1
linux/include/net/inet_hashtables.h
Arnaldo Carvalho de Melo c752f0739f [TCP]: Move the tcp sock states to net/tcp_states.h
Lots of places just needs the states, not even linux/tcp.h, where this
enum was, needs it.

This speeds up development of the refactorings as less sources are
rebuilt when things get moved from net/tcp.h.

Signed-off-by: Arnaldo Carvalho de Melo <acme@ghostprotocols.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
2005-08-29 15:41:54 -07:00

244 lines
7.7 KiB
C

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Authors: Lotsa people, from code originally in tcp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _INET_HASHTABLES_H
#define _INET_HASHTABLES_H
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/wait.h>
#include <net/sock.h>
#include <net/tcp_states.h>
#include <asm/atomic.h>
/* This is for all connections with a full identity, no wildcards.
* New scheme, half the table is for TIME_WAIT, the other half is
* for the rest. I'll experiment with dynamic table growth later.
*/
struct inet_ehash_bucket {
rwlock_t lock;
struct hlist_head chain;
} __attribute__((__aligned__(8)));
/* There are a few simple rules, which allow for local port reuse by
* an application. In essence:
*
* 1) Sockets bound to different interfaces may share a local port.
* Failing that, goto test 2.
* 2) If all sockets have sk->sk_reuse set, and none of them are in
* TCP_LISTEN state, the port may be shared.
* Failing that, goto test 3.
* 3) If all sockets are bound to a specific inet_sk(sk)->rcv_saddr local
* address, and none of them are the same, the port may be
* shared.
* Failing this, the port cannot be shared.
*
* The interesting point, is test #2. This is what an FTP server does
* all day. To optimize this case we use a specific flag bit defined
* below. As we add sockets to a bind bucket list, we perform a
* check of: (newsk->sk_reuse && (newsk->sk_state != TCP_LISTEN))
* As long as all sockets added to a bind bucket pass this test,
* the flag bit will be set.
* The resulting situation is that tcp_v[46]_verify_bind() can just check
* for this flag bit, if it is set and the socket trying to bind has
* sk->sk_reuse set, we don't even have to walk the owners list at all,
* we return that it is ok to bind this socket to the requested local port.
*
* Sounds like a lot of work, but it is worth it. In a more naive
* implementation (ie. current FreeBSD etc.) the entire list of ports
* must be walked for each data port opened by an ftp server. Needless
* to say, this does not scale at all. With a couple thousand FTP
* users logged onto your box, isn't it nice to know that new data
* ports are created in O(1) time? I thought so. ;-) -DaveM
*/
struct inet_bind_bucket {
unsigned short port;
signed short fastreuse;
struct hlist_node node;
struct hlist_head owners;
};
#define inet_bind_bucket_for_each(tb, node, head) \
hlist_for_each_entry(tb, node, head, node)
struct inet_bind_hashbucket {
spinlock_t lock;
struct hlist_head chain;
};
/* This is for listening sockets, thus all sockets which possess wildcards. */
#define INET_LHTABLE_SIZE 32 /* Yes, really, this is all you need. */
struct inet_hashinfo {
/* This is for sockets with full identity only. Sockets here will
* always be without wildcards and will have the following invariant:
*
* TCP_ESTABLISHED <= sk->sk_state < TCP_CLOSE
*
* First half of the table is for sockets not in TIME_WAIT, second half
* is for TIME_WAIT sockets only.
*/
struct inet_ehash_bucket *ehash;
/* Ok, let's try this, I give up, we do need a local binding
* TCP hash as well as the others for fast bind/connect.
*/
struct inet_bind_hashbucket *bhash;
int bhash_size;
int ehash_size;
/* All sockets in TCP_LISTEN state will be in here. This is the only
* table where wildcard'd TCP sockets can exist. Hash function here
* is just local port number.
*/
struct hlist_head listening_hash[INET_LHTABLE_SIZE];
/* All the above members are written once at bootup and
* never written again _or_ are predominantly read-access.
*
* Now align to a new cache line as all the following members
* are often dirty.
*/
rwlock_t lhash_lock ____cacheline_aligned;
atomic_t lhash_users;
wait_queue_head_t lhash_wait;
spinlock_t portalloc_lock;
kmem_cache_t *bind_bucket_cachep;
int port_rover;
};
static inline int inet_ehashfn(const __u32 laddr, const __u16 lport,
const __u32 faddr, const __u16 fport,
const int ehash_size)
{
int h = (laddr ^ lport) ^ (faddr ^ fport);
h ^= h >> 16;
h ^= h >> 8;
return h & (ehash_size - 1);
}
static inline int inet_sk_ehashfn(const struct sock *sk, const int ehash_size)
{
const struct inet_sock *inet = inet_sk(sk);
const __u32 laddr = inet->rcv_saddr;
const __u16 lport = inet->num;
const __u32 faddr = inet->daddr;
const __u16 fport = inet->dport;
return inet_ehashfn(laddr, lport, faddr, fport, ehash_size);
}
extern struct inet_bind_bucket *
inet_bind_bucket_create(kmem_cache_t *cachep,
struct inet_bind_hashbucket *head,
const unsigned short snum);
extern void inet_bind_bucket_destroy(kmem_cache_t *cachep,
struct inet_bind_bucket *tb);
static inline int inet_bhashfn(const __u16 lport, const int bhash_size)
{
return lport & (bhash_size - 1);
}
extern void inet_bind_hash(struct sock *sk, struct inet_bind_bucket *tb,
const unsigned short snum);
/* These can have wildcards, don't try too hard. */
static inline int inet_lhashfn(const unsigned short num)
{
return num & (INET_LHTABLE_SIZE - 1);
}
static inline int inet_sk_listen_hashfn(const struct sock *sk)
{
return inet_lhashfn(inet_sk(sk)->num);
}
/* Caller must disable local BH processing. */
static inline void __inet_inherit_port(struct inet_hashinfo *table,
struct sock *sk, struct sock *child)
{
const int bhash = inet_bhashfn(inet_sk(child)->num, table->bhash_size);
struct inet_bind_hashbucket *head = &table->bhash[bhash];
struct inet_bind_bucket *tb;
spin_lock(&head->lock);
tb = inet_sk(sk)->bind_hash;
sk_add_bind_node(child, &tb->owners);
inet_sk(child)->bind_hash = tb;
spin_unlock(&head->lock);
}
static inline void inet_inherit_port(struct inet_hashinfo *table,
struct sock *sk, struct sock *child)
{
local_bh_disable();
__inet_inherit_port(table, sk, child);
local_bh_enable();
}
extern void inet_put_port(struct inet_hashinfo *table, struct sock *sk);
extern void inet_listen_wlock(struct inet_hashinfo *hashinfo);
/*
* - We may sleep inside this lock.
* - If sleeping is not required (or called from BH),
* use plain read_(un)lock(&inet_hashinfo.lhash_lock).
*/
static inline void inet_listen_lock(struct inet_hashinfo *hashinfo)
{
/* read_lock synchronizes to candidates to writers */
read_lock(&hashinfo->lhash_lock);
atomic_inc(&hashinfo->lhash_users);
read_unlock(&hashinfo->lhash_lock);
}
static inline void inet_listen_unlock(struct inet_hashinfo *hashinfo)
{
if (atomic_dec_and_test(&hashinfo->lhash_users))
wake_up(&hashinfo->lhash_wait);
}
static inline void __inet_hash(struct inet_hashinfo *hashinfo,
struct sock *sk, const int listen_possible)
{
struct hlist_head *list;
rwlock_t *lock;
BUG_TRAP(sk_unhashed(sk));
if (listen_possible && sk->sk_state == TCP_LISTEN) {
list = &hashinfo->listening_hash[inet_sk_listen_hashfn(sk)];
lock = &hashinfo->lhash_lock;
inet_listen_wlock(hashinfo);
} else {
sk->sk_hashent = inet_sk_ehashfn(sk, hashinfo->ehash_size);
list = &hashinfo->ehash[sk->sk_hashent].chain;
lock = &hashinfo->ehash[sk->sk_hashent].lock;
write_lock(lock);
}
__sk_add_node(sk, list);
sock_prot_inc_use(sk->sk_prot);
write_unlock(lock);
if (listen_possible && sk->sk_state == TCP_LISTEN)
wake_up(&hashinfo->lhash_wait);
}
#endif /* _INET_HASHTABLES_H */