1
linux/arch/powerpc/oprofile/cell/spu_task_sync.c
Nick Piggin c2452f3278 shrink struct dentry
struct dentry is one of the most critical structures in the kernel. So it's
sad to see it going neglected.

With CONFIG_PROFILING turned on (which is probably the common case at least
for distros and kernel developers), sizeof(struct dcache) == 208 here
(64-bit). This gives 19 objects per slab.

I packed d_mounted into a hole, and took another 4 bytes off the inline
name length to take the padding out from the end of the structure. This
shinks it to 200 bytes. I could have gone the other way and increased the
length to 40, but I'm aiming for a magic number, read on...

I then got rid of the d_cookie pointer. This shrinks it to 192 bytes. Rant:
why was this ever a good idea? The cookie system should increase its hash
size or use a tree or something if lookups are a problem. Also the "fast
dcookie lookups" in oprofile should be moved into the dcookie code -- how
can oprofile possibly care about the dcookie_mutex? It gets dropped after
get_dcookie() returns so it can't be providing any sort of protection.

At 192 bytes, 21 objects fit into a 4K page, saving about 3MB on my system
with ~140 000 entries allocated. 192 is also a multiple of 64, so we get
nice cacheline alignment on 64 and 32 byte line systems -- any given dentry
will now require 3 cachelines to touch all fields wheras previously it
would require 4.

I know the inline name size was chosen quite carefully, however with the
reduction in cacheline footprint, it should actually be just about as fast
to do a name lookup for a 36 character name as it was before the patch (and
faster for other sizes). The memory footprint savings for names which are
<= 32 or > 36 bytes long should more than make up for the memory cost for
33-36 byte names.

Performance is a feature...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2008-12-31 18:07:38 -05:00

667 lines
18 KiB
C

/*
* Cell Broadband Engine OProfile Support
*
* (C) Copyright IBM Corporation 2006
*
* Author: Maynard Johnson <maynardj@us.ibm.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
/* The purpose of this file is to handle SPU event task switching
* and to record SPU context information into the OProfile
* event buffer.
*
* Additionally, the spu_sync_buffer function is provided as a helper
* for recoding actual SPU program counter samples to the event buffer.
*/
#include <linux/dcookies.h>
#include <linux/kref.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/module.h>
#include <linux/notifier.h>
#include <linux/numa.h>
#include <linux/oprofile.h>
#include <linux/spinlock.h>
#include "pr_util.h"
#define RELEASE_ALL 9999
static DEFINE_SPINLOCK(buffer_lock);
static DEFINE_SPINLOCK(cache_lock);
static int num_spu_nodes;
int spu_prof_num_nodes;
struct spu_buffer spu_buff[MAX_NUMNODES * SPUS_PER_NODE];
struct delayed_work spu_work;
static unsigned max_spu_buff;
static void spu_buff_add(unsigned long int value, int spu)
{
/* spu buff is a circular buffer. Add entries to the
* head. Head is the index to store the next value.
* The buffer is full when there is one available entry
* in the queue, i.e. head and tail can't be equal.
* That way we can tell the difference between the
* buffer being full versus empty.
*
* ASSUPTION: the buffer_lock is held when this function
* is called to lock the buffer, head and tail.
*/
int full = 1;
if (spu_buff[spu].head >= spu_buff[spu].tail) {
if ((spu_buff[spu].head - spu_buff[spu].tail)
< (max_spu_buff - 1))
full = 0;
} else if (spu_buff[spu].tail > spu_buff[spu].head) {
if ((spu_buff[spu].tail - spu_buff[spu].head)
> 1)
full = 0;
}
if (!full) {
spu_buff[spu].buff[spu_buff[spu].head] = value;
spu_buff[spu].head++;
if (spu_buff[spu].head >= max_spu_buff)
spu_buff[spu].head = 0;
} else {
/* From the user's perspective make the SPU buffer
* size management/overflow look like we are using
* per cpu buffers. The user uses the same
* per cpu parameter to adjust the SPU buffer size.
* Increment the sample_lost_overflow to inform
* the user the buffer size needs to be increased.
*/
oprofile_cpu_buffer_inc_smpl_lost();
}
}
/* This function copies the per SPU buffers to the
* OProfile kernel buffer.
*/
void sync_spu_buff(void)
{
int spu;
unsigned long flags;
int curr_head;
for (spu = 0; spu < num_spu_nodes; spu++) {
/* In case there was an issue and the buffer didn't
* get created skip it.
*/
if (spu_buff[spu].buff == NULL)
continue;
/* Hold the lock to make sure the head/tail
* doesn't change while spu_buff_add() is
* deciding if the buffer is full or not.
* Being a little paranoid.
*/
spin_lock_irqsave(&buffer_lock, flags);
curr_head = spu_buff[spu].head;
spin_unlock_irqrestore(&buffer_lock, flags);
/* Transfer the current contents to the kernel buffer.
* data can still be added to the head of the buffer.
*/
oprofile_put_buff(spu_buff[spu].buff,
spu_buff[spu].tail,
curr_head, max_spu_buff);
spin_lock_irqsave(&buffer_lock, flags);
spu_buff[spu].tail = curr_head;
spin_unlock_irqrestore(&buffer_lock, flags);
}
}
static void wq_sync_spu_buff(struct work_struct *work)
{
/* move data from spu buffers to kernel buffer */
sync_spu_buff();
/* only reschedule if profiling is not done */
if (spu_prof_running)
schedule_delayed_work(&spu_work, DEFAULT_TIMER_EXPIRE);
}
/* Container for caching information about an active SPU task. */
struct cached_info {
struct vma_to_fileoffset_map *map;
struct spu *the_spu; /* needed to access pointer to local_store */
struct kref cache_ref;
};
static struct cached_info *spu_info[MAX_NUMNODES * 8];
static void destroy_cached_info(struct kref *kref)
{
struct cached_info *info;
info = container_of(kref, struct cached_info, cache_ref);
vma_map_free(info->map);
kfree(info);
module_put(THIS_MODULE);
}
/* Return the cached_info for the passed SPU number.
* ATTENTION: Callers are responsible for obtaining the
* cache_lock if needed prior to invoking this function.
*/
static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
{
struct kref *ref;
struct cached_info *ret_info;
if (spu_num >= num_spu_nodes) {
printk(KERN_ERR "SPU_PROF: "
"%s, line %d: Invalid index %d into spu info cache\n",
__func__, __LINE__, spu_num);
ret_info = NULL;
goto out;
}
if (!spu_info[spu_num] && the_spu) {
ref = spu_get_profile_private_kref(the_spu->ctx);
if (ref) {
spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
kref_get(&spu_info[spu_num]->cache_ref);
}
}
ret_info = spu_info[spu_num];
out:
return ret_info;
}
/* Looks for cached info for the passed spu. If not found, the
* cached info is created for the passed spu.
* Returns 0 for success; otherwise, -1 for error.
*/
static int
prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
{
unsigned long flags;
struct vma_to_fileoffset_map *new_map;
int retval = 0;
struct cached_info *info;
/* We won't bother getting cache_lock here since
* don't do anything with the cached_info that's returned.
*/
info = get_cached_info(spu, spu->number);
if (info) {
pr_debug("Found cached SPU info.\n");
goto out;
}
/* Create cached_info and set spu_info[spu->number] to point to it.
* spu->number is a system-wide value, not a per-node value.
*/
info = kzalloc(sizeof(struct cached_info), GFP_KERNEL);
if (!info) {
printk(KERN_ERR "SPU_PROF: "
"%s, line %d: create vma_map failed\n",
__func__, __LINE__);
retval = -ENOMEM;
goto err_alloc;
}
new_map = create_vma_map(spu, objectId);
if (!new_map) {
printk(KERN_ERR "SPU_PROF: "
"%s, line %d: create vma_map failed\n",
__func__, __LINE__);
retval = -ENOMEM;
goto err_alloc;
}
pr_debug("Created vma_map\n");
info->map = new_map;
info->the_spu = spu;
kref_init(&info->cache_ref);
spin_lock_irqsave(&cache_lock, flags);
spu_info[spu->number] = info;
/* Increment count before passing off ref to SPUFS. */
kref_get(&info->cache_ref);
/* We increment the module refcount here since SPUFS is
* responsible for the final destruction of the cached_info,
* and it must be able to access the destroy_cached_info()
* function defined in the OProfile module. We decrement
* the module refcount in destroy_cached_info.
*/
try_module_get(THIS_MODULE);
spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
destroy_cached_info);
spin_unlock_irqrestore(&cache_lock, flags);
goto out;
err_alloc:
kfree(info);
out:
return retval;
}
/*
* NOTE: The caller is responsible for locking the
* cache_lock prior to calling this function.
*/
static int release_cached_info(int spu_index)
{
int index, end;
if (spu_index == RELEASE_ALL) {
end = num_spu_nodes;
index = 0;
} else {
if (spu_index >= num_spu_nodes) {
printk(KERN_ERR "SPU_PROF: "
"%s, line %d: "
"Invalid index %d into spu info cache\n",
__func__, __LINE__, spu_index);
goto out;
}
end = spu_index + 1;
index = spu_index;
}
for (; index < end; index++) {
if (spu_info[index]) {
kref_put(&spu_info[index]->cache_ref,
destroy_cached_info);
spu_info[index] = NULL;
}
}
out:
return 0;
}
/* The source code for fast_get_dcookie was "borrowed"
* from drivers/oprofile/buffer_sync.c.
*/
/* Optimisation. We can manage without taking the dcookie sem
* because we cannot reach this code without at least one
* dcookie user still being registered (namely, the reader
* of the event buffer).
*/
static inline unsigned long fast_get_dcookie(struct path *path)
{
unsigned long cookie;
if (path->dentry->d_flags & DCACHE_COOKIE)
return (unsigned long)path->dentry;
get_dcookie(path, &cookie);
return cookie;
}
/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
* which corresponds loosely to "application name". Also, determine
* the offset for the SPU ELF object. If computed offset is
* non-zero, it implies an embedded SPU object; otherwise, it's a
* separate SPU binary, in which case we retrieve it's dcookie.
* For the embedded case, we must determine if SPU ELF is embedded
* in the executable application or another file (i.e., shared lib).
* If embedded in a shared lib, we must get the dcookie and return
* that to the caller.
*/
static unsigned long
get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
unsigned long *spu_bin_dcookie,
unsigned long spu_ref)
{
unsigned long app_cookie = 0;
unsigned int my_offset = 0;
struct file *app = NULL;
struct vm_area_struct *vma;
struct mm_struct *mm = spu->mm;
if (!mm)
goto out;
down_read(&mm->mmap_sem);
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (!vma->vm_file)
continue;
if (!(vma->vm_flags & VM_EXECUTABLE))
continue;
app_cookie = fast_get_dcookie(&vma->vm_file->f_path);
pr_debug("got dcookie for %s\n",
vma->vm_file->f_dentry->d_name.name);
app = vma->vm_file;
break;
}
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
continue;
my_offset = spu_ref - vma->vm_start;
if (!vma->vm_file)
goto fail_no_image_cookie;
pr_debug("Found spu ELF at %X(object-id:%lx) for file %s\n",
my_offset, spu_ref,
vma->vm_file->f_dentry->d_name.name);
*offsetp = my_offset;
break;
}
*spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
pr_debug("got dcookie for %s\n", vma->vm_file->f_dentry->d_name.name);
up_read(&mm->mmap_sem);
out:
return app_cookie;
fail_no_image_cookie:
up_read(&mm->mmap_sem);
printk(KERN_ERR "SPU_PROF: "
"%s, line %d: Cannot find dcookie for SPU binary\n",
__func__, __LINE__);
goto out;
}
/* This function finds or creates cached context information for the
* passed SPU and records SPU context information into the OProfile
* event buffer.
*/
static int process_context_switch(struct spu *spu, unsigned long objectId)
{
unsigned long flags;
int retval;
unsigned int offset = 0;
unsigned long spu_cookie = 0, app_dcookie;
retval = prepare_cached_spu_info(spu, objectId);
if (retval)
goto out;
/* Get dcookie first because a mutex_lock is taken in that
* code path, so interrupts must not be disabled.
*/
app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
if (!app_dcookie || !spu_cookie) {
retval = -ENOENT;
goto out;
}
/* Record context info in event buffer */
spin_lock_irqsave(&buffer_lock, flags);
spu_buff_add(ESCAPE_CODE, spu->number);
spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
spu_buff_add(spu->number, spu->number);
spu_buff_add(spu->pid, spu->number);
spu_buff_add(spu->tgid, spu->number);
spu_buff_add(app_dcookie, spu->number);
spu_buff_add(spu_cookie, spu->number);
spu_buff_add(offset, spu->number);
/* Set flag to indicate SPU PC data can now be written out. If
* the SPU program counter data is seen before an SPU context
* record is seen, the postprocessing will fail.
*/
spu_buff[spu->number].ctx_sw_seen = 1;
spin_unlock_irqrestore(&buffer_lock, flags);
smp_wmb(); /* insure spu event buffer updates are written */
/* don't want entries intermingled... */
out:
return retval;
}
/*
* This function is invoked on either a bind_context or unbind_context.
* If called for an unbind_context, the val arg is 0; otherwise,
* it is the object-id value for the spu context.
* The data arg is of type 'struct spu *'.
*/
static int spu_active_notify(struct notifier_block *self, unsigned long val,
void *data)
{
int retval;
unsigned long flags;
struct spu *the_spu = data;
pr_debug("SPU event notification arrived\n");
if (!val) {
spin_lock_irqsave(&cache_lock, flags);
retval = release_cached_info(the_spu->number);
spin_unlock_irqrestore(&cache_lock, flags);
} else {
retval = process_context_switch(the_spu, val);
}
return retval;
}
static struct notifier_block spu_active = {
.notifier_call = spu_active_notify,
};
static int number_of_online_nodes(void)
{
u32 cpu; u32 tmp;
int nodes = 0;
for_each_online_cpu(cpu) {
tmp = cbe_cpu_to_node(cpu) + 1;
if (tmp > nodes)
nodes++;
}
return nodes;
}
static int oprofile_spu_buff_create(void)
{
int spu;
max_spu_buff = oprofile_get_cpu_buffer_size();
for (spu = 0; spu < num_spu_nodes; spu++) {
/* create circular buffers to store the data in.
* use locks to manage accessing the buffers
*/
spu_buff[spu].head = 0;
spu_buff[spu].tail = 0;
/*
* Create a buffer for each SPU. Can't reliably
* create a single buffer for all spus due to not
* enough contiguous kernel memory.
*/
spu_buff[spu].buff = kzalloc((max_spu_buff
* sizeof(unsigned long)),
GFP_KERNEL);
if (!spu_buff[spu].buff) {
printk(KERN_ERR "SPU_PROF: "
"%s, line %d: oprofile_spu_buff_create "
"failed to allocate spu buffer %d.\n",
__func__, __LINE__, spu);
/* release the spu buffers that have been allocated */
while (spu >= 0) {
kfree(spu_buff[spu].buff);
spu_buff[spu].buff = 0;
spu--;
}
return -ENOMEM;
}
}
return 0;
}
/* The main purpose of this function is to synchronize
* OProfile with SPUFS by registering to be notified of
* SPU task switches.
*
* NOTE: When profiling SPUs, we must ensure that only
* spu_sync_start is invoked and not the generic sync_start
* in drivers/oprofile/oprof.c. A return value of
* SKIP_GENERIC_SYNC or SYNC_START_ERROR will
* accomplish this.
*/
int spu_sync_start(void)
{
int spu;
int ret = SKIP_GENERIC_SYNC;
int register_ret;
unsigned long flags = 0;
spu_prof_num_nodes = number_of_online_nodes();
num_spu_nodes = spu_prof_num_nodes * 8;
INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
/* create buffer for storing the SPU data to put in
* the kernel buffer.
*/
ret = oprofile_spu_buff_create();
if (ret)
goto out;
spin_lock_irqsave(&buffer_lock, flags);
for (spu = 0; spu < num_spu_nodes; spu++) {
spu_buff_add(ESCAPE_CODE, spu);
spu_buff_add(SPU_PROFILING_CODE, spu);
spu_buff_add(num_spu_nodes, spu);
}
spin_unlock_irqrestore(&buffer_lock, flags);
for (spu = 0; spu < num_spu_nodes; spu++) {
spu_buff[spu].ctx_sw_seen = 0;
spu_buff[spu].last_guard_val = 0;
}
/* Register for SPU events */
register_ret = spu_switch_event_register(&spu_active);
if (register_ret) {
ret = SYNC_START_ERROR;
goto out;
}
pr_debug("spu_sync_start -- running.\n");
out:
return ret;
}
/* Record SPU program counter samples to the oprofile event buffer. */
void spu_sync_buffer(int spu_num, unsigned int *samples,
int num_samples)
{
unsigned long long file_offset;
unsigned long flags;
int i;
struct vma_to_fileoffset_map *map;
struct spu *the_spu;
unsigned long long spu_num_ll = spu_num;
unsigned long long spu_num_shifted = spu_num_ll << 32;
struct cached_info *c_info;
/* We need to obtain the cache_lock here because it's
* possible that after getting the cached_info, the SPU job
* corresponding to this cached_info may end, thus resulting
* in the destruction of the cached_info.
*/
spin_lock_irqsave(&cache_lock, flags);
c_info = get_cached_info(NULL, spu_num);
if (!c_info) {
/* This legitimately happens when the SPU task ends before all
* samples are recorded.
* No big deal -- so we just drop a few samples.
*/
pr_debug("SPU_PROF: No cached SPU contex "
"for SPU #%d. Dropping samples.\n", spu_num);
goto out;
}
map = c_info->map;
the_spu = c_info->the_spu;
spin_lock(&buffer_lock);
for (i = 0; i < num_samples; i++) {
unsigned int sample = *(samples+i);
int grd_val = 0;
file_offset = 0;
if (sample == 0)
continue;
file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
/* If overlays are used by this SPU application, the guard
* value is non-zero, indicating which overlay section is in
* use. We need to discard samples taken during the time
* period which an overlay occurs (i.e., guard value changes).
*/
if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
spu_buff[spu_num].last_guard_val = grd_val;
/* Drop the rest of the samples. */
break;
}
/* We must ensure that the SPU context switch has been written
* out before samples for the SPU. Otherwise, the SPU context
* information is not available and the postprocessing of the
* SPU PC will fail with no available anonymous map information.
*/
if (spu_buff[spu_num].ctx_sw_seen)
spu_buff_add((file_offset | spu_num_shifted),
spu_num);
}
spin_unlock(&buffer_lock);
out:
spin_unlock_irqrestore(&cache_lock, flags);
}
int spu_sync_stop(void)
{
unsigned long flags = 0;
int ret;
int k;
ret = spu_switch_event_unregister(&spu_active);
if (ret)
printk(KERN_ERR "SPU_PROF: "
"%s, line %d: spu_switch_event_unregister " \
"returned %d\n",
__func__, __LINE__, ret);
/* flush any remaining data in the per SPU buffers */
sync_spu_buff();
spin_lock_irqsave(&cache_lock, flags);
ret = release_cached_info(RELEASE_ALL);
spin_unlock_irqrestore(&cache_lock, flags);
/* remove scheduled work queue item rather then waiting
* for every queued entry to execute. Then flush pending
* system wide buffer to event buffer.
*/
cancel_delayed_work(&spu_work);
for (k = 0; k < num_spu_nodes; k++) {
spu_buff[k].ctx_sw_seen = 0;
/*
* spu_sys_buff will be null if there was a problem
* allocating the buffer. Only delete if it exists.
*/
kfree(spu_buff[k].buff);
spu_buff[k].buff = 0;
}
pr_debug("spu_sync_stop -- done.\n");
return ret;
}