b35a35b556
This avoids duplicating the function in every arch gup_fast. Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <jweiner@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: David Gibson <david@gibson.dropbear.id.au> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: David Miller <davem@davemloft.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
392 lines
10 KiB
C
392 lines
10 KiB
C
/*
|
|
* Lockless get_user_pages_fast for x86
|
|
*
|
|
* Copyright (C) 2008 Nick Piggin
|
|
* Copyright (C) 2008 Novell Inc.
|
|
*/
|
|
#include <linux/sched.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/vmstat.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/swap.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
|
|
static inline pte_t gup_get_pte(pte_t *ptep)
|
|
{
|
|
#ifndef CONFIG_X86_PAE
|
|
return ACCESS_ONCE(*ptep);
|
|
#else
|
|
/*
|
|
* With get_user_pages_fast, we walk down the pagetables without taking
|
|
* any locks. For this we would like to load the pointers atomically,
|
|
* but that is not possible (without expensive cmpxchg8b) on PAE. What
|
|
* we do have is the guarantee that a pte will only either go from not
|
|
* present to present, or present to not present or both -- it will not
|
|
* switch to a completely different present page without a TLB flush in
|
|
* between; something that we are blocking by holding interrupts off.
|
|
*
|
|
* Setting ptes from not present to present goes:
|
|
* ptep->pte_high = h;
|
|
* smp_wmb();
|
|
* ptep->pte_low = l;
|
|
*
|
|
* And present to not present goes:
|
|
* ptep->pte_low = 0;
|
|
* smp_wmb();
|
|
* ptep->pte_high = 0;
|
|
*
|
|
* We must ensure here that the load of pte_low sees l iff pte_high
|
|
* sees h. We load pte_high *after* loading pte_low, which ensures we
|
|
* don't see an older value of pte_high. *Then* we recheck pte_low,
|
|
* which ensures that we haven't picked up a changed pte high. We might
|
|
* have got rubbish values from pte_low and pte_high, but we are
|
|
* guaranteed that pte_low will not have the present bit set *unless*
|
|
* it is 'l'. And get_user_pages_fast only operates on present ptes, so
|
|
* we're safe.
|
|
*
|
|
* gup_get_pte should not be used or copied outside gup.c without being
|
|
* very careful -- it does not atomically load the pte or anything that
|
|
* is likely to be useful for you.
|
|
*/
|
|
pte_t pte;
|
|
|
|
retry:
|
|
pte.pte_low = ptep->pte_low;
|
|
smp_rmb();
|
|
pte.pte_high = ptep->pte_high;
|
|
smp_rmb();
|
|
if (unlikely(pte.pte_low != ptep->pte_low))
|
|
goto retry;
|
|
|
|
return pte;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* The performance critical leaf functions are made noinline otherwise gcc
|
|
* inlines everything into a single function which results in too much
|
|
* register pressure.
|
|
*/
|
|
static noinline int gup_pte_range(pmd_t pmd, unsigned long addr,
|
|
unsigned long end, int write, struct page **pages, int *nr)
|
|
{
|
|
unsigned long mask;
|
|
pte_t *ptep;
|
|
|
|
mask = _PAGE_PRESENT|_PAGE_USER;
|
|
if (write)
|
|
mask |= _PAGE_RW;
|
|
|
|
ptep = pte_offset_map(&pmd, addr);
|
|
do {
|
|
pte_t pte = gup_get_pte(ptep);
|
|
struct page *page;
|
|
|
|
if ((pte_flags(pte) & (mask | _PAGE_SPECIAL)) != mask) {
|
|
pte_unmap(ptep);
|
|
return 0;
|
|
}
|
|
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
|
|
page = pte_page(pte);
|
|
get_page(page);
|
|
SetPageReferenced(page);
|
|
pages[*nr] = page;
|
|
(*nr)++;
|
|
|
|
} while (ptep++, addr += PAGE_SIZE, addr != end);
|
|
pte_unmap(ptep - 1);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static inline void get_head_page_multiple(struct page *page, int nr)
|
|
{
|
|
VM_BUG_ON(page != compound_head(page));
|
|
VM_BUG_ON(page_count(page) == 0);
|
|
atomic_add(nr, &page->_count);
|
|
SetPageReferenced(page);
|
|
}
|
|
|
|
static noinline int gup_huge_pmd(pmd_t pmd, unsigned long addr,
|
|
unsigned long end, int write, struct page **pages, int *nr)
|
|
{
|
|
unsigned long mask;
|
|
pte_t pte = *(pte_t *)&pmd;
|
|
struct page *head, *page;
|
|
int refs;
|
|
|
|
mask = _PAGE_PRESENT|_PAGE_USER;
|
|
if (write)
|
|
mask |= _PAGE_RW;
|
|
if ((pte_flags(pte) & mask) != mask)
|
|
return 0;
|
|
/* hugepages are never "special" */
|
|
VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL);
|
|
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
|
|
|
|
refs = 0;
|
|
head = pte_page(pte);
|
|
page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
|
|
do {
|
|
VM_BUG_ON(compound_head(page) != head);
|
|
pages[*nr] = page;
|
|
if (PageTail(page))
|
|
get_huge_page_tail(page);
|
|
(*nr)++;
|
|
page++;
|
|
refs++;
|
|
} while (addr += PAGE_SIZE, addr != end);
|
|
get_head_page_multiple(head, refs);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
|
|
int write, struct page **pages, int *nr)
|
|
{
|
|
unsigned long next;
|
|
pmd_t *pmdp;
|
|
|
|
pmdp = pmd_offset(&pud, addr);
|
|
do {
|
|
pmd_t pmd = *pmdp;
|
|
|
|
next = pmd_addr_end(addr, end);
|
|
/*
|
|
* The pmd_trans_splitting() check below explains why
|
|
* pmdp_splitting_flush has to flush the tlb, to stop
|
|
* this gup-fast code from running while we set the
|
|
* splitting bit in the pmd. Returning zero will take
|
|
* the slow path that will call wait_split_huge_page()
|
|
* if the pmd is still in splitting state. gup-fast
|
|
* can't because it has irq disabled and
|
|
* wait_split_huge_page() would never return as the
|
|
* tlb flush IPI wouldn't run.
|
|
*/
|
|
if (pmd_none(pmd) || pmd_trans_splitting(pmd))
|
|
return 0;
|
|
if (unlikely(pmd_large(pmd))) {
|
|
if (!gup_huge_pmd(pmd, addr, next, write, pages, nr))
|
|
return 0;
|
|
} else {
|
|
if (!gup_pte_range(pmd, addr, next, write, pages, nr))
|
|
return 0;
|
|
}
|
|
} while (pmdp++, addr = next, addr != end);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static noinline int gup_huge_pud(pud_t pud, unsigned long addr,
|
|
unsigned long end, int write, struct page **pages, int *nr)
|
|
{
|
|
unsigned long mask;
|
|
pte_t pte = *(pte_t *)&pud;
|
|
struct page *head, *page;
|
|
int refs;
|
|
|
|
mask = _PAGE_PRESENT|_PAGE_USER;
|
|
if (write)
|
|
mask |= _PAGE_RW;
|
|
if ((pte_flags(pte) & mask) != mask)
|
|
return 0;
|
|
/* hugepages are never "special" */
|
|
VM_BUG_ON(pte_flags(pte) & _PAGE_SPECIAL);
|
|
VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
|
|
|
|
refs = 0;
|
|
head = pte_page(pte);
|
|
page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
|
|
do {
|
|
VM_BUG_ON(compound_head(page) != head);
|
|
pages[*nr] = page;
|
|
(*nr)++;
|
|
page++;
|
|
refs++;
|
|
} while (addr += PAGE_SIZE, addr != end);
|
|
get_head_page_multiple(head, refs);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
|
|
int write, struct page **pages, int *nr)
|
|
{
|
|
unsigned long next;
|
|
pud_t *pudp;
|
|
|
|
pudp = pud_offset(&pgd, addr);
|
|
do {
|
|
pud_t pud = *pudp;
|
|
|
|
next = pud_addr_end(addr, end);
|
|
if (pud_none(pud))
|
|
return 0;
|
|
if (unlikely(pud_large(pud))) {
|
|
if (!gup_huge_pud(pud, addr, next, write, pages, nr))
|
|
return 0;
|
|
} else {
|
|
if (!gup_pmd_range(pud, addr, next, write, pages, nr))
|
|
return 0;
|
|
}
|
|
} while (pudp++, addr = next, addr != end);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Like get_user_pages_fast() except its IRQ-safe in that it won't fall
|
|
* back to the regular GUP.
|
|
*/
|
|
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
|
|
struct page **pages)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long addr, len, end;
|
|
unsigned long next;
|
|
unsigned long flags;
|
|
pgd_t *pgdp;
|
|
int nr = 0;
|
|
|
|
start &= PAGE_MASK;
|
|
addr = start;
|
|
len = (unsigned long) nr_pages << PAGE_SHIFT;
|
|
end = start + len;
|
|
if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
|
|
(void __user *)start, len)))
|
|
return 0;
|
|
|
|
/*
|
|
* XXX: batch / limit 'nr', to avoid large irq off latency
|
|
* needs some instrumenting to determine the common sizes used by
|
|
* important workloads (eg. DB2), and whether limiting the batch size
|
|
* will decrease performance.
|
|
*
|
|
* It seems like we're in the clear for the moment. Direct-IO is
|
|
* the main guy that batches up lots of get_user_pages, and even
|
|
* they are limited to 64-at-a-time which is not so many.
|
|
*/
|
|
/*
|
|
* This doesn't prevent pagetable teardown, but does prevent
|
|
* the pagetables and pages from being freed on x86.
|
|
*
|
|
* So long as we atomically load page table pointers versus teardown
|
|
* (which we do on x86, with the above PAE exception), we can follow the
|
|
* address down to the the page and take a ref on it.
|
|
*/
|
|
local_irq_save(flags);
|
|
pgdp = pgd_offset(mm, addr);
|
|
do {
|
|
pgd_t pgd = *pgdp;
|
|
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none(pgd))
|
|
break;
|
|
if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
|
|
break;
|
|
} while (pgdp++, addr = next, addr != end);
|
|
local_irq_restore(flags);
|
|
|
|
return nr;
|
|
}
|
|
|
|
/**
|
|
* get_user_pages_fast() - pin user pages in memory
|
|
* @start: starting user address
|
|
* @nr_pages: number of pages from start to pin
|
|
* @write: whether pages will be written to
|
|
* @pages: array that receives pointers to the pages pinned.
|
|
* Should be at least nr_pages long.
|
|
*
|
|
* Attempt to pin user pages in memory without taking mm->mmap_sem.
|
|
* If not successful, it will fall back to taking the lock and
|
|
* calling get_user_pages().
|
|
*
|
|
* Returns number of pages pinned. This may be fewer than the number
|
|
* requested. If nr_pages is 0 or negative, returns 0. If no pages
|
|
* were pinned, returns -errno.
|
|
*/
|
|
int get_user_pages_fast(unsigned long start, int nr_pages, int write,
|
|
struct page **pages)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long addr, len, end;
|
|
unsigned long next;
|
|
pgd_t *pgdp;
|
|
int nr = 0;
|
|
|
|
start &= PAGE_MASK;
|
|
addr = start;
|
|
len = (unsigned long) nr_pages << PAGE_SHIFT;
|
|
|
|
end = start + len;
|
|
if (end < start)
|
|
goto slow_irqon;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (end >> __VIRTUAL_MASK_SHIFT)
|
|
goto slow_irqon;
|
|
#endif
|
|
|
|
/*
|
|
* XXX: batch / limit 'nr', to avoid large irq off latency
|
|
* needs some instrumenting to determine the common sizes used by
|
|
* important workloads (eg. DB2), and whether limiting the batch size
|
|
* will decrease performance.
|
|
*
|
|
* It seems like we're in the clear for the moment. Direct-IO is
|
|
* the main guy that batches up lots of get_user_pages, and even
|
|
* they are limited to 64-at-a-time which is not so many.
|
|
*/
|
|
/*
|
|
* This doesn't prevent pagetable teardown, but does prevent
|
|
* the pagetables and pages from being freed on x86.
|
|
*
|
|
* So long as we atomically load page table pointers versus teardown
|
|
* (which we do on x86, with the above PAE exception), we can follow the
|
|
* address down to the the page and take a ref on it.
|
|
*/
|
|
local_irq_disable();
|
|
pgdp = pgd_offset(mm, addr);
|
|
do {
|
|
pgd_t pgd = *pgdp;
|
|
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none(pgd))
|
|
goto slow;
|
|
if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
|
|
goto slow;
|
|
} while (pgdp++, addr = next, addr != end);
|
|
local_irq_enable();
|
|
|
|
VM_BUG_ON(nr != (end - start) >> PAGE_SHIFT);
|
|
return nr;
|
|
|
|
{
|
|
int ret;
|
|
|
|
slow:
|
|
local_irq_enable();
|
|
slow_irqon:
|
|
/* Try to get the remaining pages with get_user_pages */
|
|
start += nr << PAGE_SHIFT;
|
|
pages += nr;
|
|
|
|
down_read(&mm->mmap_sem);
|
|
ret = get_user_pages(current, mm, start,
|
|
(end - start) >> PAGE_SHIFT, write, 0, pages, NULL);
|
|
up_read(&mm->mmap_sem);
|
|
|
|
/* Have to be a bit careful with return values */
|
|
if (nr > 0) {
|
|
if (ret < 0)
|
|
ret = nr;
|
|
else
|
|
ret += nr;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
}
|