOTER_DATA_VALID, footer)) {
u8 *payload = tc6->spi_data_rx_buf + i *
OA_TC6_CHUNK_SIZE;
ret = oa_tc6_prcs_rx_chunk_payload(tc6, payload,
footer);
if (ret)
return ret;
}
}
return 0;
}
static __be32 oa_tc6_prepare_data_header(bool data_valid, bool start_valid,
bool end_valid, u8 end_byte_offset)
{
u32 header = FIELD_PREP(OA_TC6_DATA_HEADER_DATA_NOT_CTRL,
OA_TC6_DATA_HEADER) |
FIELD_PREP(OA_TC6_DATA_HEADER_DATA_VALID, data_valid) |
FIELD_PREP(OA_TC6_DATA_HEADER_START_VALID, start_valid) |
FIELD_PREP(OA_TC6_DATA_HEADER_END_VALID, end_valid) |
FIELD_PREP(OA_TC6_DATA_HEADER_END_BYTE_OFFSET,
end_byte_offset);
header |= FIELD_PREP(OA_TC6_DATA_HEADER_PARITY,
oa_tc6_get_parity(header));
return cpu_to_be32(header);
}
static void oa_tc6_add_tx_skb_to_spi_buf(struct oa_tc6 *tc6)
{
enum oa_tc6_data_end_valid_info end_valid = OA_TC6_DATA_END_INVALID;
__be32 *tx_buf = tc6->spi_data_tx_buf + tc6->spi_data_tx_buf_offset;
u16 remaining_len = tc6->ongoing_tx_skb->len - tc6->tx_skb_offset;
u8 *tx_skb_data = tc6->ongoing_tx_skb->data + tc6->tx_skb_offset;
enum oa_tc6_data_start_valid_info start_valid;
u8 end_byte_offset = 0;
u16 length_to_copy;
/* Initial value is assigned here to avoid more than 80 characters in
* the declaration place.
*/
start_valid = OA_TC6_DATA_START_INVALID;
/* Set start valid if the current tx chunk contains the start of the tx
* ethernet frame.
*/
if (!tc6->tx_skb_offset)
start_valid = OA_TC6_DATA_START_VALID;
/* If the remaining tx skb length is more than the chunk payload size of
* 64 bytes then copy only 64 bytes and leave the ongoing tx skb for
* next tx chunk.
*/
length_to_copy = min_t(u16, remaining_len, OA_TC6_CHUNK_PAYLOAD_SIZE);
/* Copy the tx skb data to the tx chunk payload buffer */
memcpy(tx_buf + 1, tx_skb_data, length_to_copy);
tc6->tx_skb_offset += length_to_copy;
/* Set end valid if the current tx chunk contains the end of the tx
* ethernet frame.
*/
if (tc6->ongoing_tx_skb->len == tc6->tx_skb_offset) {
end_valid = OA_TC6_DATA_END_VALID;
end_byte_offset = length_to_copy - 1;
tc6->tx_skb_offset = 0;
tc6->netdev->stats.tx_bytes += tc6->ongoing_tx_skb->len;
tc6->netdev->stats.tx_packets++;
kfree_skb(tc6->ongoing_tx_skb);
tc6->ongoing_tx_skb = NULL;
}
*tx_buf = oa_tc6_prepare_data_header(OA_TC6_DATA_VALID, start_valid,
end_valid, end_byte_offset);
tc6->spi_data_tx_buf_offset += OA_TC6_CHUNK_SIZE;
}
static u16 oa_tc6_prepare_spi_tx_buf_for_tx_skbs(struct oa_tc6 *tc6)
{
u16 used_tx_credits;
/* Get tx skbs and convert them into tx chunks based on the tx credits
* available.
*/
for (used_tx_credits = 0; used_tx_credits < tc6->tx_credits;
used_tx_credits++) {
if (!tc6->ongoing_tx_skb) {
tc6->ongoing_tx_skb = tc6->waiting_tx_skb;
tc6->waiting_tx_skb = NULL;
}
if (!tc6->ongoing_tx_skb)
break;
oa_tc6_add_tx_skb_to_spi_buf(tc6);
}
return used_tx_credits * OA_TC6_CHUNK_SIZE;
}
static void oa_tc6_add_empty_chunks_to_spi_buf(struct oa_tc6 *tc6,
u16 needed_empty_chunks)
{
__be32 header;
header = oa_tc6_prepare_data_header(OA_TC6_DATA_INVALID,
OA_TC6_DATA_START_INVALID,
OA_TC6_DATA_END_INVALID, 0);
while (needed_empty_chunks--) {
__be32 *tx_buf = tc6->spi_data_tx_buf +
tc6->spi_data_tx_buf_offset;
*tx_buf = header;
tc6->spi_data_tx_buf_offset += OA_TC6_CHUNK_SIZE;
}
}
static u16 oa_tc6_prepare_spi_tx_buf_for_rx_chunks(struct oa_tc6 *tc6, u16 len)
{
u16 tx_chunks = len / OA_TC6_CHUNK_SIZE;
u16 needed_empty_chunks;
/* If there are more chunks to receive than to transmit, we need to add
* enough empty tx chunks to allow the reception of the excess rx
* chunks.
*/
if (tx_chunks >= tc6->rx_chunks_available)
return len;
needed_empty_chunks = tc6->rx_chunks_available - tx_chunks;
oa_tc6_add_empty_chunks_to_spi_buf(tc6, needed_empty_chunks);
return needed_empty_chunks * OA_TC6_CHUNK_SIZE + len;
}
static int oa_tc6_try_spi_transfer(struct oa_tc6 *tc6)
{
int ret;
while (true) {
u16 spi_len = 0;
tc6->spi_data_tx_buf_offset = 0;
if (tc6->ongoing_tx_skb || tc6->waiting_tx_skb)
spi_len = oa_tc6_prepare_spi_tx_buf_for_tx_skbs(tc6);
spi_len = oa_tc6_prepare_spi_tx_buf_for_rx_chunks(tc6, spi_len);
if (tc6->int_flag) {
tc6->int_flag = false;
if (spi_len == 0) {
oa_tc6_add_empty_chunks_to_spi_buf(tc6, 1);
spi_len = OA_TC6_CHUNK_SIZE;
}
}
if (spi_len == 0)
break;
ret = oa_tc6_spi_transfer(tc6, OA_TC6_DATA_HEADER, spi_len);
if (ret) {
netdev_err(tc6->netdev, "SPI data transfer failed: %d\n",
ret);
return ret;
}
ret = oa_tc6_process_spi_data_rx_buf(tc6, spi_len);
if (ret) {
if (ret == -EAGAIN)
continue;
oa_tc6_cleanup_ongoing_tx_skb(tc6);
oa_tc6_cleanup_ongoing_rx_skb(tc6);
netdev_err(tc6->netdev, "Device error: %d\n", ret);
return ret;
}
if (!tc6->waiting_tx_skb && netif_queue_stopped(tc6->netdev))
netif_wake_queue(tc6->netdev);
}
return 0;
}
static int oa_tc6_spi_thread_handler(void *data)
{
struct oa_tc6 *tc6 = data;
int ret;
while (likely(!kthread_should_stop())) {
/* This kthread will be waken up if there is a tx skb or mac-phy
* interrupt to perform spi transfer with tx chunks.
*/
wait_event_interruptible(tc6->spi_wq, tc6->waiting_tx_skb ||
tc6->int_flag ||
kthread_should_stop());
if (kthread_should_stop())
break;
ret = oa_tc6_try_spi_transfer(tc6);
if (ret)
return ret;
}
return 0;
}
static int oa_tc6_update_buffer_status_from_register(struct oa_tc6 *tc6)
{
u32 value;
int ret;
/* Initially tx credits and rx chunks available to be updated from the
* register as there is no data transfer performed yet. Later they will
* be updated from the rx footer.
*/
ret = oa_tc6_read_register(tc6, OA_TC6_REG_BUFFER_STATUS, &value);
if (ret)
return ret;
tc6->tx_credits = FIELD_GET(BUFFER_STATUS_TX_CREDITS_AVAILABLE, value);
tc6->rx_chunks_available = FIELD_GET(BUFFER_STATUS_RX_CHUNKS_AVAILABLE,
value);
return 0;
}
static irqreturn_t oa_tc6_macphy_isr(int irq, void *data)
{
struct oa_tc6 *tc6 = data;
/* MAC-PHY interrupt can occur for the following reasons.
* - availability of tx credits if it was 0 before and not reported in
* the previous rx footer.
* - availability of rx chunks if it was 0 before and not reported in
* the previous rx footer.
* - extended status event not reported in the previous rx footer.
*/
tc6->int_flag = true;
/* Wake spi kthread to perform spi transfer */
wake_up_interruptible(&tc6->spi_wq);
return IRQ_HANDLED;
}
/**
* oa_tc6_zero_align_receive_frame_enable - function to enable zero align
* receive frame feature.
* @tc6: oa_tc6 struct.
*
* Return: 0 on success otherwise failed.
*/
int oa_tc6_zero_align_receive_frame_enable(struct oa_tc6 *tc6)
{
u32 regval;
int ret;
ret = oa_tc6_read_register(tc6, OA_TC6_REG_CONFIG0, &regval);
if (ret)
return ret;
/* Set Zero-Align Receive Frame Enable */
regval |= CONFIG0_ZARFE_ENABLE;
return oa_tc6_write_register(tc6, OA_TC6_REG_CONFIG0, regval);
}
EXPORT_SYMBOL_GPL(oa_tc6_zero_align_receive_frame_enable);
/**
* oa_tc6_start_xmit - function for sending the tx skb which consists ethernet
* frame.
* @tc6: oa_tc6 struct.
* @skb: socket buffer in which the ethernet frame is stored.
*
* Return: NETDEV_TX_OK if the transmit ethernet frame skb added in the tx_skb_q
* otherwise returns NETDEV_TX_BUSY.
*/
netdev_tx_t oa_tc6_start_xmit(struct oa_tc6 *tc6, struct sk_buff *skb)
{
if (tc6->waiting_tx_skb) {
netif_stop_queue(tc6->netdev);
return NETDEV_TX_BUSY;
}
if (skb_linearize(skb)) {
dev_kfree_skb_any(skb);
tc6->netdev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
tc6->waiting_tx_skb = skb;
/* Wake spi kthread to perform spi transfer */
wake_up_interruptible(&tc6->spi_wq);
return NETDEV_TX_OK;
}
EXPORT_SYMBOL_GPL(oa_tc6_start_xmit);
/**
* oa_tc6_init - allocates and initializes oa_tc6 structure.
* @spi: device with which data will be exchanged.
* @netdev: network device interface structure.
*
* Return: pointer reference to the oa_tc6 structure if the MAC-PHY
* initialization is successful otherwise NULL.
*/
struct oa_tc6 *oa_tc6_init(struct spi_device *spi, struct net_device *netdev)
{
struct oa_tc6 *tc6;
int ret;
tc6 = devm_kzalloc(&spi->dev, sizeof(*tc6), GFP_KERNEL);
if (!tc6)
return NULL;
tc6->spi = spi;
tc6->netdev = netdev;
SET_NETDEV_DEV(netdev, &spi->dev);
mutex_init(&tc6->spi_ctrl_lock);
/* Set the SPI controller to pump at realtime priority */
tc6->spi->rt = true;
spi_setup(tc6->spi);
tc6->spi_ctrl_tx_buf = devm_kzalloc(&tc6->spi->dev,
OA_TC6_CTRL_SPI_BUF_SIZE,
GFP_KERNEL);
if (!tc6->spi_ctrl_tx_buf)
return NULL;
tc6->spi_ctrl_rx_buf = devm_kzalloc(&tc6->spi->dev,
OA_TC6_CTRL_SPI_BUF_SIZE,
GFP_KERNEL);
if (!tc6->spi_ctrl_rx_buf)
return NULL;
tc6->spi_data_tx_buf = devm_kzalloc(&tc6->spi->dev,
OA_TC6_SPI_DATA_BUF_SIZE,
GFP_KERNEL);
if (!tc6->spi_data_tx_buf)
return NULL;
tc6->spi_data_rx_buf = devm_kzalloc(&tc6->spi->dev,
OA_TC6_SPI_DATA_BUF_SIZE,
GFP_KERNEL);
if (!tc6->spi_data_rx_buf)
return NULL;
ret = oa_tc6_sw_reset_macphy(tc6);
if (ret) {
dev_err(&tc6->spi->dev,
"MAC-PHY software reset failed: %d\n", ret);
return NULL;
}
ret = oa_tc6_unmask_macphy_error_interrupts(tc6);
if (ret) {
dev_err(&tc6->spi->dev,
"MAC-PHY error interrupts unmask failed: %d\n", ret);
return NULL;
}
ret = oa_tc6_phy_init(tc6);
if (ret) {
dev_err(&tc6->spi->dev,
"MAC internal PHY initialization failed: %d\n", ret);
return NULL;
}
ret = oa_tc6_enable_data_transfer(tc6);
if (ret) {
dev_err(&tc6->spi->dev, "Failed to enable data transfer: %d\n",
ret);
goto phy_exit;
}
ret = oa_tc6_update_buffer_status_from_register(tc6);
if (ret) {
dev_err(&tc6->spi->dev,
"Failed to update buffer status: %d\n", ret);
goto phy_exit;
}
init_waitqueue_head(&tc6->spi_wq);
tc6->spi_thread = kthread_run(oa_tc6_spi_thread_handler, tc6,
"oa-tc6-spi-thread");
if (IS_ERR(tc6->spi_thread)) {
dev_err(&tc6->spi->dev, "Failed to create SPI thread\n");
goto phy_exit;
}
sched_set_fifo(tc6->spi_thread);
ret = devm_request_irq(&tc6->spi->dev, tc6->spi->irq, oa_tc6_macphy_isr,
IRQF_TRIGGER_FALLING, dev_name(&tc6->spi->dev),
tc6);
if (ret) {
dev_err(&tc6->spi->dev, "Failed to request macphy isr %d\n",
ret);
goto kthread_stop;
}
/* oa_tc6_sw_reset_macphy() function resets and clears the MAC-PHY reset
* complete status. IRQ is also asserted on reset completion and it is
* remain asserted until MAC-PHY receives a data chunk. So performing an
* empty data chunk transmission will deassert the IRQ. Refer section
* 7.7 and 9.2.8.8 in the OPEN Alliance specification for more details.
*/
tc6->int_flag = true;
wake_up_interruptible(&tc6->spi_wq);
return tc6;
kthread_stop:
kthread_stop(tc6->spi_thread);
phy_exit:
oa_tc6_phy_exit(tc6);
return NULL;
}
EXPORT_SYMBOL_GPL(oa_tc6_init);
/**
* oa_tc6_exit - exit function.
* @tc6: oa_tc6 struct.
*/
void oa_tc6_exit(struct oa_tc6 *tc6)
{
oa_tc6_phy_exit(tc6);
kthread_stop(tc6->spi_thread);
dev_kfree_skb_any(tc6->ongoing_tx_skb);
dev_kfree_skb_any(tc6->waiting_tx_skb);
dev_kfree_skb_any(tc6->rx_skb);
}
EXPORT_SYMBOL_GPL(oa_tc6_exit);
MODULE_DESCRIPTION("OPEN Alliance 10BASET1x MACPHY Serial Interface Lib");
MODULE_AUTHOR("Parthiban Veerasooran <parthiban.veerasooran@microchip.com>");
MODULE_LICENSE("GPL");