1
linux/arch/powerpc/kernel/prom.c
Paul Mackerras cf00a8d18b powerpc: Fix bug arising from having multiple memory_limit variables
We had a static memory_limit in prom.c, and then another one defined
in setup_64.c and used in numa.c, which resulted in the kernel crashing
when mem=xxx was given on the command line.  This puts the declaration
in system.h and the definition in mem.c.  This also moves the
definition of tce_alloc_start/end out of setup_64.c.

Signed-off-by: Paul Mackerras <paulus@samba.org>
2005-10-31 13:07:02 +11:00

2171 lines
52 KiB
C

/*
* Procedures for creating, accessing and interpreting the device tree.
*
* Paul Mackerras August 1996.
* Copyright (C) 1996-2005 Paul Mackerras.
*
* Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
* {engebret|bergner}@us.ibm.com
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#undef DEBUG
#include <stdarg.h>
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/threads.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/stringify.h>
#include <linux/delay.h>
#include <linux/initrd.h>
#include <linux/bitops.h>
#include <linux/module.h>
#include <asm/prom.h>
#include <asm/rtas.h>
#include <asm/lmb.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/irq.h>
#include <asm/io.h>
#include <asm/smp.h>
#include <asm/system.h>
#include <asm/mmu.h>
#include <asm/pgtable.h>
#include <asm/pci.h>
#include <asm/iommu.h>
#include <asm/btext.h>
#include <asm/sections.h>
#include <asm/machdep.h>
#include <asm/pSeries_reconfig.h>
#include <asm/pci-bridge.h>
#ifdef CONFIG_PPC64
#include <asm/systemcfg.h>
#endif
#ifdef DEBUG
#define DBG(fmt...) printk(KERN_ERR fmt)
#else
#define DBG(fmt...)
#endif
struct pci_reg_property {
struct pci_address addr;
u32 size_hi;
u32 size_lo;
};
struct isa_reg_property {
u32 space;
u32 address;
u32 size;
};
typedef int interpret_func(struct device_node *, unsigned long *,
int, int, int);
extern struct rtas_t rtas;
extern struct lmb lmb;
extern unsigned long klimit;
static int __initdata dt_root_addr_cells;
static int __initdata dt_root_size_cells;
#ifdef CONFIG_PPC64
static int __initdata iommu_is_off;
int __initdata iommu_force_on;
unsigned long tce_alloc_start, tce_alloc_end;
#endif
typedef u32 cell_t;
#if 0
static struct boot_param_header *initial_boot_params __initdata;
#else
struct boot_param_header *initial_boot_params;
#endif
static struct device_node *allnodes = NULL;
/* use when traversing tree through the allnext, child, sibling,
* or parent members of struct device_node.
*/
static DEFINE_RWLOCK(devtree_lock);
/* export that to outside world */
struct device_node *of_chosen;
struct device_node *dflt_interrupt_controller;
int num_interrupt_controllers;
/*
* Wrapper for allocating memory for various data that needs to be
* attached to device nodes as they are processed at boot or when
* added to the device tree later (e.g. DLPAR). At boot there is
* already a region reserved so we just increment *mem_start by size;
* otherwise we call kmalloc.
*/
static void * prom_alloc(unsigned long size, unsigned long *mem_start)
{
unsigned long tmp;
if (!mem_start)
return kmalloc(size, GFP_KERNEL);
tmp = *mem_start;
*mem_start += size;
return (void *)tmp;
}
/*
* Find the device_node with a given phandle.
*/
static struct device_node * find_phandle(phandle ph)
{
struct device_node *np;
for (np = allnodes; np != 0; np = np->allnext)
if (np->linux_phandle == ph)
return np;
return NULL;
}
/*
* Find the interrupt parent of a node.
*/
static struct device_node * __devinit intr_parent(struct device_node *p)
{
phandle *parp;
parp = (phandle *) get_property(p, "interrupt-parent", NULL);
if (parp == NULL)
return p->parent;
p = find_phandle(*parp);
if (p != NULL)
return p;
/*
* On a powermac booted with BootX, we don't get to know the
* phandles for any nodes, so find_phandle will return NULL.
* Fortunately these machines only have one interrupt controller
* so there isn't in fact any ambiguity. -- paulus
*/
if (num_interrupt_controllers == 1)
p = dflt_interrupt_controller;
return p;
}
/*
* Find out the size of each entry of the interrupts property
* for a node.
*/
int __devinit prom_n_intr_cells(struct device_node *np)
{
struct device_node *p;
unsigned int *icp;
for (p = np; (p = intr_parent(p)) != NULL; ) {
icp = (unsigned int *)
get_property(p, "#interrupt-cells", NULL);
if (icp != NULL)
return *icp;
if (get_property(p, "interrupt-controller", NULL) != NULL
|| get_property(p, "interrupt-map", NULL) != NULL) {
printk("oops, node %s doesn't have #interrupt-cells\n",
p->full_name);
return 1;
}
}
#ifdef DEBUG_IRQ
printk("prom_n_intr_cells failed for %s\n", np->full_name);
#endif
return 1;
}
/*
* Map an interrupt from a device up to the platform interrupt
* descriptor.
*/
static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
struct device_node *np, unsigned int *ints,
int nintrc)
{
struct device_node *p, *ipar;
unsigned int *imap, *imask, *ip;
int i, imaplen, match;
int newintrc = 0, newaddrc = 0;
unsigned int *reg;
int naddrc;
reg = (unsigned int *) get_property(np, "reg", NULL);
naddrc = prom_n_addr_cells(np);
p = intr_parent(np);
while (p != NULL) {
if (get_property(p, "interrupt-controller", NULL) != NULL)
/* this node is an interrupt controller, stop here */
break;
imap = (unsigned int *)
get_property(p, "interrupt-map", &imaplen);
if (imap == NULL) {
p = intr_parent(p);
continue;
}
imask = (unsigned int *)
get_property(p, "interrupt-map-mask", NULL);
if (imask == NULL) {
printk("oops, %s has interrupt-map but no mask\n",
p->full_name);
return 0;
}
imaplen /= sizeof(unsigned int);
match = 0;
ipar = NULL;
while (imaplen > 0 && !match) {
/* check the child-interrupt field */
match = 1;
for (i = 0; i < naddrc && match; ++i)
match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
for (; i < naddrc + nintrc && match; ++i)
match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
imap += naddrc + nintrc;
imaplen -= naddrc + nintrc;
/* grab the interrupt parent */
ipar = find_phandle((phandle) *imap++);
--imaplen;
if (ipar == NULL && num_interrupt_controllers == 1)
/* cope with BootX not giving us phandles */
ipar = dflt_interrupt_controller;
if (ipar == NULL) {
printk("oops, no int parent %x in map of %s\n",
imap[-1], p->full_name);
return 0;
}
/* find the parent's # addr and intr cells */
ip = (unsigned int *)
get_property(ipar, "#interrupt-cells", NULL);
if (ip == NULL) {
printk("oops, no #interrupt-cells on %s\n",
ipar->full_name);
return 0;
}
newintrc = *ip;
ip = (unsigned int *)
get_property(ipar, "#address-cells", NULL);
newaddrc = (ip == NULL)? 0: *ip;
imap += newaddrc + newintrc;
imaplen -= newaddrc + newintrc;
}
if (imaplen < 0) {
printk("oops, error decoding int-map on %s, len=%d\n",
p->full_name, imaplen);
return 0;
}
if (!match) {
#ifdef DEBUG_IRQ
printk("oops, no match in %s int-map for %s\n",
p->full_name, np->full_name);
#endif
return 0;
}
p = ipar;
naddrc = newaddrc;
nintrc = newintrc;
ints = imap - nintrc;
reg = ints - naddrc;
}
if (p == NULL) {
#ifdef DEBUG_IRQ
printk("hmmm, int tree for %s doesn't have ctrler\n",
np->full_name);
#endif
return 0;
}
*irq = ints;
*ictrler = p;
return nintrc;
}
static unsigned char map_isa_senses[4] = {
IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE
};
static unsigned char map_mpic_senses[4] = {
IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE,
IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
/* 2 seems to be used for the 8259 cascade... */
IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
IRQ_SENSE_EDGE | IRQ_POLARITY_NEGATIVE,
};
static int __devinit finish_node_interrupts(struct device_node *np,
unsigned long *mem_start,
int measure_only)
{
unsigned int *ints;
int intlen, intrcells, intrcount;
int i, j, n, sense;
unsigned int *irq, virq;
struct device_node *ic;
if (num_interrupt_controllers == 0) {
/*
* Old machines just have a list of interrupt numbers
* and no interrupt-controller nodes.
*/
ints = (unsigned int *) get_property(np, "AAPL,interrupts",
&intlen);
/* XXX old interpret_pci_props looked in parent too */
/* XXX old interpret_macio_props looked for interrupts
before AAPL,interrupts */
if (ints == NULL)
ints = (unsigned int *) get_property(np, "interrupts",
&intlen);
if (ints == NULL)
return 0;
np->n_intrs = intlen / sizeof(unsigned int);
np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
mem_start);
if (!np->intrs)
return -ENOMEM;
if (measure_only)
return 0;
for (i = 0; i < np->n_intrs; ++i) {
np->intrs[i].line = *ints++;
np->intrs[i].sense = IRQ_SENSE_LEVEL
| IRQ_POLARITY_NEGATIVE;
}
return 0;
}
ints = (unsigned int *) get_property(np, "interrupts", &intlen);
if (ints == NULL)
return 0;
intrcells = prom_n_intr_cells(np);
intlen /= intrcells * sizeof(unsigned int);
np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
if (!np->intrs)
return -ENOMEM;
if (measure_only)
return 0;
intrcount = 0;
for (i = 0; i < intlen; ++i, ints += intrcells) {
n = map_interrupt(&irq, &ic, np, ints, intrcells);
if (n <= 0)
continue;
/* don't map IRQ numbers under a cascaded 8259 controller */
if (ic && device_is_compatible(ic, "chrp,iic")) {
np->intrs[intrcount].line = irq[0];
sense = (n > 1)? (irq[1] & 3): 3;
np->intrs[intrcount].sense = map_isa_senses[sense];
} else {
virq = virt_irq_create_mapping(irq[0]);
#ifdef CONFIG_PPC64
if (virq == NO_IRQ) {
printk(KERN_CRIT "Could not allocate interrupt"
" number for %s\n", np->full_name);
continue;
}
#endif
np->intrs[intrcount].line = irq_offset_up(virq);
sense = (n > 1)? (irq[1] & 3): 1;
np->intrs[intrcount].sense = map_mpic_senses[sense];
}
#ifdef CONFIG_PPC64
/* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
char *name = get_property(ic->parent, "name", NULL);
if (name && !strcmp(name, "u3"))
np->intrs[intrcount].line += 128;
else if (!(name && !strcmp(name, "mac-io")))
/* ignore other cascaded controllers, such as
the k2-sata-root */
break;
}
#endif
if (n > 2) {
printk("hmmm, got %d intr cells for %s:", n,
np->full_name);
for (j = 0; j < n; ++j)
printk(" %d", irq[j]);
printk("\n");
}
++intrcount;
}
np->n_intrs = intrcount;
return 0;
}
static int __devinit interpret_pci_props(struct device_node *np,
unsigned long *mem_start,
int naddrc, int nsizec,
int measure_only)
{
struct address_range *adr;
struct pci_reg_property *pci_addrs;
int i, l, n_addrs;
pci_addrs = (struct pci_reg_property *)
get_property(np, "assigned-addresses", &l);
if (!pci_addrs)
return 0;
n_addrs = l / sizeof(*pci_addrs);
adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
if (!adr)
return -ENOMEM;
if (measure_only)
return 0;
np->addrs = adr;
np->n_addrs = n_addrs;
for (i = 0; i < n_addrs; i++) {
adr[i].space = pci_addrs[i].addr.a_hi;
adr[i].address = pci_addrs[i].addr.a_lo |
((u64)pci_addrs[i].addr.a_mid << 32);
adr[i].size = pci_addrs[i].size_lo;
}
return 0;
}
static int __init interpret_dbdma_props(struct device_node *np,
unsigned long *mem_start,
int naddrc, int nsizec,
int measure_only)
{
struct reg_property32 *rp;
struct address_range *adr;
unsigned long base_address;
int i, l;
struct device_node *db;
base_address = 0;
if (!measure_only) {
for (db = np->parent; db != NULL; db = db->parent) {
if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
base_address = db->addrs[0].address;
break;
}
}
}
rp = (struct reg_property32 *) get_property(np, "reg", &l);
if (rp != 0 && l >= sizeof(struct reg_property32)) {
i = 0;
adr = (struct address_range *) (*mem_start);
while ((l -= sizeof(struct reg_property32)) >= 0) {
if (!measure_only) {
adr[i].space = 2;
adr[i].address = rp[i].address + base_address;
adr[i].size = rp[i].size;
}
++i;
}
np->addrs = adr;
np->n_addrs = i;
(*mem_start) += i * sizeof(struct address_range);
}
return 0;
}
static int __init interpret_macio_props(struct device_node *np,
unsigned long *mem_start,
int naddrc, int nsizec,
int measure_only)
{
struct reg_property32 *rp;
struct address_range *adr;
unsigned long base_address;
int i, l;
struct device_node *db;
base_address = 0;
if (!measure_only) {
for (db = np->parent; db != NULL; db = db->parent) {
if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
base_address = db->addrs[0].address;
break;
}
}
}
rp = (struct reg_property32 *) get_property(np, "reg", &l);
if (rp != 0 && l >= sizeof(struct reg_property32)) {
i = 0;
adr = (struct address_range *) (*mem_start);
while ((l -= sizeof(struct reg_property32)) >= 0) {
if (!measure_only) {
adr[i].space = 2;
adr[i].address = rp[i].address + base_address;
adr[i].size = rp[i].size;
}
++i;
}
np->addrs = adr;
np->n_addrs = i;
(*mem_start) += i * sizeof(struct address_range);
}
return 0;
}
static int __init interpret_isa_props(struct device_node *np,
unsigned long *mem_start,
int naddrc, int nsizec,
int measure_only)
{
struct isa_reg_property *rp;
struct address_range *adr;
int i, l;
rp = (struct isa_reg_property *) get_property(np, "reg", &l);
if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
i = 0;
adr = (struct address_range *) (*mem_start);
while ((l -= sizeof(struct isa_reg_property)) >= 0) {
if (!measure_only) {
adr[i].space = rp[i].space;
adr[i].address = rp[i].address;
adr[i].size = rp[i].size;
}
++i;
}
np->addrs = adr;
np->n_addrs = i;
(*mem_start) += i * sizeof(struct address_range);
}
return 0;
}
static int __init interpret_root_props(struct device_node *np,
unsigned long *mem_start,
int naddrc, int nsizec,
int measure_only)
{
struct address_range *adr;
int i, l;
unsigned int *rp;
int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
rp = (unsigned int *) get_property(np, "reg", &l);
if (rp != 0 && l >= rpsize) {
i = 0;
adr = (struct address_range *) (*mem_start);
while ((l -= rpsize) >= 0) {
if (!measure_only) {
adr[i].space = 0;
adr[i].address = rp[naddrc - 1];
adr[i].size = rp[naddrc + nsizec - 1];
}
++i;
rp += naddrc + nsizec;
}
np->addrs = adr;
np->n_addrs = i;
(*mem_start) += i * sizeof(struct address_range);
}
return 0;
}
static int __devinit finish_node(struct device_node *np,
unsigned long *mem_start,
interpret_func *ifunc,
int naddrc, int nsizec,
int measure_only)
{
struct device_node *child;
int *ip, rc = 0;
/* get the device addresses and interrupts */
if (ifunc != NULL)
rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
if (rc)
goto out;
rc = finish_node_interrupts(np, mem_start, measure_only);
if (rc)
goto out;
/* Look for #address-cells and #size-cells properties. */
ip = (int *) get_property(np, "#address-cells", NULL);
if (ip != NULL)
naddrc = *ip;
ip = (int *) get_property(np, "#size-cells", NULL);
if (ip != NULL)
nsizec = *ip;
if (!strcmp(np->name, "device-tree") || np->parent == NULL)
ifunc = interpret_root_props;
else if (np->type == 0)
ifunc = NULL;
else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
ifunc = interpret_pci_props;
else if (!strcmp(np->type, "dbdma"))
ifunc = interpret_dbdma_props;
else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
ifunc = interpret_macio_props;
else if (!strcmp(np->type, "isa"))
ifunc = interpret_isa_props;
else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
ifunc = interpret_root_props;
else if (!((ifunc == interpret_dbdma_props
|| ifunc == interpret_macio_props)
&& (!strcmp(np->type, "escc")
|| !strcmp(np->type, "media-bay"))))
ifunc = NULL;
for (child = np->child; child != NULL; child = child->sibling) {
rc = finish_node(child, mem_start, ifunc,
naddrc, nsizec, measure_only);
if (rc)
goto out;
}
out:
return rc;
}
static void __init scan_interrupt_controllers(void)
{
struct device_node *np;
int n = 0;
char *name, *ic;
int iclen;
for (np = allnodes; np != NULL; np = np->allnext) {
ic = get_property(np, "interrupt-controller", &iclen);
name = get_property(np, "name", NULL);
/* checking iclen makes sure we don't get a false
match on /chosen.interrupt_controller */
if ((name != NULL
&& strcmp(name, "interrupt-controller") == 0)
|| (ic != NULL && iclen == 0
&& strcmp(name, "AppleKiwi"))) {
if (n == 0)
dflt_interrupt_controller = np;
++n;
}
}
num_interrupt_controllers = n;
}
/**
* finish_device_tree is called once things are running normally
* (i.e. with text and data mapped to the address they were linked at).
* It traverses the device tree and fills in some of the additional,
* fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
* mapping is also initialized at this point.
*/
void __init finish_device_tree(void)
{
unsigned long start, end, size = 0;
DBG(" -> finish_device_tree\n");
#ifdef CONFIG_PPC64
/* Initialize virtual IRQ map */
virt_irq_init();
#endif
scan_interrupt_controllers();
/*
* Finish device-tree (pre-parsing some properties etc...)
* We do this in 2 passes. One with "measure_only" set, which
* will only measure the amount of memory needed, then we can
* allocate that memory, and call finish_node again. However,
* we must be careful as most routines will fail nowadays when
* prom_alloc() returns 0, so we must make sure our first pass
* doesn't start at 0. We pre-initialize size to 16 for that
* reason and then remove those additional 16 bytes
*/
size = 16;
finish_node(allnodes, &size, NULL, 0, 0, 1);
size -= 16;
end = start = (unsigned long) __va(lmb_alloc(size, 128));
finish_node(allnodes, &end, NULL, 0, 0, 0);
BUG_ON(end != start + size);
DBG(" <- finish_device_tree\n");
}
static inline char *find_flat_dt_string(u32 offset)
{
return ((char *)initial_boot_params) +
initial_boot_params->off_dt_strings + offset;
}
/**
* This function is used to scan the flattened device-tree, it is
* used to extract the memory informations at boot before we can
* unflatten the tree
*/
static int __init scan_flat_dt(int (*it)(unsigned long node,
const char *uname, int depth,
void *data),
void *data)
{
unsigned long p = ((unsigned long)initial_boot_params) +
initial_boot_params->off_dt_struct;
int rc = 0;
int depth = -1;
do {
u32 tag = *((u32 *)p);
char *pathp;
p += 4;
if (tag == OF_DT_END_NODE) {
depth --;
continue;
}
if (tag == OF_DT_NOP)
continue;
if (tag == OF_DT_END)
break;
if (tag == OF_DT_PROP) {
u32 sz = *((u32 *)p);
p += 8;
if (initial_boot_params->version < 0x10)
p = _ALIGN(p, sz >= 8 ? 8 : 4);
p += sz;
p = _ALIGN(p, 4);
continue;
}
if (tag != OF_DT_BEGIN_NODE) {
printk(KERN_WARNING "Invalid tag %x scanning flattened"
" device tree !\n", tag);
return -EINVAL;
}
depth++;
pathp = (char *)p;
p = _ALIGN(p + strlen(pathp) + 1, 4);
if ((*pathp) == '/') {
char *lp, *np;
for (lp = NULL, np = pathp; *np; np++)
if ((*np) == '/')
lp = np+1;
if (lp != NULL)
pathp = lp;
}
rc = it(p, pathp, depth, data);
if (rc != 0)
break;
} while(1);
return rc;
}
/**
* This function can be used within scan_flattened_dt callback to get
* access to properties
*/
static void* __init get_flat_dt_prop(unsigned long node, const char *name,
unsigned long *size)
{
unsigned long p = node;
do {
u32 tag = *((u32 *)p);
u32 sz, noff;
const char *nstr;
p += 4;
if (tag == OF_DT_NOP)
continue;
if (tag != OF_DT_PROP)
return NULL;
sz = *((u32 *)p);
noff = *((u32 *)(p + 4));
p += 8;
if (initial_boot_params->version < 0x10)
p = _ALIGN(p, sz >= 8 ? 8 : 4);
nstr = find_flat_dt_string(noff);
if (nstr == NULL) {
printk(KERN_WARNING "Can't find property index"
" name !\n");
return NULL;
}
if (strcmp(name, nstr) == 0) {
if (size)
*size = sz;
return (void *)p;
}
p += sz;
p = _ALIGN(p, 4);
} while(1);
}
static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
unsigned long align)
{
void *res;
*mem = _ALIGN(*mem, align);
res = (void *)*mem;
*mem += size;
return res;
}
static unsigned long __init unflatten_dt_node(unsigned long mem,
unsigned long *p,
struct device_node *dad,
struct device_node ***allnextpp,
unsigned long fpsize)
{
struct device_node *np;
struct property *pp, **prev_pp = NULL;
char *pathp;
u32 tag;
unsigned int l, allocl;
int has_name = 0;
int new_format = 0;
tag = *((u32 *)(*p));
if (tag != OF_DT_BEGIN_NODE) {
printk("Weird tag at start of node: %x\n", tag);
return mem;
}
*p += 4;
pathp = (char *)*p;
l = allocl = strlen(pathp) + 1;
*p = _ALIGN(*p + l, 4);
/* version 0x10 has a more compact unit name here instead of the full
* path. we accumulate the full path size using "fpsize", we'll rebuild
* it later. We detect this because the first character of the name is
* not '/'.
*/
if ((*pathp) != '/') {
new_format = 1;
if (fpsize == 0) {
/* root node: special case. fpsize accounts for path
* plus terminating zero. root node only has '/', so
* fpsize should be 2, but we want to avoid the first
* level nodes to have two '/' so we use fpsize 1 here
*/
fpsize = 1;
allocl = 2;
} else {
/* account for '/' and path size minus terminal 0
* already in 'l'
*/
fpsize += l;
allocl = fpsize;
}
}
np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
__alignof__(struct device_node));
if (allnextpp) {
memset(np, 0, sizeof(*np));
np->full_name = ((char*)np) + sizeof(struct device_node);
if (new_format) {
char *p = np->full_name;
/* rebuild full path for new format */
if (dad && dad->parent) {
strcpy(p, dad->full_name);
#ifdef DEBUG
if ((strlen(p) + l + 1) != allocl) {
DBG("%s: p: %d, l: %d, a: %d\n",
pathp, strlen(p), l, allocl);
}
#endif
p += strlen(p);
}
*(p++) = '/';
memcpy(p, pathp, l);
} else
memcpy(np->full_name, pathp, l);
prev_pp = &np->properties;
**allnextpp = np;
*allnextpp = &np->allnext;
if (dad != NULL) {
np->parent = dad;
/* we temporarily use the next field as `last_child'*/
if (dad->next == 0)
dad->child = np;
else
dad->next->sibling = np;
dad->next = np;
}
kref_init(&np->kref);
}
while(1) {
u32 sz, noff;
char *pname;
tag = *((u32 *)(*p));
if (tag == OF_DT_NOP) {
*p += 4;
continue;
}
if (tag != OF_DT_PROP)
break;
*p += 4;
sz = *((u32 *)(*p));
noff = *((u32 *)((*p) + 4));
*p += 8;
if (initial_boot_params->version < 0x10)
*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
pname = find_flat_dt_string(noff);
if (pname == NULL) {
printk("Can't find property name in list !\n");
break;
}
if (strcmp(pname, "name") == 0)
has_name = 1;
l = strlen(pname) + 1;
pp = unflatten_dt_alloc(&mem, sizeof(struct property),
__alignof__(struct property));
if (allnextpp) {
if (strcmp(pname, "linux,phandle") == 0) {
np->node = *((u32 *)*p);
if (np->linux_phandle == 0)
np->linux_phandle = np->node;
}
if (strcmp(pname, "ibm,phandle") == 0)
np->linux_phandle = *((u32 *)*p);
pp->name = pname;
pp->length = sz;
pp->value = (void *)*p;
*prev_pp = pp;
prev_pp = &pp->next;
}
*p = _ALIGN((*p) + sz, 4);
}
/* with version 0x10 we may not have the name property, recreate
* it here from the unit name if absent
*/
if (!has_name) {
char *p = pathp, *ps = pathp, *pa = NULL;
int sz;
while (*p) {
if ((*p) == '@')
pa = p;
if ((*p) == '/')
ps = p + 1;
p++;
}
if (pa < ps)
pa = p;
sz = (pa - ps) + 1;
pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
__alignof__(struct property));
if (allnextpp) {
pp->name = "name";
pp->length = sz;
pp->value = (unsigned char *)(pp + 1);
*prev_pp = pp;
prev_pp = &pp->next;
memcpy(pp->value, ps, sz - 1);
((char *)pp->value)[sz - 1] = 0;
DBG("fixed up name for %s -> %s\n", pathp, pp->value);
}
}
if (allnextpp) {
*prev_pp = NULL;
np->name = get_property(np, "name", NULL);
np->type = get_property(np, "device_type", NULL);
if (!np->name)
np->name = "<NULL>";
if (!np->type)
np->type = "<NULL>";
}
while (tag == OF_DT_BEGIN_NODE) {
mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
tag = *((u32 *)(*p));
}
if (tag != OF_DT_END_NODE) {
printk("Weird tag at end of node: %x\n", tag);
return mem;
}
*p += 4;
return mem;
}
/**
* unflattens the device-tree passed by the firmware, creating the
* tree of struct device_node. It also fills the "name" and "type"
* pointers of the nodes so the normal device-tree walking functions
* can be used (this used to be done by finish_device_tree)
*/
void __init unflatten_device_tree(void)
{
unsigned long start, mem, size;
struct device_node **allnextp = &allnodes;
char *p = NULL;
int l = 0;
DBG(" -> unflatten_device_tree()\n");
/* First pass, scan for size */
start = ((unsigned long)initial_boot_params) +
initial_boot_params->off_dt_struct;
size = unflatten_dt_node(0, &start, NULL, NULL, 0);
size = (size | 3) + 1;
DBG(" size is %lx, allocating...\n", size);
/* Allocate memory for the expanded device tree */
mem = lmb_alloc(size + 4, __alignof__(struct device_node));
if (!mem) {
DBG("Couldn't allocate memory with lmb_alloc()!\n");
panic("Couldn't allocate memory with lmb_alloc()!\n");
}
mem = (unsigned long) __va(mem);
((u32 *)mem)[size / 4] = 0xdeadbeef;
DBG(" unflattening %lx...\n", mem);
/* Second pass, do actual unflattening */
start = ((unsigned long)initial_boot_params) +
initial_boot_params->off_dt_struct;
unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
if (*((u32 *)start) != OF_DT_END)
printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
if (((u32 *)mem)[size / 4] != 0xdeadbeef)
printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
((u32 *)mem)[size / 4] );
*allnextp = NULL;
/* Get pointer to OF "/chosen" node for use everywhere */
of_chosen = of_find_node_by_path("/chosen");
if (of_chosen == NULL)
of_chosen = of_find_node_by_path("/chosen@0");
/* Retreive command line */
if (of_chosen != NULL) {
p = (char *)get_property(of_chosen, "bootargs", &l);
if (p != NULL && l > 0)
strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
}
#ifdef CONFIG_CMDLINE
if (l == 0 || (l == 1 && (*p) == 0))
strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
#endif /* CONFIG_CMDLINE */
DBG("Command line is: %s\n", cmd_line);
DBG(" <- unflatten_device_tree()\n");
}
static int __init early_init_dt_scan_cpus(unsigned long node,
const char *uname, int depth, void *data)
{
char *type = get_flat_dt_prop(node, "device_type", NULL);
u32 *prop;
unsigned long size = 0;
/* We are scanning "cpu" nodes only */
if (type == NULL || strcmp(type, "cpu") != 0)
return 0;
#ifdef CONFIG_PPC_PSERIES
/* On LPAR, look for the first ibm,pft-size property for the hash table size
*/
if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
u32 *pft_size;
pft_size = get_flat_dt_prop(node, "ibm,pft-size", NULL);
if (pft_size != NULL) {
/* pft_size[0] is the NUMA CEC cookie */
ppc64_pft_size = pft_size[1];
}
}
#endif
boot_cpuid = 0;
boot_cpuid_phys = 0;
if (initial_boot_params && initial_boot_params->version >= 2) {
/* version 2 of the kexec param format adds the phys cpuid
* of booted proc.
*/
boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
} else {
/* Check if it's the boot-cpu, set it's hw index now */
if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
prop = get_flat_dt_prop(node, "reg", NULL);
if (prop != NULL)
boot_cpuid_phys = *prop;
}
}
set_hard_smp_processor_id(0, boot_cpuid_phys);
#ifdef CONFIG_ALTIVEC
/* Check if we have a VMX and eventually update CPU features */
prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", &size);
if (prop && (*prop) > 0) {
cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
}
/* Same goes for Apple's "altivec" property */
prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
if (prop) {
cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
}
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_PPC_PSERIES
/*
* Check for an SMT capable CPU and set the CPU feature. We do
* this by looking at the size of the ibm,ppc-interrupt-server#s
* property
*/
prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
&size);
cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
if (prop && ((size / sizeof(u32)) > 1))
cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
#endif
return 0;
}
static int __init early_init_dt_scan_chosen(unsigned long node,
const char *uname, int depth, void *data)
{
u32 *prop;
unsigned long *lprop;
DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
if (depth != 1 ||
(strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
return 0;
/* get platform type */
prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
if (prop == NULL)
return 0;
#ifdef CONFIG_PPC64
systemcfg->platform = *prop;
#else
#ifdef CONFIG_PPC_MULTIPLATFORM
_machine = *prop;
#endif
#endif
#ifdef CONFIG_PPC64
/* check if iommu is forced on or off */
if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
iommu_is_off = 1;
if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
iommu_force_on = 1;
#endif
lprop = get_flat_dt_prop(node, "linux,memory-limit", NULL);
if (lprop)
memory_limit = *lprop;
#ifdef CONFIG_PPC64
lprop = get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
if (lprop)
tce_alloc_start = *lprop;
lprop = get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
if (lprop)
tce_alloc_end = *lprop;
#endif
#ifdef CONFIG_PPC_RTAS
/* To help early debugging via the front panel, we retreive a minimal
* set of RTAS infos now if available
*/
{
u64 *basep, *entryp;
basep = get_flat_dt_prop(node, "linux,rtas-base", NULL);
entryp = get_flat_dt_prop(node, "linux,rtas-entry", NULL);
prop = get_flat_dt_prop(node, "linux,rtas-size", NULL);
if (basep && entryp && prop) {
rtas.base = *basep;
rtas.entry = *entryp;
rtas.size = *prop;
}
}
#endif /* CONFIG_PPC_RTAS */
/* break now */
return 1;
}
static int __init early_init_dt_scan_root(unsigned long node,
const char *uname, int depth, void *data)
{
u32 *prop;
if (depth != 0)
return 0;
prop = get_flat_dt_prop(node, "#size-cells", NULL);
dt_root_size_cells = (prop == NULL) ? 1 : *prop;
DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
prop = get_flat_dt_prop(node, "#address-cells", NULL);
dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
/* break now */
return 1;
}
static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
{
cell_t *p = *cellp;
unsigned long r;
/* Ignore more than 2 cells */
while (s > sizeof(unsigned long) / 4) {
p++;
s--;
}
r = *p++;
#ifdef CONFIG_PPC64
if (s > 1) {
r <<= 32;
r |= *(p++);
s--;
}
#endif
*cellp = p;
return r;
}
static int __init early_init_dt_scan_memory(unsigned long node,
const char *uname, int depth, void *data)
{
char *type = get_flat_dt_prop(node, "device_type", NULL);
cell_t *reg, *endp;
unsigned long l;
/* We are scanning "memory" nodes only */
if (type == NULL || strcmp(type, "memory") != 0)
return 0;
reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
if (reg == NULL)
return 0;
endp = reg + (l / sizeof(cell_t));
DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n",
uname, l, reg[0], reg[1], reg[2], reg[3]);
while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
unsigned long base, size;
base = dt_mem_next_cell(dt_root_addr_cells, &reg);
size = dt_mem_next_cell(dt_root_size_cells, &reg);
if (size == 0)
continue;
DBG(" - %lx , %lx\n", base, size);
#ifdef CONFIG_PPC64
if (iommu_is_off) {
if (base >= 0x80000000ul)
continue;
if ((base + size) > 0x80000000ul)
size = 0x80000000ul - base;
}
#endif
lmb_add(base, size);
}
return 0;
}
static void __init early_reserve_mem(void)
{
unsigned long base, size;
unsigned long *reserve_map;
reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
initial_boot_params->off_mem_rsvmap);
while (1) {
base = *(reserve_map++);
size = *(reserve_map++);
if (size == 0)
break;
DBG("reserving: %lx -> %lx\n", base, size);
lmb_reserve(base, size);
}
#if 0
DBG("memory reserved, lmbs :\n");
lmb_dump_all();
#endif
}
void __init early_init_devtree(void *params)
{
DBG(" -> early_init_devtree()\n");
/* Setup flat device-tree pointer */
initial_boot_params = params;
/* Retrieve various informations from the /chosen node of the
* device-tree, including the platform type, initrd location and
* size, TCE reserve, and more ...
*/
scan_flat_dt(early_init_dt_scan_chosen, NULL);
/* Scan memory nodes and rebuild LMBs */
lmb_init();
scan_flat_dt(early_init_dt_scan_root, NULL);
scan_flat_dt(early_init_dt_scan_memory, NULL);
lmb_enforce_memory_limit(memory_limit);
lmb_analyze();
#ifdef CONFIG_PPC64
systemcfg->physicalMemorySize = lmb_phys_mem_size();
#endif
lmb_reserve(0, __pa(klimit));
DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
/* Reserve LMB regions used by kernel, initrd, dt, etc... */
early_reserve_mem();
DBG("Scanning CPUs ...\n");
/* Retreive hash table size from flattened tree plus other
* CPU related informations (altivec support, boot CPU ID, ...)
*/
scan_flat_dt(early_init_dt_scan_cpus, NULL);
DBG(" <- early_init_devtree()\n");
}
#undef printk
int
prom_n_addr_cells(struct device_node* np)
{
int* ip;
do {
if (np->parent)
np = np->parent;
ip = (int *) get_property(np, "#address-cells", NULL);
if (ip != NULL)
return *ip;
} while (np->parent);
/* No #address-cells property for the root node, default to 1 */
return 1;
}
int
prom_n_size_cells(struct device_node* np)
{
int* ip;
do {
if (np->parent)
np = np->parent;
ip = (int *) get_property(np, "#size-cells", NULL);
if (ip != NULL)
return *ip;
} while (np->parent);
/* No #size-cells property for the root node, default to 1 */
return 1;
}
/**
* Work out the sense (active-low level / active-high edge)
* of each interrupt from the device tree.
*/
void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
{
struct device_node *np;
int i, j;
/* default to level-triggered */
memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
for (np = allnodes; np != 0; np = np->allnext) {
for (j = 0; j < np->n_intrs; j++) {
i = np->intrs[j].line;
if (i >= off && i < max)
senses[i-off] = np->intrs[j].sense;
}
}
}
/**
* Construct and return a list of the device_nodes with a given name.
*/
struct device_node *find_devices(const char *name)
{
struct device_node *head, **prevp, *np;
prevp = &head;
for (np = allnodes; np != 0; np = np->allnext) {
if (np->name != 0 && strcasecmp(np->name, name) == 0) {
*prevp = np;
prevp = &np->next;
}
}
*prevp = NULL;
return head;
}
EXPORT_SYMBOL(find_devices);
/**
* Construct and return a list of the device_nodes with a given type.
*/
struct device_node *find_type_devices(const char *type)
{
struct device_node *head, **prevp, *np;
prevp = &head;
for (np = allnodes; np != 0; np = np->allnext) {
if (np->type != 0 && strcasecmp(np->type, type) == 0) {
*prevp = np;
prevp = &np->next;
}
}
*prevp = NULL;
return head;
}
EXPORT_SYMBOL(find_type_devices);
/**
* Returns all nodes linked together
*/
struct device_node *find_all_nodes(void)
{
struct device_node *head, **prevp, *np;
prevp = &head;
for (np = allnodes; np != 0; np = np->allnext) {
*prevp = np;
prevp = &np->next;
}
*prevp = NULL;
return head;
}
EXPORT_SYMBOL(find_all_nodes);
/** Checks if the given "compat" string matches one of the strings in
* the device's "compatible" property
*/
int device_is_compatible(struct device_node *device, const char *compat)
{
const char* cp;
int cplen, l;
cp = (char *) get_property(device, "compatible", &cplen);
if (cp == NULL)
return 0;
while (cplen > 0) {
if (strncasecmp(cp, compat, strlen(compat)) == 0)
return 1;
l = strlen(cp) + 1;
cp += l;
cplen -= l;
}
return 0;
}
EXPORT_SYMBOL(device_is_compatible);
/**
* Indicates whether the root node has a given value in its
* compatible property.
*/
int machine_is_compatible(const char *compat)
{
struct device_node *root;
int rc = 0;
root = of_find_node_by_path("/");
if (root) {
rc = device_is_compatible(root, compat);
of_node_put(root);
}
return rc;
}
EXPORT_SYMBOL(machine_is_compatible);
/**
* Construct and return a list of the device_nodes with a given type
* and compatible property.
*/
struct device_node *find_compatible_devices(const char *type,
const char *compat)
{
struct device_node *head, **prevp, *np;
prevp = &head;
for (np = allnodes; np != 0; np = np->allnext) {
if (type != NULL
&& !(np->type != 0 && strcasecmp(np->type, type) == 0))
continue;
if (device_is_compatible(np, compat)) {
*prevp = np;
prevp = &np->next;
}
}
*prevp = NULL;
return head;
}
EXPORT_SYMBOL(find_compatible_devices);
/**
* Find the device_node with a given full_name.
*/
struct device_node *find_path_device(const char *path)
{
struct device_node *np;
for (np = allnodes; np != 0; np = np->allnext)
if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
return np;
return NULL;
}
EXPORT_SYMBOL(find_path_device);
/*******
*
* New implementation of the OF "find" APIs, return a refcounted
* object, call of_node_put() when done. The device tree and list
* are protected by a rw_lock.
*
* Note that property management will need some locking as well,
* this isn't dealt with yet.
*
*******/
/**
* of_find_node_by_name - Find a node by its "name" property
* @from: The node to start searching from or NULL, the node
* you pass will not be searched, only the next one
* will; typically, you pass what the previous call
* returned. of_node_put() will be called on it
* @name: The name string to match against
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_find_node_by_name(struct device_node *from,
const char *name)
{
struct device_node *np;
read_lock(&devtree_lock);
np = from ? from->allnext : allnodes;
for (; np != 0; np = np->allnext)
if (np->name != 0 && strcasecmp(np->name, name) == 0
&& of_node_get(np))
break;
if (from)
of_node_put(from);
read_unlock(&devtree_lock);
return np;
}
EXPORT_SYMBOL(of_find_node_by_name);
/**
* of_find_node_by_type - Find a node by its "device_type" property
* @from: The node to start searching from or NULL, the node
* you pass will not be searched, only the next one
* will; typically, you pass what the previous call
* returned. of_node_put() will be called on it
* @name: The type string to match against
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_find_node_by_type(struct device_node *from,
const char *type)
{
struct device_node *np;
read_lock(&devtree_lock);
np = from ? from->allnext : allnodes;
for (; np != 0; np = np->allnext)
if (np->type != 0 && strcasecmp(np->type, type) == 0
&& of_node_get(np))
break;
if (from)
of_node_put(from);
read_unlock(&devtree_lock);
return np;
}
EXPORT_SYMBOL(of_find_node_by_type);
/**
* of_find_compatible_node - Find a node based on type and one of the
* tokens in its "compatible" property
* @from: The node to start searching from or NULL, the node
* you pass will not be searched, only the next one
* will; typically, you pass what the previous call
* returned. of_node_put() will be called on it
* @type: The type string to match "device_type" or NULL to ignore
* @compatible: The string to match to one of the tokens in the device
* "compatible" list.
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_find_compatible_node(struct device_node *from,
const char *type, const char *compatible)
{
struct device_node *np;
read_lock(&devtree_lock);
np = from ? from->allnext : allnodes;
for (; np != 0; np = np->allnext) {
if (type != NULL
&& !(np->type != 0 && strcasecmp(np->type, type) == 0))
continue;
if (device_is_compatible(np, compatible) && of_node_get(np))
break;
}
if (from)
of_node_put(from);
read_unlock(&devtree_lock);
return np;
}
EXPORT_SYMBOL(of_find_compatible_node);
/**
* of_find_node_by_path - Find a node matching a full OF path
* @path: The full path to match
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_find_node_by_path(const char *path)
{
struct device_node *np = allnodes;
read_lock(&devtree_lock);
for (; np != 0; np = np->allnext) {
if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
&& of_node_get(np))
break;
}
read_unlock(&devtree_lock);
return np;
}
EXPORT_SYMBOL(of_find_node_by_path);
/**
* of_find_node_by_phandle - Find a node given a phandle
* @handle: phandle of the node to find
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_find_node_by_phandle(phandle handle)
{
struct device_node *np;
read_lock(&devtree_lock);
for (np = allnodes; np != 0; np = np->allnext)
if (np->linux_phandle == handle)
break;
if (np)
of_node_get(np);
read_unlock(&devtree_lock);
return np;
}
EXPORT_SYMBOL(of_find_node_by_phandle);
/**
* of_find_all_nodes - Get next node in global list
* @prev: Previous node or NULL to start iteration
* of_node_put() will be called on it
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_find_all_nodes(struct device_node *prev)
{
struct device_node *np;
read_lock(&devtree_lock);
np = prev ? prev->allnext : allnodes;
for (; np != 0; np = np->allnext)
if (of_node_get(np))
break;
if (prev)
of_node_put(prev);
read_unlock(&devtree_lock);
return np;
}
EXPORT_SYMBOL(of_find_all_nodes);
/**
* of_get_parent - Get a node's parent if any
* @node: Node to get parent
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_get_parent(const struct device_node *node)
{
struct device_node *np;
if (!node)
return NULL;
read_lock(&devtree_lock);
np = of_node_get(node->parent);
read_unlock(&devtree_lock);
return np;
}
EXPORT_SYMBOL(of_get_parent);
/**
* of_get_next_child - Iterate a node childs
* @node: parent node
* @prev: previous child of the parent node, or NULL to get first
*
* Returns a node pointer with refcount incremented, use
* of_node_put() on it when done.
*/
struct device_node *of_get_next_child(const struct device_node *node,
struct device_node *prev)
{
struct device_node *next;
read_lock(&devtree_lock);
next = prev ? prev->sibling : node->child;
for (; next != 0; next = next->sibling)
if (of_node_get(next))
break;
if (prev)
of_node_put(prev);
read_unlock(&devtree_lock);
return next;
}
EXPORT_SYMBOL(of_get_next_child);
/**
* of_node_get - Increment refcount of a node
* @node: Node to inc refcount, NULL is supported to
* simplify writing of callers
*
* Returns node.
*/
struct device_node *of_node_get(struct device_node *node)
{
if (node)
kref_get(&node->kref);
return node;
}
EXPORT_SYMBOL(of_node_get);
static inline struct device_node * kref_to_device_node(struct kref *kref)
{
return container_of(kref, struct device_node, kref);
}
/**
* of_node_release - release a dynamically allocated node
* @kref: kref element of the node to be released
*
* In of_node_put() this function is passed to kref_put()
* as the destructor.
*/
static void of_node_release(struct kref *kref)
{
struct device_node *node = kref_to_device_node(kref);
struct property *prop = node->properties;
if (!OF_IS_DYNAMIC(node))
return;
while (prop) {
struct property *next = prop->next;
kfree(prop->name);
kfree(prop->value);
kfree(prop);
prop = next;
}
kfree(node->intrs);
kfree(node->addrs);
kfree(node->full_name);
kfree(node->data);
kfree(node);
}
/**
* of_node_put - Decrement refcount of a node
* @node: Node to dec refcount, NULL is supported to
* simplify writing of callers
*
*/
void of_node_put(struct device_node *node)
{
if (node)
kref_put(&node->kref, of_node_release);
}
EXPORT_SYMBOL(of_node_put);
/*
* Plug a device node into the tree and global list.
*/
void of_attach_node(struct device_node *np)
{
write_lock(&devtree_lock);
np->sibling = np->parent->child;
np->allnext = allnodes;
np->parent->child = np;
allnodes = np;
write_unlock(&devtree_lock);
}
/*
* "Unplug" a node from the device tree. The caller must hold
* a reference to the node. The memory associated with the node
* is not freed until its refcount goes to zero.
*/
void of_detach_node(const struct device_node *np)
{
struct device_node *parent;
write_lock(&devtree_lock);
parent = np->parent;
if (allnodes == np)
allnodes = np->allnext;
else {
struct device_node *prev;
for (prev = allnodes;
prev->allnext != np;
prev = prev->allnext)
;
prev->allnext = np->allnext;
}
if (parent->child == np)
parent->child = np->sibling;
else {
struct device_node *prevsib;
for (prevsib = np->parent->child;
prevsib->sibling != np;
prevsib = prevsib->sibling)
;
prevsib->sibling = np->sibling;
}
write_unlock(&devtree_lock);
}
#ifdef CONFIG_PPC_PSERIES
/*
* Fix up the uninitialized fields in a new device node:
* name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
*
* A lot of boot-time code is duplicated here, because functions such
* as finish_node_interrupts, interpret_pci_props, etc. cannot use the
* slab allocator.
*
* This should probably be split up into smaller chunks.
*/
static int of_finish_dynamic_node(struct device_node *node,
unsigned long *unused1, int unused2,
int unused3, int unused4)
{
struct device_node *parent = of_get_parent(node);
int err = 0;
phandle *ibm_phandle;
node->name = get_property(node, "name", NULL);
node->type = get_property(node, "device_type", NULL);
if (!parent) {
err = -ENODEV;
goto out;
}
/* We don't support that function on PowerMac, at least
* not yet
*/
if (systemcfg->platform == PLATFORM_POWERMAC)
return -ENODEV;
/* fix up new node's linux_phandle field */
if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
node->linux_phandle = *ibm_phandle;
out:
of_node_put(parent);
return err;
}
static int prom_reconfig_notifier(struct notifier_block *nb,
unsigned long action, void *node)
{
int err;
switch (action) {
case PSERIES_RECONFIG_ADD:
err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
if (err < 0) {
printk(KERN_ERR "finish_node returned %d\n", err);
err = NOTIFY_BAD;
}
break;
default:
err = NOTIFY_DONE;
break;
}
return err;
}
static struct notifier_block prom_reconfig_nb = {
.notifier_call = prom_reconfig_notifier,
.priority = 10, /* This one needs to run first */
};
static int __init prom_reconfig_setup(void)
{
return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
}
__initcall(prom_reconfig_setup);
#endif
/*
* Find a property with a given name for a given node
* and return the value.
*/
unsigned char *get_property(struct device_node *np, const char *name,
int *lenp)
{
struct property *pp;
for (pp = np->properties; pp != 0; pp = pp->next)
if (strcmp(pp->name, name) == 0) {
if (lenp != 0)
*lenp = pp->length;
return pp->value;
}
return NULL;
}
EXPORT_SYMBOL(get_property);
/*
* Add a property to a node
*/
void prom_add_property(struct device_node* np, struct property* prop)
{
struct property **next = &np->properties;
prop->next = NULL;
while (*next)
next = &(*next)->next;
*next = prop;
}
/* I quickly hacked that one, check against spec ! */
static inline unsigned long
bus_space_to_resource_flags(unsigned int bus_space)
{
u8 space = (bus_space >> 24) & 0xf;
if (space == 0)
space = 0x02;
if (space == 0x02)
return IORESOURCE_MEM;
else if (space == 0x01)
return IORESOURCE_IO;
else {
printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
bus_space);
return 0;
}
}
#ifdef CONFIG_PCI
static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
struct address_range *range)
{
unsigned long mask;
int i;
/* Check this one */
mask = bus_space_to_resource_flags(range->space);
for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
if ((pdev->resource[i].flags & mask) == mask &&
pdev->resource[i].start <= range->address &&
pdev->resource[i].end > range->address) {
if ((range->address + range->size - 1) > pdev->resource[i].end) {
/* Add better message */
printk(KERN_WARNING "PCI/OF resource overlap !\n");
return NULL;
}
break;
}
}
if (i == DEVICE_COUNT_RESOURCE)
return NULL;
return &pdev->resource[i];
}
/*
* Request an OF device resource. Currently handles child of PCI devices,
* or other nodes attached to the root node. Ultimately, put some
* link to resources in the OF node.
*/
struct resource *request_OF_resource(struct device_node* node, int index,
const char* name_postfix)
{
struct pci_dev* pcidev;
u8 pci_bus, pci_devfn;
unsigned long iomask;
struct device_node* nd;
struct resource* parent;
struct resource *res = NULL;
int nlen, plen;
if (index >= node->n_addrs)
goto fail;
/* Sanity check on bus space */
iomask = bus_space_to_resource_flags(node->addrs[index].space);
if (iomask & IORESOURCE_MEM)
parent = &iomem_resource;
else if (iomask & IORESOURCE_IO)
parent = &ioport_resource;
else
goto fail;
/* Find a PCI parent if any */
nd = node;
pcidev = NULL;
while (nd) {
if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
pcidev = pci_find_slot(pci_bus, pci_devfn);
if (pcidev) break;
nd = nd->parent;
}
if (pcidev)
parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
if (!parent) {
printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
node->name);
goto fail;
}
res = __request_region(parent, node->addrs[index].address,
node->addrs[index].size, NULL);
if (!res)
goto fail;
nlen = strlen(node->name);
plen = name_postfix ? strlen(name_postfix) : 0;
res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
if (res->name) {
strcpy((char *)res->name, node->name);
if (plen)
strcpy((char *)res->name+nlen, name_postfix);
}
return res;
fail:
return NULL;
}
EXPORT_SYMBOL(request_OF_resource);
int release_OF_resource(struct device_node *node, int index)
{
struct pci_dev* pcidev;
u8 pci_bus, pci_devfn;
unsigned long iomask, start, end;
struct device_node* nd;
struct resource* parent;
struct resource *res = NULL;
if (index >= node->n_addrs)
return -EINVAL;
/* Sanity check on bus space */
iomask = bus_space_to_resource_flags(node->addrs[index].space);
if (iomask & IORESOURCE_MEM)
parent = &iomem_resource;
else if (iomask & IORESOURCE_IO)
parent = &ioport_resource;
else
return -EINVAL;
/* Find a PCI parent if any */
nd = node;
pcidev = NULL;
while(nd) {
if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
pcidev = pci_find_slot(pci_bus, pci_devfn);
if (pcidev) break;
nd = nd->parent;
}
if (pcidev)
parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
if (!parent) {
printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
node->name);
return -ENODEV;
}
/* Find us in the parent and its childs */
res = parent->child;
start = node->addrs[index].address;
end = start + node->addrs[index].size - 1;
while (res) {
if (res->start == start && res->end == end &&
(res->flags & IORESOURCE_BUSY))
break;
if (res->start <= start && res->end >= end)
res = res->child;
else
res = res->sibling;
}
if (!res)
return -ENODEV;
if (res->name) {
kfree(res->name);
res->name = NULL;
}
release_resource(res);
kfree(res);
return 0;
}
EXPORT_SYMBOL(release_OF_resource);
#endif /* CONFIG_PCI */