1
linux/fs/befs/btree.c
Azeem Shaikh 7391928025 befs: Replace all non-returning strlcpy with strscpy
strlcpy() reads the entire source buffer first.
This read may exceed the destination size limit.
This is both inefficient and can lead to linear read
overflows if a source string is not NUL-terminated.
In an effort to remove strlcpy() completely, replace
strlcpy() here with strscpy().
No return values were used, so direct replacement is safe.

[1] https://www.kernel.org/doc/html/latest/process/deprecated.html#strlcpy
[2] https://github.com/KSPP/linux/issues/89

Signed-off-by: Azeem Shaikh <azeemshaikh38@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20230509014136.2095900-1-azeemshaikh38@gmail.com
2023-05-30 16:42:00 -07:00

785 lines
22 KiB
C

/*
* linux/fs/befs/btree.c
*
* Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com>
*
* Licensed under the GNU GPL. See the file COPYING for details.
*
* 2002-02-05: Sergey S. Kostyliov added binary search within
* btree nodes.
*
* Many thanks to:
*
* Dominic Giampaolo, author of "Practical File System
* Design with the Be File System", for such a helpful book.
*
* Marcus J. Ranum, author of the b+tree package in
* comp.sources.misc volume 10. This code is not copied from that
* work, but it is partially based on it.
*
* Makoto Kato, author of the original BeFS for linux filesystem
* driver.
*/
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/buffer_head.h>
#include "befs.h"
#include "btree.h"
#include "datastream.h"
/*
* The btree functions in this file are built on top of the
* datastream.c interface, which is in turn built on top of the
* io.c interface.
*/
/* Befs B+tree structure:
*
* The first thing in the tree is the tree superblock. It tells you
* all kinds of useful things about the tree, like where the rootnode
* is located, and the size of the nodes (always 1024 with current version
* of BeOS).
*
* The rest of the tree consists of a series of nodes. Nodes contain a header
* (struct befs_btree_nodehead), the packed key data, an array of shorts
* containing the ending offsets for each of the keys, and an array of
* befs_off_t values. In interior nodes, the keys are the ending keys for
* the childnode they point to, and the values are offsets into the
* datastream containing the tree.
*/
/* Note:
*
* The book states 2 confusing things about befs b+trees. First,
* it states that the overflow field of node headers is used by internal nodes
* to point to another node that "effectively continues this one". Here is what
* I believe that means. Each key in internal nodes points to another node that
* contains key values less than itself. Inspection reveals that the last key
* in the internal node is not the last key in the index. Keys that are
* greater than the last key in the internal node go into the overflow node.
* I imagine there is a performance reason for this.
*
* Second, it states that the header of a btree node is sufficient to
* distinguish internal nodes from leaf nodes. Without saying exactly how.
* After figuring out the first, it becomes obvious that internal nodes have
* overflow nodes and leafnodes do not.
*/
/*
* Currently, this code is only good for directory B+trees.
* In order to be used for other BFS indexes, it needs to be extended to handle
* duplicate keys and non-string keytypes (int32, int64, float, double).
*/
/*
* In memory structure of each btree node
*/
struct befs_btree_node {
befs_host_btree_nodehead head; /* head of node converted to cpu byteorder */
struct buffer_head *bh;
befs_btree_nodehead *od_node; /* on disk node */
};
/* local constants */
static const befs_off_t BEFS_BT_INVAL = 0xffffffffffffffffULL;
/* local functions */
static int befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds,
befs_btree_super * bt_super,
struct befs_btree_node *this_node,
befs_off_t * node_off);
static int befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds,
befs_btree_super * sup);
static int befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds,
struct befs_btree_node *node,
befs_off_t node_off);
static int befs_leafnode(struct befs_btree_node *node);
static fs16 *befs_bt_keylen_index(struct befs_btree_node *node);
static fs64 *befs_bt_valarray(struct befs_btree_node *node);
static char *befs_bt_keydata(struct befs_btree_node *node);
static int befs_find_key(struct super_block *sb,
struct befs_btree_node *node,
const char *findkey, befs_off_t * value);
static char *befs_bt_get_key(struct super_block *sb,
struct befs_btree_node *node,
int index, u16 * keylen);
static int befs_compare_strings(const void *key1, int keylen1,
const void *key2, int keylen2);
/**
* befs_bt_read_super() - read in btree superblock convert to cpu byteorder
* @sb: Filesystem superblock
* @ds: Datastream to read from
* @sup: Buffer in which to place the btree superblock
*
* Calls befs_read_datastream to read in the btree superblock and
* makes sure it is in cpu byteorder, byteswapping if necessary.
* Return: BEFS_OK on success and if *@sup contains the btree superblock in cpu
* byte order. Otherwise return BEFS_ERR on error.
*/
static int
befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds,
befs_btree_super * sup)
{
struct buffer_head *bh;
befs_disk_btree_super *od_sup;
befs_debug(sb, "---> %s", __func__);
bh = befs_read_datastream(sb, ds, 0, NULL);
if (!bh) {
befs_error(sb, "Couldn't read index header.");
goto error;
}
od_sup = (befs_disk_btree_super *) bh->b_data;
befs_dump_index_entry(sb, od_sup);
sup->magic = fs32_to_cpu(sb, od_sup->magic);
sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
brelse(bh);
if (sup->magic != BEFS_BTREE_MAGIC) {
befs_error(sb, "Index header has bad magic.");
goto error;
}
befs_debug(sb, "<--- %s", __func__);
return BEFS_OK;
error:
befs_debug(sb, "<--- %s ERROR", __func__);
return BEFS_ERR;
}
/**
* befs_bt_read_node - read in btree node and convert to cpu byteorder
* @sb: Filesystem superblock
* @ds: Datastream to read from
* @node: Buffer in which to place the btree node
* @node_off: Starting offset (in bytes) of the node in @ds
*
* Calls befs_read_datastream to read in the indicated btree node and
* makes sure its header fields are in cpu byteorder, byteswapping if
* necessary.
* Note: node->bh must be NULL when this function is called the first time.
* Don't forget brelse(node->bh) after last call.
*
* On success, returns BEFS_OK and *@node contains the btree node that
* starts at @node_off, with the node->head fields in cpu byte order.
*
* On failure, BEFS_ERR is returned.
*/
static int
befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds,
struct befs_btree_node *node, befs_off_t node_off)
{
uint off = 0;
befs_debug(sb, "---> %s", __func__);
if (node->bh)
brelse(node->bh);
node->bh = befs_read_datastream(sb, ds, node_off, &off);
if (!node->bh) {
befs_error(sb, "%s failed to read "
"node at %llu", __func__, node_off);
befs_debug(sb, "<--- %s ERROR", __func__);
return BEFS_ERR;
}
node->od_node =
(befs_btree_nodehead *) ((void *) node->bh->b_data + off);
befs_dump_index_node(sb, node->od_node);
node->head.left = fs64_to_cpu(sb, node->od_node->left);
node->head.right = fs64_to_cpu(sb, node->od_node->right);
node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
node->head.all_key_count =
fs16_to_cpu(sb, node->od_node->all_key_count);
node->head.all_key_length =
fs16_to_cpu(sb, node->od_node->all_key_length);
befs_debug(sb, "<--- %s", __func__);
return BEFS_OK;
}
/**
* befs_btree_find - Find a key in a befs B+tree
* @sb: Filesystem superblock
* @ds: Datastream containing btree
* @key: Key string to lookup in btree
* @value: Value stored with @key
*
* On success, returns BEFS_OK and sets *@value to the value stored
* with @key (usually the disk block number of an inode).
*
* On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND.
*
* Algorithm:
* Read the superblock and rootnode of the b+tree.
* Drill down through the interior nodes using befs_find_key().
* Once at the correct leaf node, use befs_find_key() again to get the
* actual value stored with the key.
*/
int
befs_btree_find(struct super_block *sb, const befs_data_stream *ds,
const char *key, befs_off_t * value)
{
struct befs_btree_node *this_node;
befs_btree_super bt_super;
befs_off_t node_off;
int res;
befs_debug(sb, "---> %s Key: %s", __func__, key);
if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
befs_error(sb,
"befs_btree_find() failed to read index superblock");
goto error;
}
this_node = kmalloc(sizeof(struct befs_btree_node),
GFP_NOFS);
if (!this_node) {
befs_error(sb, "befs_btree_find() failed to allocate %zu "
"bytes of memory", sizeof(struct befs_btree_node));
goto error;
}
this_node->bh = NULL;
/* read in root node */
node_off = bt_super.root_node_ptr;
if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
befs_error(sb, "befs_btree_find() failed to read "
"node at %llu", node_off);
goto error_alloc;
}
while (!befs_leafnode(this_node)) {
res = befs_find_key(sb, this_node, key, &node_off);
/* if no key set, try the overflow node */
if (res == BEFS_BT_OVERFLOW)
node_off = this_node->head.overflow;
if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
befs_error(sb, "befs_btree_find() failed to read "
"node at %llu", node_off);
goto error_alloc;
}
}
/* at a leaf node now, check if it is correct */
res = befs_find_key(sb, this_node, key, value);
brelse(this_node->bh);
kfree(this_node);
if (res != BEFS_BT_MATCH) {
befs_error(sb, "<--- %s Key %s not found", __func__, key);
befs_debug(sb, "<--- %s ERROR", __func__);
*value = 0;
return BEFS_BT_NOT_FOUND;
}
befs_debug(sb, "<--- %s Found key %s, value %llu", __func__,
key, *value);
return BEFS_OK;
error_alloc:
kfree(this_node);
error:
*value = 0;
befs_debug(sb, "<--- %s ERROR", __func__);
return BEFS_ERR;
}
/**
* befs_find_key - Search for a key within a node
* @sb: Filesystem superblock
* @node: Node to find the key within
* @findkey: Keystring to search for
* @value: If key is found, the value stored with the key is put here
*
* Finds exact match if one exists, and returns BEFS_BT_MATCH.
* If there is no match and node's value array is too small for key, return
* BEFS_BT_OVERFLOW.
* If no match and node should countain this key, return BEFS_BT_NOT_FOUND.
*
* Uses binary search instead of a linear.
*/
static int
befs_find_key(struct super_block *sb, struct befs_btree_node *node,
const char *findkey, befs_off_t * value)
{
int first, last, mid;
int eq;
u16 keylen;
int findkey_len;
char *thiskey;
fs64 *valarray;
befs_debug(sb, "---> %s %s", __func__, findkey);
findkey_len = strlen(findkey);
/* if node can not contain key, just skip this node */
last = node->head.all_key_count - 1;
thiskey = befs_bt_get_key(sb, node, last, &keylen);
eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
if (eq < 0) {
befs_debug(sb, "<--- node can't contain %s", findkey);
return BEFS_BT_OVERFLOW;
}
valarray = befs_bt_valarray(node);
/* simple binary search */
first = 0;
mid = 0;
while (last >= first) {
mid = (last + first) / 2;
befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
mid);
thiskey = befs_bt_get_key(sb, node, mid, &keylen);
eq = befs_compare_strings(thiskey, keylen, findkey,
findkey_len);
if (eq == 0) {
befs_debug(sb, "<--- %s found %s at %d",
__func__, thiskey, mid);
*value = fs64_to_cpu(sb, valarray[mid]);
return BEFS_BT_MATCH;
}
if (eq > 0)
last = mid - 1;
else
first = mid + 1;
}
/* return an existing value so caller can arrive to a leaf node */
if (eq < 0)
*value = fs64_to_cpu(sb, valarray[mid + 1]);
else
*value = fs64_to_cpu(sb, valarray[mid]);
befs_error(sb, "<--- %s %s not found", __func__, findkey);
befs_debug(sb, "<--- %s ERROR", __func__);
return BEFS_BT_NOT_FOUND;
}
/**
* befs_btree_read - Traverse leafnodes of a btree
* @sb: Filesystem superblock
* @ds: Datastream containing btree
* @key_no: Key number (alphabetical order) of key to read
* @bufsize: Size of the buffer to return key in
* @keybuf: Pointer to a buffer to put the key in
* @keysize: Length of the returned key
* @value: Value stored with the returned key
*
* Here's how it works: Key_no is the index of the key/value pair to
* return in keybuf/value.
* Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is
* the number of characters in the key (just a convenience).
*
* Algorithm:
* Get the first leafnode of the tree. See if the requested key is in that
* node. If not, follow the node->right link to the next leafnode. Repeat
* until the (key_no)th key is found or the tree is out of keys.
*/
int
befs_btree_read(struct super_block *sb, const befs_data_stream *ds,
loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
befs_off_t * value)
{
struct befs_btree_node *this_node;
befs_btree_super bt_super;
befs_off_t node_off;
int cur_key;
fs64 *valarray;
char *keystart;
u16 keylen;
int res;
uint key_sum = 0;
befs_debug(sb, "---> %s", __func__);
if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
befs_error(sb,
"befs_btree_read() failed to read index superblock");
goto error;
}
this_node = kmalloc(sizeof(struct befs_btree_node), GFP_NOFS);
if (this_node == NULL) {
befs_error(sb, "befs_btree_read() failed to allocate %zu "
"bytes of memory", sizeof(struct befs_btree_node));
goto error;
}
node_off = bt_super.root_node_ptr;
this_node->bh = NULL;
/* seeks down to first leafnode, reads it into this_node */
res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
if (res == BEFS_BT_EMPTY) {
brelse(this_node->bh);
kfree(this_node);
*value = 0;
*keysize = 0;
befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
return BEFS_BT_EMPTY;
} else if (res == BEFS_ERR) {
goto error_alloc;
}
/* find the leaf node containing the key_no key */
while (key_sum + this_node->head.all_key_count <= key_no) {
/* no more nodes to look in: key_no is too large */
if (this_node->head.right == BEFS_BT_INVAL) {
*keysize = 0;
*value = 0;
befs_debug(sb,
"<--- %s END of keys at %llu", __func__,
(unsigned long long)
key_sum + this_node->head.all_key_count);
brelse(this_node->bh);
kfree(this_node);
return BEFS_BT_END;
}
key_sum += this_node->head.all_key_count;
node_off = this_node->head.right;
if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
befs_error(sb, "%s failed to read node at %llu",
__func__, (unsigned long long)node_off);
goto error_alloc;
}
}
/* how many keys into this_node is key_no */
cur_key = key_no - key_sum;
/* get pointers to datastructures within the node body */
valarray = befs_bt_valarray(this_node);
keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);
befs_debug(sb, "Read [%llu,%d]: keysize %d",
(long long unsigned int)node_off, (int)cur_key,
(int)keylen);
if (bufsize < keylen + 1) {
befs_error(sb, "%s keybuf too small (%zu) "
"for key of size %d", __func__, bufsize, keylen);
brelse(this_node->bh);
goto error_alloc;
}
strscpy(keybuf, keystart, keylen + 1);
*value = fs64_to_cpu(sb, valarray[cur_key]);
*keysize = keylen;
befs_debug(sb, "Read [%llu,%d]: Key \"%.*s\", Value %llu", node_off,
cur_key, keylen, keybuf, *value);
brelse(this_node->bh);
kfree(this_node);
befs_debug(sb, "<--- %s", __func__);
return BEFS_OK;
error_alloc:
kfree(this_node);
error:
*keysize = 0;
*value = 0;
befs_debug(sb, "<--- %s ERROR", __func__);
return BEFS_ERR;
}
/**
* befs_btree_seekleaf - Find the first leafnode in the btree
* @sb: Filesystem superblock
* @ds: Datastream containing btree
* @bt_super: Pointer to the superblock of the btree
* @this_node: Buffer to return the leafnode in
* @node_off: Pointer to offset of current node within datastream. Modified
* by the function.
*
* Helper function for btree traverse. Moves the current position to the
* start of the first leaf node.
*
* Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
*/
static int
befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds,
befs_btree_super *bt_super,
struct befs_btree_node *this_node,
befs_off_t * node_off)
{
befs_debug(sb, "---> %s", __func__);
if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
befs_error(sb, "%s failed to read "
"node at %llu", __func__, *node_off);
goto error;
}
befs_debug(sb, "Seekleaf to root node %llu", *node_off);
if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
return BEFS_BT_EMPTY;
}
while (!befs_leafnode(this_node)) {
if (this_node->head.all_key_count == 0) {
befs_debug(sb, "%s encountered "
"an empty interior node: %llu. Using Overflow "
"node: %llu", __func__, *node_off,
this_node->head.overflow);
*node_off = this_node->head.overflow;
} else {
fs64 *valarray = befs_bt_valarray(this_node);
*node_off = fs64_to_cpu(sb, valarray[0]);
}
if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
befs_error(sb, "%s failed to read "
"node at %llu", __func__, *node_off);
goto error;
}
befs_debug(sb, "Seekleaf to child node %llu", *node_off);
}
befs_debug(sb, "Node %llu is a leaf node", *node_off);
return BEFS_OK;
error:
befs_debug(sb, "<--- %s ERROR", __func__);
return BEFS_ERR;
}
/**
* befs_leafnode - Determine if the btree node is a leaf node or an
* interior node
* @node: Pointer to node structure to test
*
* Return 1 if leaf, 0 if interior
*/
static int
befs_leafnode(struct befs_btree_node *node)
{
/* all interior nodes (and only interior nodes) have an overflow node */
if (node->head.overflow == BEFS_BT_INVAL)
return 1;
else
return 0;
}
/**
* befs_bt_keylen_index - Finds start of keylen index in a node
* @node: Pointer to the node structure to find the keylen index within
*
* Returns a pointer to the start of the key length index array
* of the B+tree node *@node
*
* "The length of all the keys in the node is added to the size of the
* header and then rounded up to a multiple of four to get the beginning
* of the key length index" (p.88, practical filesystem design).
*
* Except that rounding up to 8 works, and rounding up to 4 doesn't.
*/
static fs16 *
befs_bt_keylen_index(struct befs_btree_node *node)
{
const int keylen_align = 8;
unsigned long int off =
(sizeof (befs_btree_nodehead) + node->head.all_key_length);
ulong tmp = off % keylen_align;
if (tmp)
off += keylen_align - tmp;
return (fs16 *) ((void *) node->od_node + off);
}
/**
* befs_bt_valarray - Finds the start of value array in a node
* @node: Pointer to the node structure to find the value array within
*
* Returns a pointer to the start of the value array
* of the node pointed to by the node header
*/
static fs64 *
befs_bt_valarray(struct befs_btree_node *node)
{
void *keylen_index_start = (void *) befs_bt_keylen_index(node);
size_t keylen_index_size = node->head.all_key_count * sizeof (fs16);
return (fs64 *) (keylen_index_start + keylen_index_size);
}
/**
* befs_bt_keydata - Finds start of keydata array in a node
* @node: Pointer to the node structure to find the keydata array within
*
* Returns a pointer to the start of the keydata array
* of the node pointed to by the node header
*/
static char *
befs_bt_keydata(struct befs_btree_node *node)
{
return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead));
}
/**
* befs_bt_get_key - returns a pointer to the start of a key
* @sb: filesystem superblock
* @node: node in which to look for the key
* @index: the index of the key to get
* @keylen: modified to be the length of the key at @index
*
* Returns a valid pointer into @node on success.
* Returns NULL on failure (bad input) and sets *@keylen = 0
*/
static char *
befs_bt_get_key(struct super_block *sb, struct befs_btree_node *node,
int index, u16 * keylen)
{
int prev_key_end;
char *keystart;
fs16 *keylen_index;
if (index < 0 || index > node->head.all_key_count) {
*keylen = 0;
return NULL;
}
keystart = befs_bt_keydata(node);
keylen_index = befs_bt_keylen_index(node);
if (index == 0)
prev_key_end = 0;
else
prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]);
*keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end;
return keystart + prev_key_end;
}
/**
* befs_compare_strings - compare two strings
* @key1: pointer to the first key to be compared
* @keylen1: length in bytes of key1
* @key2: pointer to the second key to be compared
* @keylen2: length in bytes of key2
*
* Returns 0 if @key1 and @key2 are equal.
* Returns >0 if @key1 is greater.
* Returns <0 if @key2 is greater.
*/
static int
befs_compare_strings(const void *key1, int keylen1,
const void *key2, int keylen2)
{
int len = min_t(int, keylen1, keylen2);
int result = strncmp(key1, key2, len);
if (result == 0)
result = keylen1 - keylen2;
return result;
}
/* These will be used for non-string keyed btrees */
#if 0
static int
btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2)
{
return *(int32_t *) key1 - *(int32_t *) key2;
}
static int
btree_compare_uint32(cont void *key1, int keylen1,
const void *key2, int keylen2)
{
if (*(u_int32_t *) key1 == *(u_int32_t *) key2)
return 0;
else if (*(u_int32_t *) key1 > *(u_int32_t *) key2)
return 1;
return -1;
}
static int
btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2)
{
if (*(int64_t *) key1 == *(int64_t *) key2)
return 0;
else if (*(int64_t *) key1 > *(int64_t *) key2)
return 1;
return -1;
}
static int
btree_compare_uint64(cont void *key1, int keylen1,
const void *key2, int keylen2)
{
if (*(u_int64_t *) key1 == *(u_int64_t *) key2)
return 0;
else if (*(u_int64_t *) key1 > *(u_int64_t *) key2)
return 1;
return -1;
}
static int
btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2)
{
float result = *(float *) key1 - *(float *) key2;
if (result == 0.0f)
return 0;
return (result < 0.0f) ? -1 : 1;
}
static int
btree_compare_double(cont void *key1, int keylen1,
const void *key2, int keylen2)
{
double result = *(double *) key1 - *(double *) key2;
if (result == 0.0)
return 0;
return (result < 0.0) ? -1 : 1;
}
#endif //0