171754c380
-----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZuQEvwAKCRCRxhvAZXjc ohg3APwJWQnqFlBddcRl4yrPJ/cgcYSYAOdHb+E+blomSwdxcwEAmwsnLPNQOtw2 rxKvQfZqhVT437bl7RpPPZrHGxwTng8= =6v1r -----END PGP SIGNATURE----- Merge tag 'vfs-6.12.blocksize' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs Pull vfs blocksize updates from Christian Brauner: "This contains the vfs infrastructure as well as the xfs bits to enable support for block sizes (bs) larger than page sizes (ps) plus a few fixes to related infrastructure. There has been efforts over the last 16 years to enable enable Large Block Sizes (LBS), that is block sizes in filesystems where bs > page size. Through these efforts we have learned that one of the main blockers to supporting bs > ps in filesystems has been a way to allocate pages that are at least the filesystem block size on the page cache where bs > ps. Thanks to various previous efforts it is possible to support bs > ps in XFS with only a few changes in XFS itself. Most changes are to the page cache to support minimum order folio support for the target block size on the filesystem. A motivation for Large Block Sizes today is to support high-capacity (large amount of Terabytes) QLC SSDs where the internal Indirection Unit (IU) are typically greater than 4k to help reduce DRAM and so in turn cost and space. In practice this then allows different architectures to use a base page size of 4k while still enabling support for block sizes aligned to the larger IUs by relying on high order folios on the page cache when needed. It also allows to take advantage of the drive's support for atomics larger than 4k with buffered IO support in Linux. As described this year at LSFMM, supporting large atomics greater than 4k enables databases to remove the need to rely on their own journaling, so they can disable double buffered writes, which is a feature different cloud providers are already enabling through custom storage solutions" * tag 'vfs-6.12.blocksize' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs: (22 commits) Documentation: iomap: fix a typo iomap: remove the iomap_file_buffered_write_punch_delalloc return value iomap: pass the iomap to the punch callback iomap: pass flags to iomap_file_buffered_write_punch_delalloc iomap: improve shared block detection in iomap_unshare_iter iomap: handle a post-direct I/O invalidate race in iomap_write_delalloc_release docs:filesystems: fix spelling and grammar mistakes in iomap design page filemap: fix htmldoc warning for mapping_align_index() iomap: make zero range flush conditional on unwritten mappings iomap: fix handling of dirty folios over unwritten extents iomap: add a private argument for iomap_file_buffered_write iomap: remove set_memor_ro() on zero page xfs: enable block size larger than page size support xfs: make the calculation generic in xfs_sb_validate_fsb_count() xfs: expose block size in stat xfs: use kvmalloc for xattr buffers iomap: fix iomap_dio_zero() for fs bs > system page size filemap: cap PTE range to be created to allowed zero fill in folio_map_range() mm: split a folio in minimum folio order chunks readahead: allocate folios with mapping_min_order in readahead ...
3159 lines
83 KiB
C
3159 lines
83 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
|
|
* All Rights Reserved.
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_bit.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_ialloc.h"
|
|
#include "xfs_ialloc_btree.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_errortag.h"
|
|
#include "xfs_error.h"
|
|
#include "xfs_bmap.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_buf_item.h"
|
|
#include "xfs_icreate_item.h"
|
|
#include "xfs_icache.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_log.h"
|
|
#include "xfs_rmap.h"
|
|
#include "xfs_ag.h"
|
|
#include "xfs_health.h"
|
|
|
|
/*
|
|
* Lookup a record by ino in the btree given by cur.
|
|
*/
|
|
int /* error */
|
|
xfs_inobt_lookup(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
xfs_agino_t ino, /* starting inode of chunk */
|
|
xfs_lookup_t dir, /* <=, >=, == */
|
|
int *stat) /* success/failure */
|
|
{
|
|
cur->bc_rec.i.ir_startino = ino;
|
|
cur->bc_rec.i.ir_holemask = 0;
|
|
cur->bc_rec.i.ir_count = 0;
|
|
cur->bc_rec.i.ir_freecount = 0;
|
|
cur->bc_rec.i.ir_free = 0;
|
|
return xfs_btree_lookup(cur, dir, stat);
|
|
}
|
|
|
|
/*
|
|
* Update the record referred to by cur to the value given.
|
|
* This either works (return 0) or gets an EFSCORRUPTED error.
|
|
*/
|
|
STATIC int /* error */
|
|
xfs_inobt_update(
|
|
struct xfs_btree_cur *cur, /* btree cursor */
|
|
xfs_inobt_rec_incore_t *irec) /* btree record */
|
|
{
|
|
union xfs_btree_rec rec;
|
|
|
|
rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
|
|
if (xfs_has_sparseinodes(cur->bc_mp)) {
|
|
rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
|
|
rec.inobt.ir_u.sp.ir_count = irec->ir_count;
|
|
rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
|
|
} else {
|
|
/* ir_holemask/ir_count not supported on-disk */
|
|
rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
|
|
}
|
|
rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
|
|
return xfs_btree_update(cur, &rec);
|
|
}
|
|
|
|
/* Convert on-disk btree record to incore inobt record. */
|
|
void
|
|
xfs_inobt_btrec_to_irec(
|
|
struct xfs_mount *mp,
|
|
const union xfs_btree_rec *rec,
|
|
struct xfs_inobt_rec_incore *irec)
|
|
{
|
|
irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
|
|
if (xfs_has_sparseinodes(mp)) {
|
|
irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
|
|
irec->ir_count = rec->inobt.ir_u.sp.ir_count;
|
|
irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
|
|
} else {
|
|
/*
|
|
* ir_holemask/ir_count not supported on-disk. Fill in hardcoded
|
|
* values for full inode chunks.
|
|
*/
|
|
irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
|
|
irec->ir_count = XFS_INODES_PER_CHUNK;
|
|
irec->ir_freecount =
|
|
be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
|
|
}
|
|
irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
|
|
}
|
|
|
|
/* Compute the freecount of an incore inode record. */
|
|
uint8_t
|
|
xfs_inobt_rec_freecount(
|
|
const struct xfs_inobt_rec_incore *irec)
|
|
{
|
|
uint64_t realfree = irec->ir_free;
|
|
|
|
if (xfs_inobt_issparse(irec->ir_holemask))
|
|
realfree &= xfs_inobt_irec_to_allocmask(irec);
|
|
return hweight64(realfree);
|
|
}
|
|
|
|
/* Simple checks for inode records. */
|
|
xfs_failaddr_t
|
|
xfs_inobt_check_irec(
|
|
struct xfs_perag *pag,
|
|
const struct xfs_inobt_rec_incore *irec)
|
|
{
|
|
/* Record has to be properly aligned within the AG. */
|
|
if (!xfs_verify_agino(pag, irec->ir_startino))
|
|
return __this_address;
|
|
if (!xfs_verify_agino(pag,
|
|
irec->ir_startino + XFS_INODES_PER_CHUNK - 1))
|
|
return __this_address;
|
|
if (irec->ir_count < XFS_INODES_PER_HOLEMASK_BIT ||
|
|
irec->ir_count > XFS_INODES_PER_CHUNK)
|
|
return __this_address;
|
|
if (irec->ir_freecount > XFS_INODES_PER_CHUNK)
|
|
return __this_address;
|
|
|
|
if (xfs_inobt_rec_freecount(irec) != irec->ir_freecount)
|
|
return __this_address;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static inline int
|
|
xfs_inobt_complain_bad_rec(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_failaddr_t fa,
|
|
const struct xfs_inobt_rec_incore *irec)
|
|
{
|
|
struct xfs_mount *mp = cur->bc_mp;
|
|
|
|
xfs_warn(mp,
|
|
"%sbt record corruption in AG %d detected at %pS!",
|
|
cur->bc_ops->name, cur->bc_ag.pag->pag_agno, fa);
|
|
xfs_warn(mp,
|
|
"start inode 0x%x, count 0x%x, free 0x%x freemask 0x%llx, holemask 0x%x",
|
|
irec->ir_startino, irec->ir_count, irec->ir_freecount,
|
|
irec->ir_free, irec->ir_holemask);
|
|
xfs_btree_mark_sick(cur);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
/*
|
|
* Get the data from the pointed-to record.
|
|
*/
|
|
int
|
|
xfs_inobt_get_rec(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_inobt_rec_incore *irec,
|
|
int *stat)
|
|
{
|
|
struct xfs_mount *mp = cur->bc_mp;
|
|
union xfs_btree_rec *rec;
|
|
xfs_failaddr_t fa;
|
|
int error;
|
|
|
|
error = xfs_btree_get_rec(cur, &rec, stat);
|
|
if (error || *stat == 0)
|
|
return error;
|
|
|
|
xfs_inobt_btrec_to_irec(mp, rec, irec);
|
|
fa = xfs_inobt_check_irec(cur->bc_ag.pag, irec);
|
|
if (fa)
|
|
return xfs_inobt_complain_bad_rec(cur, fa, irec);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Insert a single inobt record. Cursor must already point to desired location.
|
|
*/
|
|
int
|
|
xfs_inobt_insert_rec(
|
|
struct xfs_btree_cur *cur,
|
|
uint16_t holemask,
|
|
uint8_t count,
|
|
int32_t freecount,
|
|
xfs_inofree_t free,
|
|
int *stat)
|
|
{
|
|
cur->bc_rec.i.ir_holemask = holemask;
|
|
cur->bc_rec.i.ir_count = count;
|
|
cur->bc_rec.i.ir_freecount = freecount;
|
|
cur->bc_rec.i.ir_free = free;
|
|
return xfs_btree_insert(cur, stat);
|
|
}
|
|
|
|
/*
|
|
* Insert records describing a newly allocated inode chunk into the inobt.
|
|
*/
|
|
STATIC int
|
|
xfs_inobt_insert(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp,
|
|
xfs_agino_t newino,
|
|
xfs_agino_t newlen,
|
|
bool is_finobt)
|
|
{
|
|
struct xfs_btree_cur *cur;
|
|
xfs_agino_t thisino;
|
|
int i;
|
|
int error;
|
|
|
|
if (is_finobt)
|
|
cur = xfs_finobt_init_cursor(pag, tp, agbp);
|
|
else
|
|
cur = xfs_inobt_init_cursor(pag, tp, agbp);
|
|
|
|
for (thisino = newino;
|
|
thisino < newino + newlen;
|
|
thisino += XFS_INODES_PER_CHUNK) {
|
|
error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
|
|
if (error) {
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
ASSERT(i == 0);
|
|
|
|
error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
|
|
XFS_INODES_PER_CHUNK,
|
|
XFS_INODES_PER_CHUNK,
|
|
XFS_INOBT_ALL_FREE, &i);
|
|
if (error) {
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
ASSERT(i == 1);
|
|
}
|
|
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Verify that the number of free inodes in the AGI is correct.
|
|
*/
|
|
#ifdef DEBUG
|
|
static int
|
|
xfs_check_agi_freecount(
|
|
struct xfs_btree_cur *cur)
|
|
{
|
|
if (cur->bc_nlevels == 1) {
|
|
xfs_inobt_rec_incore_t rec;
|
|
int freecount = 0;
|
|
int error;
|
|
int i;
|
|
|
|
error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
|
|
if (error)
|
|
return error;
|
|
|
|
do {
|
|
error = xfs_inobt_get_rec(cur, &rec, &i);
|
|
if (error)
|
|
return error;
|
|
|
|
if (i) {
|
|
freecount += rec.ir_freecount;
|
|
error = xfs_btree_increment(cur, 0, &i);
|
|
if (error)
|
|
return error;
|
|
}
|
|
} while (i == 1);
|
|
|
|
if (!xfs_is_shutdown(cur->bc_mp))
|
|
ASSERT(freecount == cur->bc_ag.pag->pagi_freecount);
|
|
}
|
|
return 0;
|
|
}
|
|
#else
|
|
#define xfs_check_agi_freecount(cur) 0
|
|
#endif
|
|
|
|
/*
|
|
* Initialise a new set of inodes. When called without a transaction context
|
|
* (e.g. from recovery) we initiate a delayed write of the inode buffers rather
|
|
* than logging them (which in a transaction context puts them into the AIL
|
|
* for writeback rather than the xfsbufd queue).
|
|
*/
|
|
int
|
|
xfs_ialloc_inode_init(
|
|
struct xfs_mount *mp,
|
|
struct xfs_trans *tp,
|
|
struct list_head *buffer_list,
|
|
int icount,
|
|
xfs_agnumber_t agno,
|
|
xfs_agblock_t agbno,
|
|
xfs_agblock_t length,
|
|
unsigned int gen)
|
|
{
|
|
struct xfs_buf *fbuf;
|
|
struct xfs_dinode *free;
|
|
int nbufs;
|
|
int version;
|
|
int i, j;
|
|
xfs_daddr_t d;
|
|
xfs_ino_t ino = 0;
|
|
int error;
|
|
|
|
/*
|
|
* Loop over the new block(s), filling in the inodes. For small block
|
|
* sizes, manipulate the inodes in buffers which are multiples of the
|
|
* blocks size.
|
|
*/
|
|
nbufs = length / M_IGEO(mp)->blocks_per_cluster;
|
|
|
|
/*
|
|
* Figure out what version number to use in the inodes we create. If
|
|
* the superblock version has caught up to the one that supports the new
|
|
* inode format, then use the new inode version. Otherwise use the old
|
|
* version so that old kernels will continue to be able to use the file
|
|
* system.
|
|
*
|
|
* For v3 inodes, we also need to write the inode number into the inode,
|
|
* so calculate the first inode number of the chunk here as
|
|
* XFS_AGB_TO_AGINO() only works within a filesystem block, not
|
|
* across multiple filesystem blocks (such as a cluster) and so cannot
|
|
* be used in the cluster buffer loop below.
|
|
*
|
|
* Further, because we are writing the inode directly into the buffer
|
|
* and calculating a CRC on the entire inode, we have ot log the entire
|
|
* inode so that the entire range the CRC covers is present in the log.
|
|
* That means for v3 inode we log the entire buffer rather than just the
|
|
* inode cores.
|
|
*/
|
|
if (xfs_has_v3inodes(mp)) {
|
|
version = 3;
|
|
ino = XFS_AGINO_TO_INO(mp, agno, XFS_AGB_TO_AGINO(mp, agbno));
|
|
|
|
/*
|
|
* log the initialisation that is about to take place as an
|
|
* logical operation. This means the transaction does not
|
|
* need to log the physical changes to the inode buffers as log
|
|
* recovery will know what initialisation is actually needed.
|
|
* Hence we only need to log the buffers as "ordered" buffers so
|
|
* they track in the AIL as if they were physically logged.
|
|
*/
|
|
if (tp)
|
|
xfs_icreate_log(tp, agno, agbno, icount,
|
|
mp->m_sb.sb_inodesize, length, gen);
|
|
} else
|
|
version = 2;
|
|
|
|
for (j = 0; j < nbufs; j++) {
|
|
/*
|
|
* Get the block.
|
|
*/
|
|
d = XFS_AGB_TO_DADDR(mp, agno, agbno +
|
|
(j * M_IGEO(mp)->blocks_per_cluster));
|
|
error = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
|
|
mp->m_bsize * M_IGEO(mp)->blocks_per_cluster,
|
|
XBF_UNMAPPED, &fbuf);
|
|
if (error)
|
|
return error;
|
|
|
|
/* Initialize the inode buffers and log them appropriately. */
|
|
fbuf->b_ops = &xfs_inode_buf_ops;
|
|
xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
|
|
for (i = 0; i < M_IGEO(mp)->inodes_per_cluster; i++) {
|
|
int ioffset = i << mp->m_sb.sb_inodelog;
|
|
|
|
free = xfs_make_iptr(mp, fbuf, i);
|
|
free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
|
|
free->di_version = version;
|
|
free->di_gen = cpu_to_be32(gen);
|
|
free->di_next_unlinked = cpu_to_be32(NULLAGINO);
|
|
|
|
if (version == 3) {
|
|
free->di_ino = cpu_to_be64(ino);
|
|
ino++;
|
|
uuid_copy(&free->di_uuid,
|
|
&mp->m_sb.sb_meta_uuid);
|
|
xfs_dinode_calc_crc(mp, free);
|
|
} else if (tp) {
|
|
/* just log the inode core */
|
|
xfs_trans_log_buf(tp, fbuf, ioffset,
|
|
ioffset + XFS_DINODE_SIZE(mp) - 1);
|
|
}
|
|
}
|
|
|
|
if (tp) {
|
|
/*
|
|
* Mark the buffer as an inode allocation buffer so it
|
|
* sticks in AIL at the point of this allocation
|
|
* transaction. This ensures the they are on disk before
|
|
* the tail of the log can be moved past this
|
|
* transaction (i.e. by preventing relogging from moving
|
|
* it forward in the log).
|
|
*/
|
|
xfs_trans_inode_alloc_buf(tp, fbuf);
|
|
if (version == 3) {
|
|
/*
|
|
* Mark the buffer as ordered so that they are
|
|
* not physically logged in the transaction but
|
|
* still tracked in the AIL as part of the
|
|
* transaction and pin the log appropriately.
|
|
*/
|
|
xfs_trans_ordered_buf(tp, fbuf);
|
|
}
|
|
} else {
|
|
fbuf->b_flags |= XBF_DONE;
|
|
xfs_buf_delwri_queue(fbuf, buffer_list);
|
|
xfs_buf_relse(fbuf);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Align startino and allocmask for a recently allocated sparse chunk such that
|
|
* they are fit for insertion (or merge) into the on-disk inode btrees.
|
|
*
|
|
* Background:
|
|
*
|
|
* When enabled, sparse inode support increases the inode alignment from cluster
|
|
* size to inode chunk size. This means that the minimum range between two
|
|
* non-adjacent inode records in the inobt is large enough for a full inode
|
|
* record. This allows for cluster sized, cluster aligned block allocation
|
|
* without need to worry about whether the resulting inode record overlaps with
|
|
* another record in the tree. Without this basic rule, we would have to deal
|
|
* with the consequences of overlap by potentially undoing recent allocations in
|
|
* the inode allocation codepath.
|
|
*
|
|
* Because of this alignment rule (which is enforced on mount), there are two
|
|
* inobt possibilities for newly allocated sparse chunks. One is that the
|
|
* aligned inode record for the chunk covers a range of inodes not already
|
|
* covered in the inobt (i.e., it is safe to insert a new sparse record). The
|
|
* other is that a record already exists at the aligned startino that considers
|
|
* the newly allocated range as sparse. In the latter case, record content is
|
|
* merged in hope that sparse inode chunks fill to full chunks over time.
|
|
*/
|
|
STATIC void
|
|
xfs_align_sparse_ino(
|
|
struct xfs_mount *mp,
|
|
xfs_agino_t *startino,
|
|
uint16_t *allocmask)
|
|
{
|
|
xfs_agblock_t agbno;
|
|
xfs_agblock_t mod;
|
|
int offset;
|
|
|
|
agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
|
|
mod = agbno % mp->m_sb.sb_inoalignmt;
|
|
if (!mod)
|
|
return;
|
|
|
|
/* calculate the inode offset and align startino */
|
|
offset = XFS_AGB_TO_AGINO(mp, mod);
|
|
*startino -= offset;
|
|
|
|
/*
|
|
* Since startino has been aligned down, left shift allocmask such that
|
|
* it continues to represent the same physical inodes relative to the
|
|
* new startino.
|
|
*/
|
|
*allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
|
|
}
|
|
|
|
/*
|
|
* Determine whether the source inode record can merge into the target. Both
|
|
* records must be sparse, the inode ranges must match and there must be no
|
|
* allocation overlap between the records.
|
|
*/
|
|
STATIC bool
|
|
__xfs_inobt_can_merge(
|
|
struct xfs_inobt_rec_incore *trec, /* tgt record */
|
|
struct xfs_inobt_rec_incore *srec) /* src record */
|
|
{
|
|
uint64_t talloc;
|
|
uint64_t salloc;
|
|
|
|
/* records must cover the same inode range */
|
|
if (trec->ir_startino != srec->ir_startino)
|
|
return false;
|
|
|
|
/* both records must be sparse */
|
|
if (!xfs_inobt_issparse(trec->ir_holemask) ||
|
|
!xfs_inobt_issparse(srec->ir_holemask))
|
|
return false;
|
|
|
|
/* both records must track some inodes */
|
|
if (!trec->ir_count || !srec->ir_count)
|
|
return false;
|
|
|
|
/* can't exceed capacity of a full record */
|
|
if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
|
|
return false;
|
|
|
|
/* verify there is no allocation overlap */
|
|
talloc = xfs_inobt_irec_to_allocmask(trec);
|
|
salloc = xfs_inobt_irec_to_allocmask(srec);
|
|
if (talloc & salloc)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Merge the source inode record into the target. The caller must call
|
|
* __xfs_inobt_can_merge() to ensure the merge is valid.
|
|
*/
|
|
STATIC void
|
|
__xfs_inobt_rec_merge(
|
|
struct xfs_inobt_rec_incore *trec, /* target */
|
|
struct xfs_inobt_rec_incore *srec) /* src */
|
|
{
|
|
ASSERT(trec->ir_startino == srec->ir_startino);
|
|
|
|
/* combine the counts */
|
|
trec->ir_count += srec->ir_count;
|
|
trec->ir_freecount += srec->ir_freecount;
|
|
|
|
/*
|
|
* Merge the holemask and free mask. For both fields, 0 bits refer to
|
|
* allocated inodes. We combine the allocated ranges with bitwise AND.
|
|
*/
|
|
trec->ir_holemask &= srec->ir_holemask;
|
|
trec->ir_free &= srec->ir_free;
|
|
}
|
|
|
|
/*
|
|
* Insert a new sparse inode chunk into the associated inode allocation btree.
|
|
* The inode record for the sparse chunk is pre-aligned to a startino that
|
|
* should match any pre-existing sparse inode record in the tree. This allows
|
|
* sparse chunks to fill over time.
|
|
*
|
|
* If no preexisting record exists, the provided record is inserted.
|
|
* If there is a preexisting record, the provided record is merged with the
|
|
* existing record and updated in place. The merged record is returned in nrec.
|
|
*
|
|
* It is considered corruption if a merge is requested and not possible. Given
|
|
* the sparse inode alignment constraints, this should never happen.
|
|
*/
|
|
STATIC int
|
|
xfs_inobt_insert_sprec(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp,
|
|
struct xfs_inobt_rec_incore *nrec) /* in/out: new/merged rec. */
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
struct xfs_btree_cur *cur;
|
|
int error;
|
|
int i;
|
|
struct xfs_inobt_rec_incore rec;
|
|
|
|
cur = xfs_inobt_init_cursor(pag, tp, agbp);
|
|
|
|
/* the new record is pre-aligned so we know where to look */
|
|
error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
|
|
if (error)
|
|
goto error;
|
|
/* if nothing there, insert a new record and return */
|
|
if (i == 0) {
|
|
error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
|
|
nrec->ir_count, nrec->ir_freecount,
|
|
nrec->ir_free, &i);
|
|
if (error)
|
|
goto error;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
goto error;
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* A record exists at this startino. Merge the records.
|
|
*/
|
|
error = xfs_inobt_get_rec(cur, &rec, &i);
|
|
if (error)
|
|
goto error;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
goto error;
|
|
}
|
|
if (XFS_IS_CORRUPT(mp, rec.ir_startino != nrec->ir_startino)) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* This should never fail. If we have coexisting records that
|
|
* cannot merge, something is seriously wrong.
|
|
*/
|
|
if (XFS_IS_CORRUPT(mp, !__xfs_inobt_can_merge(nrec, &rec))) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
goto error;
|
|
}
|
|
|
|
trace_xfs_irec_merge_pre(mp, pag->pag_agno, rec.ir_startino,
|
|
rec.ir_holemask, nrec->ir_startino,
|
|
nrec->ir_holemask);
|
|
|
|
/* merge to nrec to output the updated record */
|
|
__xfs_inobt_rec_merge(nrec, &rec);
|
|
|
|
trace_xfs_irec_merge_post(mp, pag->pag_agno, nrec->ir_startino,
|
|
nrec->ir_holemask);
|
|
|
|
error = xfs_inobt_rec_check_count(mp, nrec);
|
|
if (error)
|
|
goto error;
|
|
|
|
error = xfs_inobt_update(cur, nrec);
|
|
if (error)
|
|
goto error;
|
|
|
|
out:
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
|
|
return 0;
|
|
error:
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Insert a new sparse inode chunk into the free inode btree. The inode
|
|
* record for the sparse chunk is pre-aligned to a startino that should match
|
|
* any pre-existing sparse inode record in the tree. This allows sparse chunks
|
|
* to fill over time.
|
|
*
|
|
* The new record is always inserted, overwriting a pre-existing record if
|
|
* there is one.
|
|
*/
|
|
STATIC int
|
|
xfs_finobt_insert_sprec(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp,
|
|
struct xfs_inobt_rec_incore *nrec) /* in/out: new rec. */
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
struct xfs_btree_cur *cur;
|
|
int error;
|
|
int i;
|
|
|
|
cur = xfs_finobt_init_cursor(pag, tp, agbp);
|
|
|
|
/* the new record is pre-aligned so we know where to look */
|
|
error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
|
|
if (error)
|
|
goto error;
|
|
/* if nothing there, insert a new record and return */
|
|
if (i == 0) {
|
|
error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
|
|
nrec->ir_count, nrec->ir_freecount,
|
|
nrec->ir_free, &i);
|
|
if (error)
|
|
goto error;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
goto error;
|
|
}
|
|
} else {
|
|
error = xfs_inobt_update(cur, nrec);
|
|
if (error)
|
|
goto error;
|
|
}
|
|
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
|
|
return 0;
|
|
error:
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
|
|
|
|
/*
|
|
* Allocate new inodes in the allocation group specified by agbp. Returns 0 if
|
|
* inodes were allocated in this AG; -EAGAIN if there was no space in this AG so
|
|
* the caller knows it can try another AG, a hard -ENOSPC when over the maximum
|
|
* inode count threshold, or the usual negative error code for other errors.
|
|
*/
|
|
STATIC int
|
|
xfs_ialloc_ag_alloc(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp)
|
|
{
|
|
struct xfs_agi *agi;
|
|
struct xfs_alloc_arg args;
|
|
int error;
|
|
xfs_agino_t newino; /* new first inode's number */
|
|
xfs_agino_t newlen; /* new number of inodes */
|
|
int isaligned = 0; /* inode allocation at stripe */
|
|
/* unit boundary */
|
|
/* init. to full chunk */
|
|
struct xfs_inobt_rec_incore rec;
|
|
struct xfs_ino_geometry *igeo = M_IGEO(tp->t_mountp);
|
|
uint16_t allocmask = (uint16_t) -1;
|
|
int do_sparse = 0;
|
|
|
|
memset(&args, 0, sizeof(args));
|
|
args.tp = tp;
|
|
args.mp = tp->t_mountp;
|
|
args.fsbno = NULLFSBLOCK;
|
|
args.oinfo = XFS_RMAP_OINFO_INODES;
|
|
args.pag = pag;
|
|
|
|
#ifdef DEBUG
|
|
/* randomly do sparse inode allocations */
|
|
if (xfs_has_sparseinodes(tp->t_mountp) &&
|
|
igeo->ialloc_min_blks < igeo->ialloc_blks)
|
|
do_sparse = get_random_u32_below(2);
|
|
#endif
|
|
|
|
/*
|
|
* Locking will ensure that we don't have two callers in here
|
|
* at one time.
|
|
*/
|
|
newlen = igeo->ialloc_inos;
|
|
if (igeo->maxicount &&
|
|
percpu_counter_read_positive(&args.mp->m_icount) + newlen >
|
|
igeo->maxicount)
|
|
return -ENOSPC;
|
|
args.minlen = args.maxlen = igeo->ialloc_blks;
|
|
/*
|
|
* First try to allocate inodes contiguous with the last-allocated
|
|
* chunk of inodes. If the filesystem is striped, this will fill
|
|
* an entire stripe unit with inodes.
|
|
*/
|
|
agi = agbp->b_addr;
|
|
newino = be32_to_cpu(agi->agi_newino);
|
|
args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
|
|
igeo->ialloc_blks;
|
|
if (do_sparse)
|
|
goto sparse_alloc;
|
|
if (likely(newino != NULLAGINO &&
|
|
(args.agbno < be32_to_cpu(agi->agi_length)))) {
|
|
args.prod = 1;
|
|
|
|
/*
|
|
* We need to take into account alignment here to ensure that
|
|
* we don't modify the free list if we fail to have an exact
|
|
* block. If we don't have an exact match, and every oher
|
|
* attempt allocation attempt fails, we'll end up cancelling
|
|
* a dirty transaction and shutting down.
|
|
*
|
|
* For an exact allocation, alignment must be 1,
|
|
* however we need to take cluster alignment into account when
|
|
* fixing up the freelist. Use the minalignslop field to
|
|
* indicate that extra blocks might be required for alignment,
|
|
* but not to use them in the actual exact allocation.
|
|
*/
|
|
args.alignment = 1;
|
|
args.minalignslop = igeo->cluster_align - 1;
|
|
|
|
/* Allow space for the inode btree to split. */
|
|
args.minleft = igeo->inobt_maxlevels;
|
|
error = xfs_alloc_vextent_exact_bno(&args,
|
|
XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
|
|
args.agbno));
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* This request might have dirtied the transaction if the AG can
|
|
* satisfy the request, but the exact block was not available.
|
|
* If the allocation did fail, subsequent requests will relax
|
|
* the exact agbno requirement and increase the alignment
|
|
* instead. It is critical that the total size of the request
|
|
* (len + alignment + slop) does not increase from this point
|
|
* on, so reset minalignslop to ensure it is not included in
|
|
* subsequent requests.
|
|
*/
|
|
args.minalignslop = 0;
|
|
}
|
|
|
|
if (unlikely(args.fsbno == NULLFSBLOCK)) {
|
|
/*
|
|
* Set the alignment for the allocation.
|
|
* If stripe alignment is turned on then align at stripe unit
|
|
* boundary.
|
|
* If the cluster size is smaller than a filesystem block
|
|
* then we're doing I/O for inodes in filesystem block size
|
|
* pieces, so don't need alignment anyway.
|
|
*/
|
|
isaligned = 0;
|
|
if (igeo->ialloc_align) {
|
|
ASSERT(!xfs_has_noalign(args.mp));
|
|
args.alignment = args.mp->m_dalign;
|
|
isaligned = 1;
|
|
} else
|
|
args.alignment = igeo->cluster_align;
|
|
/*
|
|
* Allocate a fixed-size extent of inodes.
|
|
*/
|
|
args.prod = 1;
|
|
/*
|
|
* Allow space for the inode btree to split.
|
|
*/
|
|
args.minleft = igeo->inobt_maxlevels;
|
|
error = xfs_alloc_vextent_near_bno(&args,
|
|
XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
|
|
be32_to_cpu(agi->agi_root)));
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* If stripe alignment is turned on, then try again with cluster
|
|
* alignment.
|
|
*/
|
|
if (isaligned && args.fsbno == NULLFSBLOCK) {
|
|
args.alignment = igeo->cluster_align;
|
|
error = xfs_alloc_vextent_near_bno(&args,
|
|
XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
|
|
be32_to_cpu(agi->agi_root)));
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Finally, try a sparse allocation if the filesystem supports it and
|
|
* the sparse allocation length is smaller than a full chunk.
|
|
*/
|
|
if (xfs_has_sparseinodes(args.mp) &&
|
|
igeo->ialloc_min_blks < igeo->ialloc_blks &&
|
|
args.fsbno == NULLFSBLOCK) {
|
|
sparse_alloc:
|
|
args.alignment = args.mp->m_sb.sb_spino_align;
|
|
args.prod = 1;
|
|
|
|
args.minlen = igeo->ialloc_min_blks;
|
|
args.maxlen = args.minlen;
|
|
|
|
/*
|
|
* The inode record will be aligned to full chunk size. We must
|
|
* prevent sparse allocation from AG boundaries that result in
|
|
* invalid inode records, such as records that start at agbno 0
|
|
* or extend beyond the AG.
|
|
*
|
|
* Set min agbno to the first aligned, non-zero agbno and max to
|
|
* the last aligned agbno that is at least one full chunk from
|
|
* the end of the AG.
|
|
*/
|
|
args.min_agbno = args.mp->m_sb.sb_inoalignmt;
|
|
args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
|
|
args.mp->m_sb.sb_inoalignmt) -
|
|
igeo->ialloc_blks;
|
|
|
|
error = xfs_alloc_vextent_near_bno(&args,
|
|
XFS_AGB_TO_FSB(args.mp, pag->pag_agno,
|
|
be32_to_cpu(agi->agi_root)));
|
|
if (error)
|
|
return error;
|
|
|
|
newlen = XFS_AGB_TO_AGINO(args.mp, args.len);
|
|
ASSERT(newlen <= XFS_INODES_PER_CHUNK);
|
|
allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
|
|
}
|
|
|
|
if (args.fsbno == NULLFSBLOCK)
|
|
return -EAGAIN;
|
|
|
|
ASSERT(args.len == args.minlen);
|
|
|
|
/*
|
|
* Stamp and write the inode buffers.
|
|
*
|
|
* Seed the new inode cluster with a random generation number. This
|
|
* prevents short-term reuse of generation numbers if a chunk is
|
|
* freed and then immediately reallocated. We use random numbers
|
|
* rather than a linear progression to prevent the next generation
|
|
* number from being easily guessable.
|
|
*/
|
|
error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, pag->pag_agno,
|
|
args.agbno, args.len, get_random_u32());
|
|
|
|
if (error)
|
|
return error;
|
|
/*
|
|
* Convert the results.
|
|
*/
|
|
newino = XFS_AGB_TO_AGINO(args.mp, args.agbno);
|
|
|
|
if (xfs_inobt_issparse(~allocmask)) {
|
|
/*
|
|
* We've allocated a sparse chunk. Align the startino and mask.
|
|
*/
|
|
xfs_align_sparse_ino(args.mp, &newino, &allocmask);
|
|
|
|
rec.ir_startino = newino;
|
|
rec.ir_holemask = ~allocmask;
|
|
rec.ir_count = newlen;
|
|
rec.ir_freecount = newlen;
|
|
rec.ir_free = XFS_INOBT_ALL_FREE;
|
|
|
|
/*
|
|
* Insert the sparse record into the inobt and allow for a merge
|
|
* if necessary. If a merge does occur, rec is updated to the
|
|
* merged record.
|
|
*/
|
|
error = xfs_inobt_insert_sprec(pag, tp, agbp, &rec);
|
|
if (error == -EFSCORRUPTED) {
|
|
xfs_alert(args.mp,
|
|
"invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
|
|
XFS_AGINO_TO_INO(args.mp, pag->pag_agno,
|
|
rec.ir_startino),
|
|
rec.ir_holemask, rec.ir_count);
|
|
xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
|
|
}
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* We can't merge the part we've just allocated as for the inobt
|
|
* due to finobt semantics. The original record may or may not
|
|
* exist independent of whether physical inodes exist in this
|
|
* sparse chunk.
|
|
*
|
|
* We must update the finobt record based on the inobt record.
|
|
* rec contains the fully merged and up to date inobt record
|
|
* from the previous call. Set merge false to replace any
|
|
* existing record with this one.
|
|
*/
|
|
if (xfs_has_finobt(args.mp)) {
|
|
error = xfs_finobt_insert_sprec(pag, tp, agbp, &rec);
|
|
if (error)
|
|
return error;
|
|
}
|
|
} else {
|
|
/* full chunk - insert new records to both btrees */
|
|
error = xfs_inobt_insert(pag, tp, agbp, newino, newlen, false);
|
|
if (error)
|
|
return error;
|
|
|
|
if (xfs_has_finobt(args.mp)) {
|
|
error = xfs_inobt_insert(pag, tp, agbp, newino,
|
|
newlen, true);
|
|
if (error)
|
|
return error;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update AGI counts and newino.
|
|
*/
|
|
be32_add_cpu(&agi->agi_count, newlen);
|
|
be32_add_cpu(&agi->agi_freecount, newlen);
|
|
pag->pagi_freecount += newlen;
|
|
pag->pagi_count += newlen;
|
|
agi->agi_newino = cpu_to_be32(newino);
|
|
|
|
/*
|
|
* Log allocation group header fields
|
|
*/
|
|
xfs_ialloc_log_agi(tp, agbp,
|
|
XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
|
|
/*
|
|
* Modify/log superblock values for inode count and inode free count.
|
|
*/
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Try to retrieve the next record to the left/right from the current one.
|
|
*/
|
|
STATIC int
|
|
xfs_ialloc_next_rec(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_inobt_rec_incore_t *rec,
|
|
int *done,
|
|
int left)
|
|
{
|
|
int error;
|
|
int i;
|
|
|
|
if (left)
|
|
error = xfs_btree_decrement(cur, 0, &i);
|
|
else
|
|
error = xfs_btree_increment(cur, 0, &i);
|
|
|
|
if (error)
|
|
return error;
|
|
*done = !i;
|
|
if (i) {
|
|
error = xfs_inobt_get_rec(cur, rec, &i);
|
|
if (error)
|
|
return error;
|
|
if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_ialloc_get_rec(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_agino_t agino,
|
|
xfs_inobt_rec_incore_t *rec,
|
|
int *done)
|
|
{
|
|
int error;
|
|
int i;
|
|
|
|
error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
|
|
if (error)
|
|
return error;
|
|
*done = !i;
|
|
if (i) {
|
|
error = xfs_inobt_get_rec(cur, rec, &i);
|
|
if (error)
|
|
return error;
|
|
if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the offset of the first free inode in the record. If the inode chunk
|
|
* is sparsely allocated, we convert the record holemask to inode granularity
|
|
* and mask off the unallocated regions from the inode free mask.
|
|
*/
|
|
STATIC int
|
|
xfs_inobt_first_free_inode(
|
|
struct xfs_inobt_rec_incore *rec)
|
|
{
|
|
xfs_inofree_t realfree;
|
|
|
|
/* if there are no holes, return the first available offset */
|
|
if (!xfs_inobt_issparse(rec->ir_holemask))
|
|
return xfs_lowbit64(rec->ir_free);
|
|
|
|
realfree = xfs_inobt_irec_to_allocmask(rec);
|
|
realfree &= rec->ir_free;
|
|
|
|
return xfs_lowbit64(realfree);
|
|
}
|
|
|
|
/*
|
|
* If this AG has corrupt inodes, check if allocating this inode would fail
|
|
* with corruption errors. Returns 0 if we're clear, or EAGAIN to try again
|
|
* somewhere else.
|
|
*/
|
|
static int
|
|
xfs_dialloc_check_ino(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
xfs_ino_t ino)
|
|
{
|
|
struct xfs_imap imap;
|
|
struct xfs_buf *bp;
|
|
int error;
|
|
|
|
error = xfs_imap(pag, tp, ino, &imap, 0);
|
|
if (error)
|
|
return -EAGAIN;
|
|
|
|
error = xfs_imap_to_bp(pag->pag_mount, tp, &imap, &bp);
|
|
if (error)
|
|
return -EAGAIN;
|
|
|
|
xfs_trans_brelse(tp, bp);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Allocate an inode using the inobt-only algorithm.
|
|
*/
|
|
STATIC int
|
|
xfs_dialloc_ag_inobt(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp,
|
|
xfs_ino_t parent,
|
|
xfs_ino_t *inop)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_agi *agi = agbp->b_addr;
|
|
xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
|
|
xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
|
|
struct xfs_btree_cur *cur, *tcur;
|
|
struct xfs_inobt_rec_incore rec, trec;
|
|
xfs_ino_t ino;
|
|
int error;
|
|
int offset;
|
|
int i, j;
|
|
int searchdistance = 10;
|
|
|
|
ASSERT(xfs_perag_initialised_agi(pag));
|
|
ASSERT(xfs_perag_allows_inodes(pag));
|
|
ASSERT(pag->pagi_freecount > 0);
|
|
|
|
restart_pagno:
|
|
cur = xfs_inobt_init_cursor(pag, tp, agbp);
|
|
/*
|
|
* If pagino is 0 (this is the root inode allocation) use newino.
|
|
* This must work because we've just allocated some.
|
|
*/
|
|
if (!pagino)
|
|
pagino = be32_to_cpu(agi->agi_newino);
|
|
|
|
error = xfs_check_agi_freecount(cur);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/*
|
|
* If in the same AG as the parent, try to get near the parent.
|
|
*/
|
|
if (pagno == pag->pag_agno) {
|
|
int doneleft; /* done, to the left */
|
|
int doneright; /* done, to the right */
|
|
|
|
error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
|
|
if (error)
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
|
|
error = xfs_inobt_get_rec(cur, &rec, &j);
|
|
if (error)
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, j != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
|
|
if (rec.ir_freecount > 0) {
|
|
/*
|
|
* Found a free inode in the same chunk
|
|
* as the parent, done.
|
|
*/
|
|
goto alloc_inode;
|
|
}
|
|
|
|
|
|
/*
|
|
* In the same AG as parent, but parent's chunk is full.
|
|
*/
|
|
|
|
/* duplicate the cursor, search left & right simultaneously */
|
|
error = xfs_btree_dup_cursor(cur, &tcur);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/*
|
|
* Skip to last blocks looked up if same parent inode.
|
|
*/
|
|
if (pagino != NULLAGINO &&
|
|
pag->pagl_pagino == pagino &&
|
|
pag->pagl_leftrec != NULLAGINO &&
|
|
pag->pagl_rightrec != NULLAGINO) {
|
|
error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
|
|
&trec, &doneleft);
|
|
if (error)
|
|
goto error1;
|
|
|
|
error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
|
|
&rec, &doneright);
|
|
if (error)
|
|
goto error1;
|
|
} else {
|
|
/* search left with tcur, back up 1 record */
|
|
error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
|
|
if (error)
|
|
goto error1;
|
|
|
|
/* search right with cur, go forward 1 record. */
|
|
error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
|
|
if (error)
|
|
goto error1;
|
|
}
|
|
|
|
/*
|
|
* Loop until we find an inode chunk with a free inode.
|
|
*/
|
|
while (--searchdistance > 0 && (!doneleft || !doneright)) {
|
|
int useleft; /* using left inode chunk this time */
|
|
|
|
/* figure out the closer block if both are valid. */
|
|
if (!doneleft && !doneright) {
|
|
useleft = pagino -
|
|
(trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
|
|
rec.ir_startino - pagino;
|
|
} else {
|
|
useleft = !doneleft;
|
|
}
|
|
|
|
/* free inodes to the left? */
|
|
if (useleft && trec.ir_freecount) {
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
|
|
cur = tcur;
|
|
|
|
pag->pagl_leftrec = trec.ir_startino;
|
|
pag->pagl_rightrec = rec.ir_startino;
|
|
pag->pagl_pagino = pagino;
|
|
rec = trec;
|
|
goto alloc_inode;
|
|
}
|
|
|
|
/* free inodes to the right? */
|
|
if (!useleft && rec.ir_freecount) {
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
|
|
|
|
pag->pagl_leftrec = trec.ir_startino;
|
|
pag->pagl_rightrec = rec.ir_startino;
|
|
pag->pagl_pagino = pagino;
|
|
goto alloc_inode;
|
|
}
|
|
|
|
/* get next record to check */
|
|
if (useleft) {
|
|
error = xfs_ialloc_next_rec(tcur, &trec,
|
|
&doneleft, 1);
|
|
} else {
|
|
error = xfs_ialloc_next_rec(cur, &rec,
|
|
&doneright, 0);
|
|
}
|
|
if (error)
|
|
goto error1;
|
|
}
|
|
|
|
if (searchdistance <= 0) {
|
|
/*
|
|
* Not in range - save last search
|
|
* location and allocate a new inode
|
|
*/
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
|
|
pag->pagl_leftrec = trec.ir_startino;
|
|
pag->pagl_rightrec = rec.ir_startino;
|
|
pag->pagl_pagino = pagino;
|
|
|
|
} else {
|
|
/*
|
|
* We've reached the end of the btree. because
|
|
* we are only searching a small chunk of the
|
|
* btree each search, there is obviously free
|
|
* inodes closer to the parent inode than we
|
|
* are now. restart the search again.
|
|
*/
|
|
pag->pagl_pagino = NULLAGINO;
|
|
pag->pagl_leftrec = NULLAGINO;
|
|
pag->pagl_rightrec = NULLAGINO;
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
|
|
goto restart_pagno;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In a different AG from the parent.
|
|
* See if the most recently allocated block has any free.
|
|
*/
|
|
if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
|
|
error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
|
|
XFS_LOOKUP_EQ, &i);
|
|
if (error)
|
|
goto error0;
|
|
|
|
if (i == 1) {
|
|
error = xfs_inobt_get_rec(cur, &rec, &j);
|
|
if (error)
|
|
goto error0;
|
|
|
|
if (j == 1 && rec.ir_freecount > 0) {
|
|
/*
|
|
* The last chunk allocated in the group
|
|
* still has a free inode.
|
|
*/
|
|
goto alloc_inode;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* None left in the last group, search the whole AG
|
|
*/
|
|
error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
|
|
if (error)
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
|
|
for (;;) {
|
|
error = xfs_inobt_get_rec(cur, &rec, &i);
|
|
if (error)
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
if (rec.ir_freecount > 0)
|
|
break;
|
|
error = xfs_btree_increment(cur, 0, &i);
|
|
if (error)
|
|
goto error0;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
}
|
|
|
|
alloc_inode:
|
|
offset = xfs_inobt_first_free_inode(&rec);
|
|
ASSERT(offset >= 0);
|
|
ASSERT(offset < XFS_INODES_PER_CHUNK);
|
|
ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
|
|
XFS_INODES_PER_CHUNK) == 0);
|
|
ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
|
|
|
|
if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
|
|
error = xfs_dialloc_check_ino(pag, tp, ino);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
|
|
rec.ir_free &= ~XFS_INOBT_MASK(offset);
|
|
rec.ir_freecount--;
|
|
error = xfs_inobt_update(cur, &rec);
|
|
if (error)
|
|
goto error0;
|
|
be32_add_cpu(&agi->agi_freecount, -1);
|
|
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
|
|
pag->pagi_freecount--;
|
|
|
|
error = xfs_check_agi_freecount(cur);
|
|
if (error)
|
|
goto error0;
|
|
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
|
|
*inop = ino;
|
|
return 0;
|
|
error1:
|
|
xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
|
|
error0:
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Use the free inode btree to allocate an inode based on distance from the
|
|
* parent. Note that the provided cursor may be deleted and replaced.
|
|
*/
|
|
STATIC int
|
|
xfs_dialloc_ag_finobt_near(
|
|
xfs_agino_t pagino,
|
|
struct xfs_btree_cur **ocur,
|
|
struct xfs_inobt_rec_incore *rec)
|
|
{
|
|
struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
|
|
struct xfs_btree_cur *rcur; /* right search cursor */
|
|
struct xfs_inobt_rec_incore rrec;
|
|
int error;
|
|
int i, j;
|
|
|
|
error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
|
|
if (error)
|
|
return error;
|
|
|
|
if (i == 1) {
|
|
error = xfs_inobt_get_rec(lcur, rec, &i);
|
|
if (error)
|
|
return error;
|
|
if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1)) {
|
|
xfs_btree_mark_sick(lcur);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
/*
|
|
* See if we've landed in the parent inode record. The finobt
|
|
* only tracks chunks with at least one free inode, so record
|
|
* existence is enough.
|
|
*/
|
|
if (pagino >= rec->ir_startino &&
|
|
pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
|
|
return 0;
|
|
}
|
|
|
|
error = xfs_btree_dup_cursor(lcur, &rcur);
|
|
if (error)
|
|
return error;
|
|
|
|
error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
|
|
if (error)
|
|
goto error_rcur;
|
|
if (j == 1) {
|
|
error = xfs_inobt_get_rec(rcur, &rrec, &j);
|
|
if (error)
|
|
goto error_rcur;
|
|
if (XFS_IS_CORRUPT(lcur->bc_mp, j != 1)) {
|
|
xfs_btree_mark_sick(lcur);
|
|
error = -EFSCORRUPTED;
|
|
goto error_rcur;
|
|
}
|
|
}
|
|
|
|
if (XFS_IS_CORRUPT(lcur->bc_mp, i != 1 && j != 1)) {
|
|
xfs_btree_mark_sick(lcur);
|
|
error = -EFSCORRUPTED;
|
|
goto error_rcur;
|
|
}
|
|
if (i == 1 && j == 1) {
|
|
/*
|
|
* Both the left and right records are valid. Choose the closer
|
|
* inode chunk to the target.
|
|
*/
|
|
if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
|
|
(rrec.ir_startino - pagino)) {
|
|
*rec = rrec;
|
|
xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
|
|
*ocur = rcur;
|
|
} else {
|
|
xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
|
|
}
|
|
} else if (j == 1) {
|
|
/* only the right record is valid */
|
|
*rec = rrec;
|
|
xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
|
|
*ocur = rcur;
|
|
} else if (i == 1) {
|
|
/* only the left record is valid */
|
|
xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
|
|
}
|
|
|
|
return 0;
|
|
|
|
error_rcur:
|
|
xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Use the free inode btree to find a free inode based on a newino hint. If
|
|
* the hint is NULL, find the first free inode in the AG.
|
|
*/
|
|
STATIC int
|
|
xfs_dialloc_ag_finobt_newino(
|
|
struct xfs_agi *agi,
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_inobt_rec_incore *rec)
|
|
{
|
|
int error;
|
|
int i;
|
|
|
|
if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
|
|
error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
|
|
XFS_LOOKUP_EQ, &i);
|
|
if (error)
|
|
return error;
|
|
if (i == 1) {
|
|
error = xfs_inobt_get_rec(cur, rec, &i);
|
|
if (error)
|
|
return error;
|
|
if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find the first inode available in the AG.
|
|
*/
|
|
error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
|
|
if (error)
|
|
return error;
|
|
if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
error = xfs_inobt_get_rec(cur, rec, &i);
|
|
if (error)
|
|
return error;
|
|
if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update the inobt based on a modification made to the finobt. Also ensure that
|
|
* the records from both trees are equivalent post-modification.
|
|
*/
|
|
STATIC int
|
|
xfs_dialloc_ag_update_inobt(
|
|
struct xfs_btree_cur *cur, /* inobt cursor */
|
|
struct xfs_inobt_rec_incore *frec, /* finobt record */
|
|
int offset) /* inode offset */
|
|
{
|
|
struct xfs_inobt_rec_incore rec;
|
|
int error;
|
|
int i;
|
|
|
|
error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
|
|
if (error)
|
|
return error;
|
|
if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
error = xfs_inobt_get_rec(cur, &rec, &i);
|
|
if (error)
|
|
return error;
|
|
if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
|
|
XFS_INODES_PER_CHUNK) == 0);
|
|
|
|
rec.ir_free &= ~XFS_INOBT_MASK(offset);
|
|
rec.ir_freecount--;
|
|
|
|
if (XFS_IS_CORRUPT(cur->bc_mp,
|
|
rec.ir_free != frec->ir_free ||
|
|
rec.ir_freecount != frec->ir_freecount)) {
|
|
xfs_btree_mark_sick(cur);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
return xfs_inobt_update(cur, &rec);
|
|
}
|
|
|
|
/*
|
|
* Allocate an inode using the free inode btree, if available. Otherwise, fall
|
|
* back to the inobt search algorithm.
|
|
*
|
|
* The caller selected an AG for us, and made sure that free inodes are
|
|
* available.
|
|
*/
|
|
static int
|
|
xfs_dialloc_ag(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp,
|
|
xfs_ino_t parent,
|
|
xfs_ino_t *inop)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_agi *agi = agbp->b_addr;
|
|
xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
|
|
xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
|
|
struct xfs_btree_cur *cur; /* finobt cursor */
|
|
struct xfs_btree_cur *icur; /* inobt cursor */
|
|
struct xfs_inobt_rec_incore rec;
|
|
xfs_ino_t ino;
|
|
int error;
|
|
int offset;
|
|
int i;
|
|
|
|
if (!xfs_has_finobt(mp))
|
|
return xfs_dialloc_ag_inobt(pag, tp, agbp, parent, inop);
|
|
|
|
/*
|
|
* If pagino is 0 (this is the root inode allocation) use newino.
|
|
* This must work because we've just allocated some.
|
|
*/
|
|
if (!pagino)
|
|
pagino = be32_to_cpu(agi->agi_newino);
|
|
|
|
cur = xfs_finobt_init_cursor(pag, tp, agbp);
|
|
|
|
error = xfs_check_agi_freecount(cur);
|
|
if (error)
|
|
goto error_cur;
|
|
|
|
/*
|
|
* The search algorithm depends on whether we're in the same AG as the
|
|
* parent. If so, find the closest available inode to the parent. If
|
|
* not, consider the agi hint or find the first free inode in the AG.
|
|
*/
|
|
if (pag->pag_agno == pagno)
|
|
error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
|
|
else
|
|
error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
|
|
if (error)
|
|
goto error_cur;
|
|
|
|
offset = xfs_inobt_first_free_inode(&rec);
|
|
ASSERT(offset >= 0);
|
|
ASSERT(offset < XFS_INODES_PER_CHUNK);
|
|
ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
|
|
XFS_INODES_PER_CHUNK) == 0);
|
|
ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, rec.ir_startino + offset);
|
|
|
|
if (xfs_ag_has_sickness(pag, XFS_SICK_AG_INODES)) {
|
|
error = xfs_dialloc_check_ino(pag, tp, ino);
|
|
if (error)
|
|
goto error_cur;
|
|
}
|
|
|
|
/*
|
|
* Modify or remove the finobt record.
|
|
*/
|
|
rec.ir_free &= ~XFS_INOBT_MASK(offset);
|
|
rec.ir_freecount--;
|
|
if (rec.ir_freecount)
|
|
error = xfs_inobt_update(cur, &rec);
|
|
else
|
|
error = xfs_btree_delete(cur, &i);
|
|
if (error)
|
|
goto error_cur;
|
|
|
|
/*
|
|
* The finobt has now been updated appropriately. We haven't updated the
|
|
* agi and superblock yet, so we can create an inobt cursor and validate
|
|
* the original freecount. If all is well, make the equivalent update to
|
|
* the inobt using the finobt record and offset information.
|
|
*/
|
|
icur = xfs_inobt_init_cursor(pag, tp, agbp);
|
|
|
|
error = xfs_check_agi_freecount(icur);
|
|
if (error)
|
|
goto error_icur;
|
|
|
|
error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
|
|
if (error)
|
|
goto error_icur;
|
|
|
|
/*
|
|
* Both trees have now been updated. We must update the perag and
|
|
* superblock before we can check the freecount for each btree.
|
|
*/
|
|
be32_add_cpu(&agi->agi_freecount, -1);
|
|
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
|
|
pag->pagi_freecount--;
|
|
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
|
|
|
|
error = xfs_check_agi_freecount(icur);
|
|
if (error)
|
|
goto error_icur;
|
|
error = xfs_check_agi_freecount(cur);
|
|
if (error)
|
|
goto error_icur;
|
|
|
|
xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
|
|
*inop = ino;
|
|
return 0;
|
|
|
|
error_icur:
|
|
xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
|
|
error_cur:
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
xfs_dialloc_roll(
|
|
struct xfs_trans **tpp,
|
|
struct xfs_buf *agibp)
|
|
{
|
|
struct xfs_trans *tp = *tpp;
|
|
struct xfs_dquot_acct *dqinfo;
|
|
int error;
|
|
|
|
/*
|
|
* Hold to on to the agibp across the commit so no other allocation can
|
|
* come in and take the free inodes we just allocated for our caller.
|
|
*/
|
|
xfs_trans_bhold(tp, agibp);
|
|
|
|
/*
|
|
* We want the quota changes to be associated with the next transaction,
|
|
* NOT this one. So, detach the dqinfo from this and attach it to the
|
|
* next transaction.
|
|
*/
|
|
dqinfo = tp->t_dqinfo;
|
|
tp->t_dqinfo = NULL;
|
|
|
|
error = xfs_trans_roll(&tp);
|
|
|
|
/* Re-attach the quota info that we detached from prev trx. */
|
|
tp->t_dqinfo = dqinfo;
|
|
|
|
/*
|
|
* Join the buffer even on commit error so that the buffer is released
|
|
* when the caller cancels the transaction and doesn't have to handle
|
|
* this error case specially.
|
|
*/
|
|
xfs_trans_bjoin(tp, agibp);
|
|
*tpp = tp;
|
|
return error;
|
|
}
|
|
|
|
static bool
|
|
xfs_dialloc_good_ag(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
umode_t mode,
|
|
int flags,
|
|
bool ok_alloc)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
xfs_extlen_t ineed;
|
|
xfs_extlen_t longest = 0;
|
|
int needspace;
|
|
int error;
|
|
|
|
if (!pag)
|
|
return false;
|
|
if (!xfs_perag_allows_inodes(pag))
|
|
return false;
|
|
|
|
if (!xfs_perag_initialised_agi(pag)) {
|
|
error = xfs_ialloc_read_agi(pag, tp, 0, NULL);
|
|
if (error)
|
|
return false;
|
|
}
|
|
|
|
if (pag->pagi_freecount)
|
|
return true;
|
|
if (!ok_alloc)
|
|
return false;
|
|
|
|
if (!xfs_perag_initialised_agf(pag)) {
|
|
error = xfs_alloc_read_agf(pag, tp, flags, NULL);
|
|
if (error)
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Check that there is enough free space for the file plus a chunk of
|
|
* inodes if we need to allocate some. If this is the first pass across
|
|
* the AGs, take into account the potential space needed for alignment
|
|
* of inode chunks when checking the longest contiguous free space in
|
|
* the AG - this prevents us from getting ENOSPC because we have free
|
|
* space larger than ialloc_blks but alignment constraints prevent us
|
|
* from using it.
|
|
*
|
|
* If we can't find an AG with space for full alignment slack to be
|
|
* taken into account, we must be near ENOSPC in all AGs. Hence we
|
|
* don't include alignment for the second pass and so if we fail
|
|
* allocation due to alignment issues then it is most likely a real
|
|
* ENOSPC condition.
|
|
*
|
|
* XXX(dgc): this calculation is now bogus thanks to the per-ag
|
|
* reservations that xfs_alloc_fix_freelist() now does via
|
|
* xfs_alloc_space_available(). When the AG fills up, pagf_freeblks will
|
|
* be more than large enough for the check below to succeed, but
|
|
* xfs_alloc_space_available() will fail because of the non-zero
|
|
* metadata reservation and hence we won't actually be able to allocate
|
|
* more inodes in this AG. We do soooo much unnecessary work near ENOSPC
|
|
* because of this.
|
|
*/
|
|
ineed = M_IGEO(mp)->ialloc_min_blks;
|
|
if (flags && ineed > 1)
|
|
ineed += M_IGEO(mp)->cluster_align;
|
|
longest = pag->pagf_longest;
|
|
if (!longest)
|
|
longest = pag->pagf_flcount > 0;
|
|
needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
|
|
|
|
if (pag->pagf_freeblks < needspace + ineed || longest < ineed)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static int
|
|
xfs_dialloc_try_ag(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans **tpp,
|
|
xfs_ino_t parent,
|
|
xfs_ino_t *new_ino,
|
|
bool ok_alloc)
|
|
{
|
|
struct xfs_buf *agbp;
|
|
xfs_ino_t ino;
|
|
int error;
|
|
|
|
/*
|
|
* Then read in the AGI buffer and recheck with the AGI buffer
|
|
* lock held.
|
|
*/
|
|
error = xfs_ialloc_read_agi(pag, *tpp, 0, &agbp);
|
|
if (error)
|
|
return error;
|
|
|
|
if (!pag->pagi_freecount) {
|
|
if (!ok_alloc) {
|
|
error = -EAGAIN;
|
|
goto out_release;
|
|
}
|
|
|
|
error = xfs_ialloc_ag_alloc(pag, *tpp, agbp);
|
|
if (error < 0)
|
|
goto out_release;
|
|
|
|
/*
|
|
* We successfully allocated space for an inode cluster in this
|
|
* AG. Roll the transaction so that we can allocate one of the
|
|
* new inodes.
|
|
*/
|
|
ASSERT(pag->pagi_freecount > 0);
|
|
error = xfs_dialloc_roll(tpp, agbp);
|
|
if (error)
|
|
goto out_release;
|
|
}
|
|
|
|
/* Allocate an inode in the found AG */
|
|
error = xfs_dialloc_ag(pag, *tpp, agbp, parent, &ino);
|
|
if (!error)
|
|
*new_ino = ino;
|
|
return error;
|
|
|
|
out_release:
|
|
xfs_trans_brelse(*tpp, agbp);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Allocate an on-disk inode.
|
|
*
|
|
* Mode is used to tell whether the new inode is a directory and hence where to
|
|
* locate it. The on-disk inode that is allocated will be returned in @new_ino
|
|
* on success, otherwise an error will be set to indicate the failure (e.g.
|
|
* -ENOSPC).
|
|
*/
|
|
int
|
|
xfs_dialloc(
|
|
struct xfs_trans **tpp,
|
|
const struct xfs_icreate_args *args,
|
|
xfs_ino_t *new_ino)
|
|
{
|
|
struct xfs_mount *mp = (*tpp)->t_mountp;
|
|
xfs_ino_t parent = args->pip ? args->pip->i_ino : 0;
|
|
umode_t mode = args->mode & S_IFMT;
|
|
xfs_agnumber_t agno;
|
|
int error = 0;
|
|
xfs_agnumber_t start_agno;
|
|
struct xfs_perag *pag;
|
|
struct xfs_ino_geometry *igeo = M_IGEO(mp);
|
|
bool ok_alloc = true;
|
|
bool low_space = false;
|
|
int flags;
|
|
xfs_ino_t ino = NULLFSINO;
|
|
|
|
/*
|
|
* Directories, symlinks, and regular files frequently allocate at least
|
|
* one block, so factor that potential expansion when we examine whether
|
|
* an AG has enough space for file creation.
|
|
*/
|
|
if (S_ISDIR(mode))
|
|
start_agno = (atomic_inc_return(&mp->m_agirotor) - 1) %
|
|
mp->m_maxagi;
|
|
else {
|
|
start_agno = XFS_INO_TO_AGNO(mp, parent);
|
|
if (start_agno >= mp->m_maxagi)
|
|
start_agno = 0;
|
|
}
|
|
|
|
/*
|
|
* If we have already hit the ceiling of inode blocks then clear
|
|
* ok_alloc so we scan all available agi structures for a free
|
|
* inode.
|
|
*
|
|
* Read rough value of mp->m_icount by percpu_counter_read_positive,
|
|
* which will sacrifice the preciseness but improve the performance.
|
|
*/
|
|
if (igeo->maxicount &&
|
|
percpu_counter_read_positive(&mp->m_icount) + igeo->ialloc_inos
|
|
> igeo->maxicount) {
|
|
ok_alloc = false;
|
|
}
|
|
|
|
/*
|
|
* If we are near to ENOSPC, we want to prefer allocation from AGs that
|
|
* have free inodes in them rather than use up free space allocating new
|
|
* inode chunks. Hence we turn off allocation for the first non-blocking
|
|
* pass through the AGs if we are near ENOSPC to consume free inodes
|
|
* that we can immediately allocate, but then we allow allocation on the
|
|
* second pass if we fail to find an AG with free inodes in it.
|
|
*/
|
|
if (percpu_counter_read_positive(&mp->m_fdblocks) <
|
|
mp->m_low_space[XFS_LOWSP_1_PCNT]) {
|
|
ok_alloc = false;
|
|
low_space = true;
|
|
}
|
|
|
|
/*
|
|
* Loop until we find an allocation group that either has free inodes
|
|
* or in which we can allocate some inodes. Iterate through the
|
|
* allocation groups upward, wrapping at the end.
|
|
*/
|
|
flags = XFS_ALLOC_FLAG_TRYLOCK;
|
|
retry:
|
|
for_each_perag_wrap_at(mp, start_agno, mp->m_maxagi, agno, pag) {
|
|
if (xfs_dialloc_good_ag(pag, *tpp, mode, flags, ok_alloc)) {
|
|
error = xfs_dialloc_try_ag(pag, tpp, parent,
|
|
&ino, ok_alloc);
|
|
if (error != -EAGAIN)
|
|
break;
|
|
error = 0;
|
|
}
|
|
|
|
if (xfs_is_shutdown(mp)) {
|
|
error = -EFSCORRUPTED;
|
|
break;
|
|
}
|
|
}
|
|
if (pag)
|
|
xfs_perag_rele(pag);
|
|
if (error)
|
|
return error;
|
|
if (ino == NULLFSINO) {
|
|
if (flags) {
|
|
flags = 0;
|
|
if (low_space)
|
|
ok_alloc = true;
|
|
goto retry;
|
|
}
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/*
|
|
* Protect against obviously corrupt allocation btree records. Later
|
|
* xfs_iget checks will catch re-allocation of other active in-memory
|
|
* and on-disk inodes. If we don't catch reallocating the parent inode
|
|
* here we will deadlock in xfs_iget() so we have to do these checks
|
|
* first.
|
|
*/
|
|
if (ino == parent || !xfs_verify_dir_ino(mp, ino)) {
|
|
xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
|
|
xfs_agno_mark_sick(mp, XFS_INO_TO_AGNO(mp, ino),
|
|
XFS_SICK_AG_INOBT);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
|
|
*new_ino = ino;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free the blocks of an inode chunk. We must consider that the inode chunk
|
|
* might be sparse and only free the regions that are allocated as part of the
|
|
* chunk.
|
|
*/
|
|
static int
|
|
xfs_difree_inode_chunk(
|
|
struct xfs_trans *tp,
|
|
xfs_agnumber_t agno,
|
|
struct xfs_inobt_rec_incore *rec)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp,
|
|
rec->ir_startino);
|
|
int startidx, endidx;
|
|
int nextbit;
|
|
xfs_agblock_t agbno;
|
|
int contigblk;
|
|
DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
|
|
|
|
if (!xfs_inobt_issparse(rec->ir_holemask)) {
|
|
/* not sparse, calculate extent info directly */
|
|
return xfs_free_extent_later(tp,
|
|
XFS_AGB_TO_FSB(mp, agno, sagbno),
|
|
M_IGEO(mp)->ialloc_blks, &XFS_RMAP_OINFO_INODES,
|
|
XFS_AG_RESV_NONE, 0);
|
|
}
|
|
|
|
/* holemask is only 16-bits (fits in an unsigned long) */
|
|
ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
|
|
holemask[0] = rec->ir_holemask;
|
|
|
|
/*
|
|
* Find contiguous ranges of zeroes (i.e., allocated regions) in the
|
|
* holemask and convert the start/end index of each range to an extent.
|
|
* We start with the start and end index both pointing at the first 0 in
|
|
* the mask.
|
|
*/
|
|
startidx = endidx = find_first_zero_bit(holemask,
|
|
XFS_INOBT_HOLEMASK_BITS);
|
|
nextbit = startidx + 1;
|
|
while (startidx < XFS_INOBT_HOLEMASK_BITS) {
|
|
int error;
|
|
|
|
nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
|
|
nextbit);
|
|
/*
|
|
* If the next zero bit is contiguous, update the end index of
|
|
* the current range and continue.
|
|
*/
|
|
if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
|
|
nextbit == endidx + 1) {
|
|
endidx = nextbit;
|
|
goto next;
|
|
}
|
|
|
|
/*
|
|
* nextbit is not contiguous with the current end index. Convert
|
|
* the current start/end to an extent and add it to the free
|
|
* list.
|
|
*/
|
|
agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
|
|
mp->m_sb.sb_inopblock;
|
|
contigblk = ((endidx - startidx + 1) *
|
|
XFS_INODES_PER_HOLEMASK_BIT) /
|
|
mp->m_sb.sb_inopblock;
|
|
|
|
ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
|
|
ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
|
|
error = xfs_free_extent_later(tp,
|
|
XFS_AGB_TO_FSB(mp, agno, agbno), contigblk,
|
|
&XFS_RMAP_OINFO_INODES, XFS_AG_RESV_NONE, 0);
|
|
if (error)
|
|
return error;
|
|
|
|
/* reset range to current bit and carry on... */
|
|
startidx = endidx = nextbit;
|
|
|
|
next:
|
|
nextbit++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_difree_inobt(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp,
|
|
xfs_agino_t agino,
|
|
struct xfs_icluster *xic,
|
|
struct xfs_inobt_rec_incore *orec)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
struct xfs_agi *agi = agbp->b_addr;
|
|
struct xfs_btree_cur *cur;
|
|
struct xfs_inobt_rec_incore rec;
|
|
int ilen;
|
|
int error;
|
|
int i;
|
|
int off;
|
|
|
|
ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
|
|
ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
|
|
|
|
/*
|
|
* Initialize the cursor.
|
|
*/
|
|
cur = xfs_inobt_init_cursor(pag, tp, agbp);
|
|
|
|
error = xfs_check_agi_freecount(cur);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/*
|
|
* Look for the entry describing this inode.
|
|
*/
|
|
if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
|
|
xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
|
|
__func__, error);
|
|
goto error0;
|
|
}
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
error = xfs_inobt_get_rec(cur, &rec, &i);
|
|
if (error) {
|
|
xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
|
|
__func__, error);
|
|
goto error0;
|
|
}
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
goto error0;
|
|
}
|
|
/*
|
|
* Get the offset in the inode chunk.
|
|
*/
|
|
off = agino - rec.ir_startino;
|
|
ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
|
|
ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
|
|
/*
|
|
* Mark the inode free & increment the count.
|
|
*/
|
|
rec.ir_free |= XFS_INOBT_MASK(off);
|
|
rec.ir_freecount++;
|
|
|
|
/*
|
|
* When an inode chunk is free, it becomes eligible for removal. Don't
|
|
* remove the chunk if the block size is large enough for multiple inode
|
|
* chunks (that might not be free).
|
|
*/
|
|
if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
|
|
mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
|
|
xic->deleted = true;
|
|
xic->first_ino = XFS_AGINO_TO_INO(mp, pag->pag_agno,
|
|
rec.ir_startino);
|
|
xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
|
|
|
|
/*
|
|
* Remove the inode cluster from the AGI B+Tree, adjust the
|
|
* AGI and Superblock inode counts, and mark the disk space
|
|
* to be freed when the transaction is committed.
|
|
*/
|
|
ilen = rec.ir_freecount;
|
|
be32_add_cpu(&agi->agi_count, -ilen);
|
|
be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
|
|
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
|
|
pag->pagi_freecount -= ilen - 1;
|
|
pag->pagi_count -= ilen;
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
|
|
|
|
if ((error = xfs_btree_delete(cur, &i))) {
|
|
xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
|
|
__func__, error);
|
|
goto error0;
|
|
}
|
|
|
|
error = xfs_difree_inode_chunk(tp, pag->pag_agno, &rec);
|
|
if (error)
|
|
goto error0;
|
|
} else {
|
|
xic->deleted = false;
|
|
|
|
error = xfs_inobt_update(cur, &rec);
|
|
if (error) {
|
|
xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
|
|
__func__, error);
|
|
goto error0;
|
|
}
|
|
|
|
/*
|
|
* Change the inode free counts and log the ag/sb changes.
|
|
*/
|
|
be32_add_cpu(&agi->agi_freecount, 1);
|
|
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
|
|
pag->pagi_freecount++;
|
|
xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
|
|
}
|
|
|
|
error = xfs_check_agi_freecount(cur);
|
|
if (error)
|
|
goto error0;
|
|
|
|
*orec = rec;
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
|
|
return 0;
|
|
|
|
error0:
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Free an inode in the free inode btree.
|
|
*/
|
|
STATIC int
|
|
xfs_difree_finobt(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agbp,
|
|
xfs_agino_t agino,
|
|
struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
struct xfs_btree_cur *cur;
|
|
struct xfs_inobt_rec_incore rec;
|
|
int offset = agino - ibtrec->ir_startino;
|
|
int error;
|
|
int i;
|
|
|
|
cur = xfs_finobt_init_cursor(pag, tp, agbp);
|
|
|
|
error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
|
|
if (error)
|
|
goto error;
|
|
if (i == 0) {
|
|
/*
|
|
* If the record does not exist in the finobt, we must have just
|
|
* freed an inode in a previously fully allocated chunk. If not,
|
|
* something is out of sync.
|
|
*/
|
|
if (XFS_IS_CORRUPT(mp, ibtrec->ir_freecount != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
goto error;
|
|
}
|
|
|
|
error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
|
|
ibtrec->ir_count,
|
|
ibtrec->ir_freecount,
|
|
ibtrec->ir_free, &i);
|
|
if (error)
|
|
goto error;
|
|
ASSERT(i == 1);
|
|
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Read and update the existing record. We could just copy the ibtrec
|
|
* across here, but that would defeat the purpose of having redundant
|
|
* metadata. By making the modifications independently, we can catch
|
|
* corruptions that we wouldn't see if we just copied from one record
|
|
* to another.
|
|
*/
|
|
error = xfs_inobt_get_rec(cur, &rec, &i);
|
|
if (error)
|
|
goto error;
|
|
if (XFS_IS_CORRUPT(mp, i != 1)) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
goto error;
|
|
}
|
|
|
|
rec.ir_free |= XFS_INOBT_MASK(offset);
|
|
rec.ir_freecount++;
|
|
|
|
if (XFS_IS_CORRUPT(mp,
|
|
rec.ir_free != ibtrec->ir_free ||
|
|
rec.ir_freecount != ibtrec->ir_freecount)) {
|
|
xfs_btree_mark_sick(cur);
|
|
error = -EFSCORRUPTED;
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* The content of inobt records should always match between the inobt
|
|
* and finobt. The lifecycle of records in the finobt is different from
|
|
* the inobt in that the finobt only tracks records with at least one
|
|
* free inode. Hence, if all of the inodes are free and we aren't
|
|
* keeping inode chunks permanently on disk, remove the record.
|
|
* Otherwise, update the record with the new information.
|
|
*
|
|
* Note that we currently can't free chunks when the block size is large
|
|
* enough for multiple chunks. Leave the finobt record to remain in sync
|
|
* with the inobt.
|
|
*/
|
|
if (!xfs_has_ikeep(mp) && rec.ir_free == XFS_INOBT_ALL_FREE &&
|
|
mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
|
|
error = xfs_btree_delete(cur, &i);
|
|
if (error)
|
|
goto error;
|
|
ASSERT(i == 1);
|
|
} else {
|
|
error = xfs_inobt_update(cur, &rec);
|
|
if (error)
|
|
goto error;
|
|
}
|
|
|
|
out:
|
|
error = xfs_check_agi_freecount(cur);
|
|
if (error)
|
|
goto error;
|
|
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
|
|
return 0;
|
|
|
|
error:
|
|
xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Free disk inode. Carefully avoids touching the incore inode, all
|
|
* manipulations incore are the caller's responsibility.
|
|
* The on-disk inode is not changed by this operation, only the
|
|
* btree (free inode mask) is changed.
|
|
*/
|
|
int
|
|
xfs_difree(
|
|
struct xfs_trans *tp,
|
|
struct xfs_perag *pag,
|
|
xfs_ino_t inode,
|
|
struct xfs_icluster *xic)
|
|
{
|
|
/* REFERENCED */
|
|
xfs_agblock_t agbno; /* block number containing inode */
|
|
struct xfs_buf *agbp; /* buffer for allocation group header */
|
|
xfs_agino_t agino; /* allocation group inode number */
|
|
int error; /* error return value */
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_inobt_rec_incore rec;/* btree record */
|
|
|
|
/*
|
|
* Break up inode number into its components.
|
|
*/
|
|
if (pag->pag_agno != XFS_INO_TO_AGNO(mp, inode)) {
|
|
xfs_warn(mp, "%s: agno != pag->pag_agno (%d != %d).",
|
|
__func__, XFS_INO_TO_AGNO(mp, inode), pag->pag_agno);
|
|
ASSERT(0);
|
|
return -EINVAL;
|
|
}
|
|
agino = XFS_INO_TO_AGINO(mp, inode);
|
|
if (inode != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
|
|
xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
|
|
__func__, (unsigned long long)inode,
|
|
(unsigned long long)XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
|
|
ASSERT(0);
|
|
return -EINVAL;
|
|
}
|
|
agbno = XFS_AGINO_TO_AGBNO(mp, agino);
|
|
if (agbno >= mp->m_sb.sb_agblocks) {
|
|
xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
|
|
__func__, agbno, mp->m_sb.sb_agblocks);
|
|
ASSERT(0);
|
|
return -EINVAL;
|
|
}
|
|
/*
|
|
* Get the allocation group header.
|
|
*/
|
|
error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
|
|
if (error) {
|
|
xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Fix up the inode allocation btree.
|
|
*/
|
|
error = xfs_difree_inobt(pag, tp, agbp, agino, xic, &rec);
|
|
if (error)
|
|
goto error0;
|
|
|
|
/*
|
|
* Fix up the free inode btree.
|
|
*/
|
|
if (xfs_has_finobt(mp)) {
|
|
error = xfs_difree_finobt(pag, tp, agbp, agino, &rec);
|
|
if (error)
|
|
goto error0;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error0:
|
|
return error;
|
|
}
|
|
|
|
STATIC int
|
|
xfs_imap_lookup(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
xfs_agino_t agino,
|
|
xfs_agblock_t agbno,
|
|
xfs_agblock_t *chunk_agbno,
|
|
xfs_agblock_t *offset_agbno,
|
|
int flags)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
struct xfs_inobt_rec_incore rec;
|
|
struct xfs_btree_cur *cur;
|
|
struct xfs_buf *agbp;
|
|
int error;
|
|
int i;
|
|
|
|
error = xfs_ialloc_read_agi(pag, tp, 0, &agbp);
|
|
if (error) {
|
|
xfs_alert(mp,
|
|
"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
|
|
__func__, error, pag->pag_agno);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Lookup the inode record for the given agino. If the record cannot be
|
|
* found, then it's an invalid inode number and we should abort. Once
|
|
* we have a record, we need to ensure it contains the inode number
|
|
* we are looking up.
|
|
*/
|
|
cur = xfs_inobt_init_cursor(pag, tp, agbp);
|
|
error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
|
|
if (!error) {
|
|
if (i)
|
|
error = xfs_inobt_get_rec(cur, &rec, &i);
|
|
if (!error && i == 0)
|
|
error = -EINVAL;
|
|
}
|
|
|
|
xfs_trans_brelse(tp, agbp);
|
|
xfs_btree_del_cursor(cur, error);
|
|
if (error)
|
|
return error;
|
|
|
|
/* check that the returned record contains the required inode */
|
|
if (rec.ir_startino > agino ||
|
|
rec.ir_startino + M_IGEO(mp)->ialloc_inos <= agino)
|
|
return -EINVAL;
|
|
|
|
/* for untrusted inodes check it is allocated first */
|
|
if ((flags & XFS_IGET_UNTRUSTED) &&
|
|
(rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
|
|
return -EINVAL;
|
|
|
|
*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
|
|
*offset_agbno = agbno - *chunk_agbno;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the location of the inode in imap, for mapping it into a buffer.
|
|
*/
|
|
int
|
|
xfs_imap(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
xfs_ino_t ino, /* inode to locate */
|
|
struct xfs_imap *imap, /* location map structure */
|
|
uint flags) /* flags for inode btree lookup */
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
xfs_agblock_t agbno; /* block number of inode in the alloc group */
|
|
xfs_agino_t agino; /* inode number within alloc group */
|
|
xfs_agblock_t chunk_agbno; /* first block in inode chunk */
|
|
xfs_agblock_t cluster_agbno; /* first block in inode cluster */
|
|
int error; /* error code */
|
|
int offset; /* index of inode in its buffer */
|
|
xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
|
|
|
|
ASSERT(ino != NULLFSINO);
|
|
|
|
/*
|
|
* Split up the inode number into its parts.
|
|
*/
|
|
agino = XFS_INO_TO_AGINO(mp, ino);
|
|
agbno = XFS_AGINO_TO_AGBNO(mp, agino);
|
|
if (agbno >= mp->m_sb.sb_agblocks ||
|
|
ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
|
|
error = -EINVAL;
|
|
#ifdef DEBUG
|
|
/*
|
|
* Don't output diagnostic information for untrusted inodes
|
|
* as they can be invalid without implying corruption.
|
|
*/
|
|
if (flags & XFS_IGET_UNTRUSTED)
|
|
return error;
|
|
if (agbno >= mp->m_sb.sb_agblocks) {
|
|
xfs_alert(mp,
|
|
"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
|
|
__func__, (unsigned long long)agbno,
|
|
(unsigned long)mp->m_sb.sb_agblocks);
|
|
}
|
|
if (ino != XFS_AGINO_TO_INO(mp, pag->pag_agno, agino)) {
|
|
xfs_alert(mp,
|
|
"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
|
|
__func__, ino,
|
|
XFS_AGINO_TO_INO(mp, pag->pag_agno, agino));
|
|
}
|
|
xfs_stack_trace();
|
|
#endif /* DEBUG */
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* For bulkstat and handle lookups, we have an untrusted inode number
|
|
* that we have to verify is valid. We cannot do this just by reading
|
|
* the inode buffer as it may have been unlinked and removed leaving
|
|
* inodes in stale state on disk. Hence we have to do a btree lookup
|
|
* in all cases where an untrusted inode number is passed.
|
|
*/
|
|
if (flags & XFS_IGET_UNTRUSTED) {
|
|
error = xfs_imap_lookup(pag, tp, agino, agbno,
|
|
&chunk_agbno, &offset_agbno, flags);
|
|
if (error)
|
|
return error;
|
|
goto out_map;
|
|
}
|
|
|
|
/*
|
|
* If the inode cluster size is the same as the blocksize or
|
|
* smaller we get to the buffer by simple arithmetics.
|
|
*/
|
|
if (M_IGEO(mp)->blocks_per_cluster == 1) {
|
|
offset = XFS_INO_TO_OFFSET(mp, ino);
|
|
ASSERT(offset < mp->m_sb.sb_inopblock);
|
|
|
|
imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, agbno);
|
|
imap->im_len = XFS_FSB_TO_BB(mp, 1);
|
|
imap->im_boffset = (unsigned short)(offset <<
|
|
mp->m_sb.sb_inodelog);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the inode chunks are aligned then use simple maths to
|
|
* find the location. Otherwise we have to do a btree
|
|
* lookup to find the location.
|
|
*/
|
|
if (M_IGEO(mp)->inoalign_mask) {
|
|
offset_agbno = agbno & M_IGEO(mp)->inoalign_mask;
|
|
chunk_agbno = agbno - offset_agbno;
|
|
} else {
|
|
error = xfs_imap_lookup(pag, tp, agino, agbno,
|
|
&chunk_agbno, &offset_agbno, flags);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
out_map:
|
|
ASSERT(agbno >= chunk_agbno);
|
|
cluster_agbno = chunk_agbno +
|
|
((offset_agbno / M_IGEO(mp)->blocks_per_cluster) *
|
|
M_IGEO(mp)->blocks_per_cluster);
|
|
offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
|
|
XFS_INO_TO_OFFSET(mp, ino);
|
|
|
|
imap->im_blkno = XFS_AGB_TO_DADDR(mp, pag->pag_agno, cluster_agbno);
|
|
imap->im_len = XFS_FSB_TO_BB(mp, M_IGEO(mp)->blocks_per_cluster);
|
|
imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
|
|
|
|
/*
|
|
* If the inode number maps to a block outside the bounds
|
|
* of the file system then return NULL rather than calling
|
|
* read_buf and panicing when we get an error from the
|
|
* driver.
|
|
*/
|
|
if ((imap->im_blkno + imap->im_len) >
|
|
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
|
|
xfs_alert(mp,
|
|
"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
|
|
__func__, (unsigned long long) imap->im_blkno,
|
|
(unsigned long long) imap->im_len,
|
|
XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Log specified fields for the ag hdr (inode section). The growth of the agi
|
|
* structure over time requires that we interpret the buffer as two logical
|
|
* regions delineated by the end of the unlinked list. This is due to the size
|
|
* of the hash table and its location in the middle of the agi.
|
|
*
|
|
* For example, a request to log a field before agi_unlinked and a field after
|
|
* agi_unlinked could cause us to log the entire hash table and use an excessive
|
|
* amount of log space. To avoid this behavior, log the region up through
|
|
* agi_unlinked in one call and the region after agi_unlinked through the end of
|
|
* the structure in another.
|
|
*/
|
|
void
|
|
xfs_ialloc_log_agi(
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *bp,
|
|
uint32_t fields)
|
|
{
|
|
int first; /* first byte number */
|
|
int last; /* last byte number */
|
|
static const short offsets[] = { /* field starting offsets */
|
|
/* keep in sync with bit definitions */
|
|
offsetof(xfs_agi_t, agi_magicnum),
|
|
offsetof(xfs_agi_t, agi_versionnum),
|
|
offsetof(xfs_agi_t, agi_seqno),
|
|
offsetof(xfs_agi_t, agi_length),
|
|
offsetof(xfs_agi_t, agi_count),
|
|
offsetof(xfs_agi_t, agi_root),
|
|
offsetof(xfs_agi_t, agi_level),
|
|
offsetof(xfs_agi_t, agi_freecount),
|
|
offsetof(xfs_agi_t, agi_newino),
|
|
offsetof(xfs_agi_t, agi_dirino),
|
|
offsetof(xfs_agi_t, agi_unlinked),
|
|
offsetof(xfs_agi_t, agi_free_root),
|
|
offsetof(xfs_agi_t, agi_free_level),
|
|
offsetof(xfs_agi_t, agi_iblocks),
|
|
sizeof(xfs_agi_t)
|
|
};
|
|
#ifdef DEBUG
|
|
struct xfs_agi *agi = bp->b_addr;
|
|
|
|
ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
|
|
#endif
|
|
|
|
/*
|
|
* Compute byte offsets for the first and last fields in the first
|
|
* region and log the agi buffer. This only logs up through
|
|
* agi_unlinked.
|
|
*/
|
|
if (fields & XFS_AGI_ALL_BITS_R1) {
|
|
xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
|
|
&first, &last);
|
|
xfs_trans_log_buf(tp, bp, first, last);
|
|
}
|
|
|
|
/*
|
|
* Mask off the bits in the first region and calculate the first and
|
|
* last field offsets for any bits in the second region.
|
|
*/
|
|
fields &= ~XFS_AGI_ALL_BITS_R1;
|
|
if (fields) {
|
|
xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
|
|
&first, &last);
|
|
xfs_trans_log_buf(tp, bp, first, last);
|
|
}
|
|
}
|
|
|
|
static xfs_failaddr_t
|
|
xfs_agi_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_mount;
|
|
struct xfs_agi *agi = bp->b_addr;
|
|
xfs_failaddr_t fa;
|
|
uint32_t agi_seqno = be32_to_cpu(agi->agi_seqno);
|
|
uint32_t agi_length = be32_to_cpu(agi->agi_length);
|
|
int i;
|
|
|
|
if (xfs_has_crc(mp)) {
|
|
if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
|
|
return __this_address;
|
|
if (!xfs_log_check_lsn(mp, be64_to_cpu(agi->agi_lsn)))
|
|
return __this_address;
|
|
}
|
|
|
|
/*
|
|
* Validate the magic number of the agi block.
|
|
*/
|
|
if (!xfs_verify_magic(bp, agi->agi_magicnum))
|
|
return __this_address;
|
|
if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
|
|
return __this_address;
|
|
|
|
fa = xfs_validate_ag_length(bp, agi_seqno, agi_length);
|
|
if (fa)
|
|
return fa;
|
|
|
|
if (be32_to_cpu(agi->agi_level) < 1 ||
|
|
be32_to_cpu(agi->agi_level) > M_IGEO(mp)->inobt_maxlevels)
|
|
return __this_address;
|
|
|
|
if (xfs_has_finobt(mp) &&
|
|
(be32_to_cpu(agi->agi_free_level) < 1 ||
|
|
be32_to_cpu(agi->agi_free_level) > M_IGEO(mp)->inobt_maxlevels))
|
|
return __this_address;
|
|
|
|
for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++) {
|
|
if (agi->agi_unlinked[i] == cpu_to_be32(NULLAGINO))
|
|
continue;
|
|
if (!xfs_verify_ino(mp, be32_to_cpu(agi->agi_unlinked[i])))
|
|
return __this_address;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
xfs_agi_read_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_mount;
|
|
xfs_failaddr_t fa;
|
|
|
|
if (xfs_has_crc(mp) &&
|
|
!xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
|
|
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
|
|
else {
|
|
fa = xfs_agi_verify(bp);
|
|
if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
|
|
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
|
|
}
|
|
}
|
|
|
|
static void
|
|
xfs_agi_write_verify(
|
|
struct xfs_buf *bp)
|
|
{
|
|
struct xfs_mount *mp = bp->b_mount;
|
|
struct xfs_buf_log_item *bip = bp->b_log_item;
|
|
struct xfs_agi *agi = bp->b_addr;
|
|
xfs_failaddr_t fa;
|
|
|
|
fa = xfs_agi_verify(bp);
|
|
if (fa) {
|
|
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
|
|
return;
|
|
}
|
|
|
|
if (!xfs_has_crc(mp))
|
|
return;
|
|
|
|
if (bip)
|
|
agi->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
|
|
xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
|
|
}
|
|
|
|
const struct xfs_buf_ops xfs_agi_buf_ops = {
|
|
.name = "xfs_agi",
|
|
.magic = { cpu_to_be32(XFS_AGI_MAGIC), cpu_to_be32(XFS_AGI_MAGIC) },
|
|
.verify_read = xfs_agi_read_verify,
|
|
.verify_write = xfs_agi_write_verify,
|
|
.verify_struct = xfs_agi_verify,
|
|
};
|
|
|
|
/*
|
|
* Read in the allocation group header (inode allocation section)
|
|
*/
|
|
int
|
|
xfs_read_agi(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
xfs_buf_flags_t flags,
|
|
struct xfs_buf **agibpp)
|
|
{
|
|
struct xfs_mount *mp = pag->pag_mount;
|
|
int error;
|
|
|
|
trace_xfs_read_agi(pag->pag_mount, pag->pag_agno);
|
|
|
|
error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
|
|
XFS_AG_DADDR(mp, pag->pag_agno, XFS_AGI_DADDR(mp)),
|
|
XFS_FSS_TO_BB(mp, 1), flags, agibpp, &xfs_agi_buf_ops);
|
|
if (xfs_metadata_is_sick(error))
|
|
xfs_ag_mark_sick(pag, XFS_SICK_AG_AGI);
|
|
if (error)
|
|
return error;
|
|
if (tp)
|
|
xfs_trans_buf_set_type(tp, *agibpp, XFS_BLFT_AGI_BUF);
|
|
|
|
xfs_buf_set_ref(*agibpp, XFS_AGI_REF);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read in the agi and initialise the per-ag data. If the caller supplies a
|
|
* @agibpp, return the locked AGI buffer to them, otherwise release it.
|
|
*/
|
|
int
|
|
xfs_ialloc_read_agi(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
int flags,
|
|
struct xfs_buf **agibpp)
|
|
{
|
|
struct xfs_buf *agibp;
|
|
struct xfs_agi *agi;
|
|
int error;
|
|
|
|
trace_xfs_ialloc_read_agi(pag->pag_mount, pag->pag_agno);
|
|
|
|
error = xfs_read_agi(pag, tp,
|
|
(flags & XFS_IALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
|
|
&agibp);
|
|
if (error)
|
|
return error;
|
|
|
|
agi = agibp->b_addr;
|
|
if (!xfs_perag_initialised_agi(pag)) {
|
|
pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
|
|
pag->pagi_count = be32_to_cpu(agi->agi_count);
|
|
set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
|
|
}
|
|
|
|
/*
|
|
* It's possible for these to be out of sync if
|
|
* we are in the middle of a forced shutdown.
|
|
*/
|
|
ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
|
|
xfs_is_shutdown(pag->pag_mount));
|
|
if (agibpp)
|
|
*agibpp = agibp;
|
|
else
|
|
xfs_trans_brelse(tp, agibp);
|
|
return 0;
|
|
}
|
|
|
|
/* How many inodes are backed by inode clusters ondisk? */
|
|
STATIC int
|
|
xfs_ialloc_count_ondisk(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_agino_t low,
|
|
xfs_agino_t high,
|
|
unsigned int *allocated)
|
|
{
|
|
struct xfs_inobt_rec_incore irec;
|
|
unsigned int ret = 0;
|
|
int has_record;
|
|
int error;
|
|
|
|
error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
|
|
if (error)
|
|
return error;
|
|
|
|
while (has_record) {
|
|
unsigned int i, hole_idx;
|
|
|
|
error = xfs_inobt_get_rec(cur, &irec, &has_record);
|
|
if (error)
|
|
return error;
|
|
if (irec.ir_startino > high)
|
|
break;
|
|
|
|
for (i = 0; i < XFS_INODES_PER_CHUNK; i++) {
|
|
if (irec.ir_startino + i < low)
|
|
continue;
|
|
if (irec.ir_startino + i > high)
|
|
break;
|
|
|
|
hole_idx = i / XFS_INODES_PER_HOLEMASK_BIT;
|
|
if (!(irec.ir_holemask & (1U << hole_idx)))
|
|
ret++;
|
|
}
|
|
|
|
error = xfs_btree_increment(cur, 0, &has_record);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
*allocated = ret;
|
|
return 0;
|
|
}
|
|
|
|
/* Is there an inode record covering a given extent? */
|
|
int
|
|
xfs_ialloc_has_inodes_at_extent(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_agblock_t bno,
|
|
xfs_extlen_t len,
|
|
enum xbtree_recpacking *outcome)
|
|
{
|
|
xfs_agino_t agino;
|
|
xfs_agino_t last_agino;
|
|
unsigned int allocated;
|
|
int error;
|
|
|
|
agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno);
|
|
last_agino = XFS_AGB_TO_AGINO(cur->bc_mp, bno + len) - 1;
|
|
|
|
error = xfs_ialloc_count_ondisk(cur, agino, last_agino, &allocated);
|
|
if (error)
|
|
return error;
|
|
|
|
if (allocated == 0)
|
|
*outcome = XBTREE_RECPACKING_EMPTY;
|
|
else if (allocated == last_agino - agino + 1)
|
|
*outcome = XBTREE_RECPACKING_FULL;
|
|
else
|
|
*outcome = XBTREE_RECPACKING_SPARSE;
|
|
return 0;
|
|
}
|
|
|
|
struct xfs_ialloc_count_inodes {
|
|
xfs_agino_t count;
|
|
xfs_agino_t freecount;
|
|
};
|
|
|
|
/* Record inode counts across all inobt records. */
|
|
STATIC int
|
|
xfs_ialloc_count_inodes_rec(
|
|
struct xfs_btree_cur *cur,
|
|
const union xfs_btree_rec *rec,
|
|
void *priv)
|
|
{
|
|
struct xfs_inobt_rec_incore irec;
|
|
struct xfs_ialloc_count_inodes *ci = priv;
|
|
xfs_failaddr_t fa;
|
|
|
|
xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
|
|
fa = xfs_inobt_check_irec(cur->bc_ag.pag, &irec);
|
|
if (fa)
|
|
return xfs_inobt_complain_bad_rec(cur, fa, &irec);
|
|
|
|
ci->count += irec.ir_count;
|
|
ci->freecount += irec.ir_freecount;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Count allocated and free inodes under an inobt. */
|
|
int
|
|
xfs_ialloc_count_inodes(
|
|
struct xfs_btree_cur *cur,
|
|
xfs_agino_t *count,
|
|
xfs_agino_t *freecount)
|
|
{
|
|
struct xfs_ialloc_count_inodes ci = {0};
|
|
int error;
|
|
|
|
ASSERT(xfs_btree_is_ino(cur->bc_ops));
|
|
error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
|
|
if (error)
|
|
return error;
|
|
|
|
*count = ci.count;
|
|
*freecount = ci.freecount;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize inode-related geometry information.
|
|
*
|
|
* Compute the inode btree min and max levels and set maxicount.
|
|
*
|
|
* Set the inode cluster size. This may still be overridden by the file
|
|
* system block size if it is larger than the chosen cluster size.
|
|
*
|
|
* For v5 filesystems, scale the cluster size with the inode size to keep a
|
|
* constant ratio of inode per cluster buffer, but only if mkfs has set the
|
|
* inode alignment value appropriately for larger cluster sizes.
|
|
*
|
|
* Then compute the inode cluster alignment information.
|
|
*/
|
|
void
|
|
xfs_ialloc_setup_geometry(
|
|
struct xfs_mount *mp)
|
|
{
|
|
struct xfs_sb *sbp = &mp->m_sb;
|
|
struct xfs_ino_geometry *igeo = M_IGEO(mp);
|
|
uint64_t icount;
|
|
uint inodes;
|
|
|
|
igeo->new_diflags2 = 0;
|
|
if (xfs_has_bigtime(mp))
|
|
igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
|
|
if (xfs_has_large_extent_counts(mp))
|
|
igeo->new_diflags2 |= XFS_DIFLAG2_NREXT64;
|
|
|
|
/* Compute inode btree geometry. */
|
|
igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
|
|
igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, true);
|
|
igeo->inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, false);
|
|
igeo->inobt_mnr[0] = igeo->inobt_mxr[0] / 2;
|
|
igeo->inobt_mnr[1] = igeo->inobt_mxr[1] / 2;
|
|
|
|
igeo->ialloc_inos = max_t(uint16_t, XFS_INODES_PER_CHUNK,
|
|
sbp->sb_inopblock);
|
|
igeo->ialloc_blks = igeo->ialloc_inos >> sbp->sb_inopblog;
|
|
|
|
if (sbp->sb_spino_align)
|
|
igeo->ialloc_min_blks = sbp->sb_spino_align;
|
|
else
|
|
igeo->ialloc_min_blks = igeo->ialloc_blks;
|
|
|
|
/* Compute and fill in value of m_ino_geo.inobt_maxlevels. */
|
|
inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
|
|
igeo->inobt_maxlevels = xfs_btree_compute_maxlevels(igeo->inobt_mnr,
|
|
inodes);
|
|
ASSERT(igeo->inobt_maxlevels <= xfs_iallocbt_maxlevels_ondisk());
|
|
|
|
/*
|
|
* Set the maximum inode count for this filesystem, being careful not
|
|
* to use obviously garbage sb_inopblog/sb_inopblock values. Regular
|
|
* users should never get here due to failing sb verification, but
|
|
* certain users (xfs_db) need to be usable even with corrupt metadata.
|
|
*/
|
|
if (sbp->sb_imax_pct && igeo->ialloc_blks) {
|
|
/*
|
|
* Make sure the maximum inode count is a multiple
|
|
* of the units we allocate inodes in.
|
|
*/
|
|
icount = sbp->sb_dblocks * sbp->sb_imax_pct;
|
|
do_div(icount, 100);
|
|
do_div(icount, igeo->ialloc_blks);
|
|
igeo->maxicount = XFS_FSB_TO_INO(mp,
|
|
icount * igeo->ialloc_blks);
|
|
} else {
|
|
igeo->maxicount = 0;
|
|
}
|
|
|
|
/*
|
|
* Compute the desired size of an inode cluster buffer size, which
|
|
* starts at 8K and (on v5 filesystems) scales up with larger inode
|
|
* sizes.
|
|
*
|
|
* Preserve the desired inode cluster size because the sparse inodes
|
|
* feature uses that desired size (not the actual size) to compute the
|
|
* sparse inode alignment. The mount code validates this value, so we
|
|
* cannot change the behavior.
|
|
*/
|
|
igeo->inode_cluster_size_raw = XFS_INODE_BIG_CLUSTER_SIZE;
|
|
if (xfs_has_v3inodes(mp)) {
|
|
int new_size = igeo->inode_cluster_size_raw;
|
|
|
|
new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
|
|
if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
|
|
igeo->inode_cluster_size_raw = new_size;
|
|
}
|
|
|
|
/* Calculate inode cluster ratios. */
|
|
if (igeo->inode_cluster_size_raw > mp->m_sb.sb_blocksize)
|
|
igeo->blocks_per_cluster = XFS_B_TO_FSBT(mp,
|
|
igeo->inode_cluster_size_raw);
|
|
else
|
|
igeo->blocks_per_cluster = 1;
|
|
igeo->inode_cluster_size = XFS_FSB_TO_B(mp, igeo->blocks_per_cluster);
|
|
igeo->inodes_per_cluster = XFS_FSB_TO_INO(mp, igeo->blocks_per_cluster);
|
|
|
|
/* Calculate inode cluster alignment. */
|
|
if (xfs_has_align(mp) &&
|
|
mp->m_sb.sb_inoalignmt >= igeo->blocks_per_cluster)
|
|
igeo->cluster_align = mp->m_sb.sb_inoalignmt;
|
|
else
|
|
igeo->cluster_align = 1;
|
|
igeo->inoalign_mask = igeo->cluster_align - 1;
|
|
igeo->cluster_align_inodes = XFS_FSB_TO_INO(mp, igeo->cluster_align);
|
|
|
|
/*
|
|
* If we are using stripe alignment, check whether
|
|
* the stripe unit is a multiple of the inode alignment
|
|
*/
|
|
if (mp->m_dalign && igeo->inoalign_mask &&
|
|
!(mp->m_dalign & igeo->inoalign_mask))
|
|
igeo->ialloc_align = mp->m_dalign;
|
|
else
|
|
igeo->ialloc_align = 0;
|
|
|
|
if (mp->m_sb.sb_blocksize > PAGE_SIZE)
|
|
igeo->min_folio_order = mp->m_sb.sb_blocklog - PAGE_SHIFT;
|
|
else
|
|
igeo->min_folio_order = 0;
|
|
}
|
|
|
|
/* Compute the location of the root directory inode that is laid out by mkfs. */
|
|
xfs_ino_t
|
|
xfs_ialloc_calc_rootino(
|
|
struct xfs_mount *mp,
|
|
int sunit)
|
|
{
|
|
struct xfs_ino_geometry *igeo = M_IGEO(mp);
|
|
xfs_agblock_t first_bno;
|
|
|
|
/*
|
|
* Pre-calculate the geometry of AG 0. We know what it looks like
|
|
* because libxfs knows how to create allocation groups now.
|
|
*
|
|
* first_bno is the first block in which mkfs could possibly have
|
|
* allocated the root directory inode, once we factor in the metadata
|
|
* that mkfs formats before it. Namely, the four AG headers...
|
|
*/
|
|
first_bno = howmany(4 * mp->m_sb.sb_sectsize, mp->m_sb.sb_blocksize);
|
|
|
|
/* ...the two free space btree roots... */
|
|
first_bno += 2;
|
|
|
|
/* ...the inode btree root... */
|
|
first_bno += 1;
|
|
|
|
/* ...the initial AGFL... */
|
|
first_bno += xfs_alloc_min_freelist(mp, NULL);
|
|
|
|
/* ...the free inode btree root... */
|
|
if (xfs_has_finobt(mp))
|
|
first_bno++;
|
|
|
|
/* ...the reverse mapping btree root... */
|
|
if (xfs_has_rmapbt(mp))
|
|
first_bno++;
|
|
|
|
/* ...the reference count btree... */
|
|
if (xfs_has_reflink(mp))
|
|
first_bno++;
|
|
|
|
/*
|
|
* ...and the log, if it is allocated in the first allocation group.
|
|
*
|
|
* This can happen with filesystems that only have a single
|
|
* allocation group, or very odd geometries created by old mkfs
|
|
* versions on very small filesystems.
|
|
*/
|
|
if (xfs_ag_contains_log(mp, 0))
|
|
first_bno += mp->m_sb.sb_logblocks;
|
|
|
|
/*
|
|
* Now round first_bno up to whatever allocation alignment is given
|
|
* by the filesystem or was passed in.
|
|
*/
|
|
if (xfs_has_dalign(mp) && igeo->ialloc_align > 0)
|
|
first_bno = roundup(first_bno, sunit);
|
|
else if (xfs_has_align(mp) &&
|
|
mp->m_sb.sb_inoalignmt > 1)
|
|
first_bno = roundup(first_bno, mp->m_sb.sb_inoalignmt);
|
|
|
|
return XFS_AGINO_TO_INO(mp, 0, XFS_AGB_TO_AGINO(mp, first_bno));
|
|
}
|
|
|
|
/*
|
|
* Ensure there are not sparse inode clusters that cross the new EOAG.
|
|
*
|
|
* This is a no-op for non-spinode filesystems since clusters are always fully
|
|
* allocated and checking the bnobt suffices. However, a spinode filesystem
|
|
* could have a record where the upper inodes are free blocks. If those blocks
|
|
* were removed from the filesystem, the inode record would extend beyond EOAG,
|
|
* which will be flagged as corruption.
|
|
*/
|
|
int
|
|
xfs_ialloc_check_shrink(
|
|
struct xfs_perag *pag,
|
|
struct xfs_trans *tp,
|
|
struct xfs_buf *agibp,
|
|
xfs_agblock_t new_length)
|
|
{
|
|
struct xfs_inobt_rec_incore rec;
|
|
struct xfs_btree_cur *cur;
|
|
xfs_agino_t agino;
|
|
int has;
|
|
int error;
|
|
|
|
if (!xfs_has_sparseinodes(pag->pag_mount))
|
|
return 0;
|
|
|
|
cur = xfs_inobt_init_cursor(pag, tp, agibp);
|
|
|
|
/* Look up the inobt record that would correspond to the new EOFS. */
|
|
agino = XFS_AGB_TO_AGINO(pag->pag_mount, new_length);
|
|
error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &has);
|
|
if (error || !has)
|
|
goto out;
|
|
|
|
error = xfs_inobt_get_rec(cur, &rec, &has);
|
|
if (error)
|
|
goto out;
|
|
|
|
if (!has) {
|
|
xfs_ag_mark_sick(pag, XFS_SICK_AG_INOBT);
|
|
error = -EFSCORRUPTED;
|
|
goto out;
|
|
}
|
|
|
|
/* If the record covers inodes that would be beyond EOFS, bail out. */
|
|
if (rec.ir_startino + XFS_INODES_PER_CHUNK > agino) {
|
|
error = -ENOSPC;
|
|
goto out;
|
|
}
|
|
out:
|
|
xfs_btree_del_cursor(cur, error);
|
|
return error;
|
|
}
|