1
linux/block/blk-merge.c
Tejun Heo c995905916 block: fix diskstats access
There are two variants of stat functions - ones prefixed with double
underbars which don't care about preemption and ones without which
disable preemption before manipulating per-cpu counters.  It's unclear
whether the underbarred ones assume that preemtion is disabled on
entry as some callers don't do that.

This patch unifies diskstats access by implementing disk_stat_lock()
and disk_stat_unlock() which take care of both RCU (for partition
access) and preemption (for per-cpu counter access).  diskstats access
should always be enclosed between the two functions.  As such, there's
no need for the versions which disables preemption.  They're removed
and double underbars ones are renamed to drop the underbars.  As an
extra argument is added, there's no danger of using the old version
unconverted.

disk_stat_lock() uses get_cpu() and returns the cpu index and all
diskstat functions which access per-cpu counters now has @cpu
argument to help RT.

This change adds RCU or preemption operations at some places but also
collapses several preemption ops into one at others.  Overall, the
performance difference should be negligible as all involved ops are
very lightweight per-cpu ones.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
2008-10-09 08:56:06 +02:00

431 lines
9.8 KiB
C

/*
* Functions related to segment and merge handling
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/scatterlist.h>
#include "blk.h"
void blk_recalc_rq_sectors(struct request *rq, int nsect)
{
if (blk_fs_request(rq) || blk_discard_rq(rq)) {
rq->hard_sector += nsect;
rq->hard_nr_sectors -= nsect;
/*
* Move the I/O submission pointers ahead if required.
*/
if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
(rq->sector <= rq->hard_sector)) {
rq->sector = rq->hard_sector;
rq->nr_sectors = rq->hard_nr_sectors;
rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
rq->current_nr_sectors = rq->hard_cur_sectors;
rq->buffer = bio_data(rq->bio);
}
/*
* if total number of sectors is less than the first segment
* size, something has gone terribly wrong
*/
if (rq->nr_sectors < rq->current_nr_sectors) {
printk(KERN_ERR "blk: request botched\n");
rq->nr_sectors = rq->current_nr_sectors;
}
}
}
void blk_recalc_rq_segments(struct request *rq)
{
int nr_phys_segs;
unsigned int phys_size;
struct bio_vec *bv, *bvprv = NULL;
int seg_size;
int cluster;
struct req_iterator iter;
int high, highprv = 1;
struct request_queue *q = rq->q;
if (!rq->bio)
return;
cluster = test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
seg_size = 0;
phys_size = nr_phys_segs = 0;
rq_for_each_segment(bv, rq, iter) {
/*
* the trick here is making sure that a high page is never
* considered part of another segment, since that might
* change with the bounce page.
*/
high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
if (high || highprv)
goto new_segment;
if (cluster) {
if (seg_size + bv->bv_len > q->max_segment_size)
goto new_segment;
if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
goto new_segment;
if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
goto new_segment;
seg_size += bv->bv_len;
bvprv = bv;
continue;
}
new_segment:
nr_phys_segs++;
bvprv = bv;
seg_size = bv->bv_len;
highprv = high;
}
rq->nr_phys_segments = nr_phys_segs;
}
void blk_recount_segments(struct request_queue *q, struct bio *bio)
{
struct request rq;
struct bio *nxt = bio->bi_next;
rq.q = q;
rq.bio = rq.biotail = bio;
bio->bi_next = NULL;
blk_recalc_rq_segments(&rq);
bio->bi_next = nxt;
bio->bi_phys_segments = rq.nr_phys_segments;
bio->bi_flags |= (1 << BIO_SEG_VALID);
}
EXPORT_SYMBOL(blk_recount_segments);
static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
struct bio *nxt)
{
if (!test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags))
return 0;
if (bio->bi_size + nxt->bi_size > q->max_segment_size)
return 0;
if (!bio_has_data(bio))
return 1;
if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
return 0;
/*
* bio and nxt are contiguous in memory; check if the queue allows
* these two to be merged into one
*/
if (BIO_SEG_BOUNDARY(q, bio, nxt))
return 1;
return 0;
}
/*
* map a request to scatterlist, return number of sg entries setup. Caller
* must make sure sg can hold rq->nr_phys_segments entries
*/
int blk_rq_map_sg(struct request_queue *q, struct request *rq,
struct scatterlist *sglist)
{
struct bio_vec *bvec, *bvprv;
struct req_iterator iter;
struct scatterlist *sg;
int nsegs, cluster;
nsegs = 0;
cluster = test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
/*
* for each bio in rq
*/
bvprv = NULL;
sg = NULL;
rq_for_each_segment(bvec, rq, iter) {
int nbytes = bvec->bv_len;
if (bvprv && cluster) {
if (sg->length + nbytes > q->max_segment_size)
goto new_segment;
if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
goto new_segment;
if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
goto new_segment;
sg->length += nbytes;
} else {
new_segment:
if (!sg)
sg = sglist;
else {
/*
* If the driver previously mapped a shorter
* list, we could see a termination bit
* prematurely unless it fully inits the sg
* table on each mapping. We KNOW that there
* must be more entries here or the driver
* would be buggy, so force clear the
* termination bit to avoid doing a full
* sg_init_table() in drivers for each command.
*/
sg->page_link &= ~0x02;
sg = sg_next(sg);
}
sg_set_page(sg, bvec->bv_page, nbytes, bvec->bv_offset);
nsegs++;
}
bvprv = bvec;
} /* segments in rq */
if (unlikely(rq->cmd_flags & REQ_COPY_USER) &&
(rq->data_len & q->dma_pad_mask)) {
unsigned int pad_len = (q->dma_pad_mask & ~rq->data_len) + 1;
sg->length += pad_len;
rq->extra_len += pad_len;
}
if (q->dma_drain_size && q->dma_drain_needed(rq)) {
if (rq->cmd_flags & REQ_RW)
memset(q->dma_drain_buffer, 0, q->dma_drain_size);
sg->page_link &= ~0x02;
sg = sg_next(sg);
sg_set_page(sg, virt_to_page(q->dma_drain_buffer),
q->dma_drain_size,
((unsigned long)q->dma_drain_buffer) &
(PAGE_SIZE - 1));
nsegs++;
rq->extra_len += q->dma_drain_size;
}
if (sg)
sg_mark_end(sg);
return nsegs;
}
EXPORT_SYMBOL(blk_rq_map_sg);
static inline int ll_new_mergeable(struct request_queue *q,
struct request *req,
struct bio *bio)
{
int nr_phys_segs = bio_phys_segments(q, bio);
if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
req->cmd_flags |= REQ_NOMERGE;
if (req == q->last_merge)
q->last_merge = NULL;
return 0;
}
/*
* A hw segment is just getting larger, bump just the phys
* counter.
*/
req->nr_phys_segments += nr_phys_segs;
return 1;
}
static inline int ll_new_hw_segment(struct request_queue *q,
struct request *req,
struct bio *bio)
{
int nr_phys_segs = bio_phys_segments(q, bio);
if (req->nr_phys_segments + nr_phys_segs > q->max_hw_segments
|| req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
req->cmd_flags |= REQ_NOMERGE;
if (req == q->last_merge)
q->last_merge = NULL;
return 0;
}
/*
* This will form the start of a new hw segment. Bump both
* counters.
*/
req->nr_phys_segments += nr_phys_segs;
return 1;
}
int ll_back_merge_fn(struct request_queue *q, struct request *req,
struct bio *bio)
{
unsigned short max_sectors;
if (unlikely(blk_pc_request(req)))
max_sectors = q->max_hw_sectors;
else
max_sectors = q->max_sectors;
if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
req->cmd_flags |= REQ_NOMERGE;
if (req == q->last_merge)
q->last_merge = NULL;
return 0;
}
if (!bio_flagged(req->biotail, BIO_SEG_VALID))
blk_recount_segments(q, req->biotail);
if (!bio_flagged(bio, BIO_SEG_VALID))
blk_recount_segments(q, bio);
return ll_new_hw_segment(q, req, bio);
}
int ll_front_merge_fn(struct request_queue *q, struct request *req,
struct bio *bio)
{
unsigned short max_sectors;
if (unlikely(blk_pc_request(req)))
max_sectors = q->max_hw_sectors;
else
max_sectors = q->max_sectors;
if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
req->cmd_flags |= REQ_NOMERGE;
if (req == q->last_merge)
q->last_merge = NULL;
return 0;
}
if (!bio_flagged(bio, BIO_SEG_VALID))
blk_recount_segments(q, bio);
if (!bio_flagged(req->bio, BIO_SEG_VALID))
blk_recount_segments(q, req->bio);
return ll_new_hw_segment(q, req, bio);
}
static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
struct request *next)
{
int total_phys_segments;
/*
* First check if the either of the requests are re-queued
* requests. Can't merge them if they are.
*/
if (req->special || next->special)
return 0;
/*
* Will it become too large?
*/
if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
return 0;
total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
if (blk_phys_contig_segment(q, req->biotail, next->bio))
total_phys_segments--;
if (total_phys_segments > q->max_phys_segments)
return 0;
if (total_phys_segments > q->max_hw_segments)
return 0;
/* Merge is OK... */
req->nr_phys_segments = total_phys_segments;
return 1;
}
/*
* Has to be called with the request spinlock acquired
*/
static int attempt_merge(struct request_queue *q, struct request *req,
struct request *next)
{
if (!rq_mergeable(req) || !rq_mergeable(next))
return 0;
/*
* not contiguous
*/
if (req->sector + req->nr_sectors != next->sector)
return 0;
if (rq_data_dir(req) != rq_data_dir(next)
|| req->rq_disk != next->rq_disk
|| next->special)
return 0;
if (blk_integrity_rq(req) != blk_integrity_rq(next))
return 0;
/*
* If we are allowed to merge, then append bio list
* from next to rq and release next. merge_requests_fn
* will have updated segment counts, update sector
* counts here.
*/
if (!ll_merge_requests_fn(q, req, next))
return 0;
/*
* At this point we have either done a back merge
* or front merge. We need the smaller start_time of
* the merged requests to be the current request
* for accounting purposes.
*/
if (time_after(req->start_time, next->start_time))
req->start_time = next->start_time;
req->biotail->bi_next = next->bio;
req->biotail = next->biotail;
req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
elv_merge_requests(q, req, next);
if (req->rq_disk) {
struct hd_struct *part;
int cpu;
cpu = disk_stat_lock();
part = disk_map_sector_rcu(req->rq_disk, req->sector);
disk_round_stats(cpu, req->rq_disk);
req->rq_disk->in_flight--;
if (part) {
part_round_stats(cpu, part);
part->in_flight--;
}
disk_stat_unlock();
}
req->ioprio = ioprio_best(req->ioprio, next->ioprio);
__blk_put_request(q, next);
return 1;
}
int attempt_back_merge(struct request_queue *q, struct request *rq)
{
struct request *next = elv_latter_request(q, rq);
if (next)
return attempt_merge(q, rq, next);
return 0;
}
int attempt_front_merge(struct request_queue *q, struct request *rq)
{
struct request *prev = elv_former_request(q, rq);
if (prev)
return attempt_merge(q, prev, rq);
return 0;
}