1
linux/drivers/net/ibmveth.c
Ben Hutchings 288379f050 net: Remove redundant NAPI functions
Following the removal of the unused struct net_device * parameter from
the NAPI functions named *netif_rx_* in commit 908a7a1, they are
exactly equivalent to the corresponding *napi_* functions and are
therefore redundant.

Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Acked-by: Neil Horman <nhorman@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2009-01-21 14:33:50 -08:00

1619 lines
47 KiB
C

/**************************************************************************/
/* */
/* IBM eServer i/pSeries Virtual Ethernet Device Driver */
/* Copyright (C) 2003 IBM Corp. */
/* Originally written by Dave Larson (larson1@us.ibm.com) */
/* Maintained by Santiago Leon (santil@us.ibm.com) */
/* */
/* This program is free software; you can redistribute it and/or modify */
/* it under the terms of the GNU General Public License as published by */
/* the Free Software Foundation; either version 2 of the License, or */
/* (at your option) any later version. */
/* */
/* This program is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
/* GNU General Public License for more details. */
/* */
/* You should have received a copy of the GNU General Public License */
/* along with this program; if not, write to the Free Software */
/* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 */
/* USA */
/* */
/* This module contains the implementation of a virtual ethernet device */
/* for use with IBM i/pSeries LPAR Linux. It utilizes the logical LAN */
/* option of the RS/6000 Platform Architechture to interface with virtual */
/* ethernet NICs that are presented to the partition by the hypervisor. */
/* */
/**************************************************************************/
/*
TODO:
- add support for sysfs
- possibly remove procfs support
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/dma-mapping.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/ethtool.h>
#include <linux/proc_fs.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <net/net_namespace.h>
#include <asm/hvcall.h>
#include <asm/atomic.h>
#include <asm/vio.h>
#include <asm/iommu.h>
#include <asm/uaccess.h>
#include <asm/firmware.h>
#include <linux/seq_file.h>
#include "ibmveth.h"
#undef DEBUG
#define ibmveth_printk(fmt, args...) \
printk(KERN_DEBUG "%s: " fmt, __FILE__, ## args)
#define ibmveth_error_printk(fmt, args...) \
printk(KERN_ERR "(%s:%3.3d ua:%x) ERROR: " fmt, __FILE__, __LINE__ , adapter->vdev->unit_address, ## args)
#ifdef DEBUG
#define ibmveth_debug_printk_no_adapter(fmt, args...) \
printk(KERN_DEBUG "(%s:%3.3d): " fmt, __FILE__, __LINE__ , ## args)
#define ibmveth_debug_printk(fmt, args...) \
printk(KERN_DEBUG "(%s:%3.3d ua:%x): " fmt, __FILE__, __LINE__ , adapter->vdev->unit_address, ## args)
#define ibmveth_assert(expr) \
if(!(expr)) { \
printk(KERN_DEBUG "assertion failed (%s:%3.3d ua:%x): %s\n", __FILE__, __LINE__, adapter->vdev->unit_address, #expr); \
BUG(); \
}
#else
#define ibmveth_debug_printk_no_adapter(fmt, args...)
#define ibmveth_debug_printk(fmt, args...)
#define ibmveth_assert(expr)
#endif
static int ibmveth_open(struct net_device *dev);
static int ibmveth_close(struct net_device *dev);
static int ibmveth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
static int ibmveth_poll(struct napi_struct *napi, int budget);
static int ibmveth_start_xmit(struct sk_buff *skb, struct net_device *dev);
static void ibmveth_set_multicast_list(struct net_device *dev);
static int ibmveth_change_mtu(struct net_device *dev, int new_mtu);
static void ibmveth_proc_register_driver(void);
static void ibmveth_proc_unregister_driver(void);
static void ibmveth_proc_register_adapter(struct ibmveth_adapter *adapter);
static void ibmveth_proc_unregister_adapter(struct ibmveth_adapter *adapter);
static irqreturn_t ibmveth_interrupt(int irq, void *dev_instance);
static void ibmveth_rxq_harvest_buffer(struct ibmveth_adapter *adapter);
static unsigned long ibmveth_get_desired_dma(struct vio_dev *vdev);
static struct kobj_type ktype_veth_pool;
#ifdef CONFIG_PROC_FS
#define IBMVETH_PROC_DIR "ibmveth"
static struct proc_dir_entry *ibmveth_proc_dir;
#endif
static const char ibmveth_driver_name[] = "ibmveth";
static const char ibmveth_driver_string[] = "IBM i/pSeries Virtual Ethernet Driver";
#define ibmveth_driver_version "1.03"
MODULE_AUTHOR("Santiago Leon <santil@us.ibm.com>");
MODULE_DESCRIPTION("IBM i/pSeries Virtual Ethernet Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(ibmveth_driver_version);
struct ibmveth_stat {
char name[ETH_GSTRING_LEN];
int offset;
};
#define IBMVETH_STAT_OFF(stat) offsetof(struct ibmveth_adapter, stat)
#define IBMVETH_GET_STAT(a, off) *((u64 *)(((unsigned long)(a)) + off))
struct ibmveth_stat ibmveth_stats[] = {
{ "replenish_task_cycles", IBMVETH_STAT_OFF(replenish_task_cycles) },
{ "replenish_no_mem", IBMVETH_STAT_OFF(replenish_no_mem) },
{ "replenish_add_buff_failure", IBMVETH_STAT_OFF(replenish_add_buff_failure) },
{ "replenish_add_buff_success", IBMVETH_STAT_OFF(replenish_add_buff_success) },
{ "rx_invalid_buffer", IBMVETH_STAT_OFF(rx_invalid_buffer) },
{ "rx_no_buffer", IBMVETH_STAT_OFF(rx_no_buffer) },
{ "tx_map_failed", IBMVETH_STAT_OFF(tx_map_failed) },
{ "tx_send_failed", IBMVETH_STAT_OFF(tx_send_failed) },
};
/* simple methods of getting data from the current rxq entry */
static inline u32 ibmveth_rxq_flags(struct ibmveth_adapter *adapter)
{
return adapter->rx_queue.queue_addr[adapter->rx_queue.index].flags_off;
}
static inline int ibmveth_rxq_toggle(struct ibmveth_adapter *adapter)
{
return (ibmveth_rxq_flags(adapter) & IBMVETH_RXQ_TOGGLE) >> IBMVETH_RXQ_TOGGLE_SHIFT;
}
static inline int ibmveth_rxq_pending_buffer(struct ibmveth_adapter *adapter)
{
return (ibmveth_rxq_toggle(adapter) == adapter->rx_queue.toggle);
}
static inline int ibmveth_rxq_buffer_valid(struct ibmveth_adapter *adapter)
{
return (ibmveth_rxq_flags(adapter) & IBMVETH_RXQ_VALID);
}
static inline int ibmveth_rxq_frame_offset(struct ibmveth_adapter *adapter)
{
return (ibmveth_rxq_flags(adapter) & IBMVETH_RXQ_OFF_MASK);
}
static inline int ibmveth_rxq_frame_length(struct ibmveth_adapter *adapter)
{
return (adapter->rx_queue.queue_addr[adapter->rx_queue.index].length);
}
static inline int ibmveth_rxq_csum_good(struct ibmveth_adapter *adapter)
{
return (ibmveth_rxq_flags(adapter) & IBMVETH_RXQ_CSUM_GOOD);
}
/* setup the initial settings for a buffer pool */
static void ibmveth_init_buffer_pool(struct ibmveth_buff_pool *pool, u32 pool_index, u32 pool_size, u32 buff_size, u32 pool_active)
{
pool->size = pool_size;
pool->index = pool_index;
pool->buff_size = buff_size;
pool->threshold = pool_size / 2;
pool->active = pool_active;
}
/* allocate and setup an buffer pool - called during open */
static int ibmveth_alloc_buffer_pool(struct ibmveth_buff_pool *pool)
{
int i;
pool->free_map = kmalloc(sizeof(u16) * pool->size, GFP_KERNEL);
if(!pool->free_map) {
return -1;
}
pool->dma_addr = kmalloc(sizeof(dma_addr_t) * pool->size, GFP_KERNEL);
if(!pool->dma_addr) {
kfree(pool->free_map);
pool->free_map = NULL;
return -1;
}
pool->skbuff = kmalloc(sizeof(void*) * pool->size, GFP_KERNEL);
if(!pool->skbuff) {
kfree(pool->dma_addr);
pool->dma_addr = NULL;
kfree(pool->free_map);
pool->free_map = NULL;
return -1;
}
memset(pool->skbuff, 0, sizeof(void*) * pool->size);
memset(pool->dma_addr, 0, sizeof(dma_addr_t) * pool->size);
for(i = 0; i < pool->size; ++i) {
pool->free_map[i] = i;
}
atomic_set(&pool->available, 0);
pool->producer_index = 0;
pool->consumer_index = 0;
return 0;
}
/* replenish the buffers for a pool. note that we don't need to
* skb_reserve these since they are used for incoming...
*/
static void ibmveth_replenish_buffer_pool(struct ibmveth_adapter *adapter, struct ibmveth_buff_pool *pool)
{
u32 i;
u32 count = pool->size - atomic_read(&pool->available);
u32 buffers_added = 0;
struct sk_buff *skb;
unsigned int free_index, index;
u64 correlator;
unsigned long lpar_rc;
dma_addr_t dma_addr;
mb();
for(i = 0; i < count; ++i) {
union ibmveth_buf_desc desc;
skb = alloc_skb(pool->buff_size, GFP_ATOMIC);
if(!skb) {
ibmveth_debug_printk("replenish: unable to allocate skb\n");
adapter->replenish_no_mem++;
break;
}
free_index = pool->consumer_index;
pool->consumer_index = (pool->consumer_index + 1) % pool->size;
index = pool->free_map[free_index];
ibmveth_assert(index != IBM_VETH_INVALID_MAP);
ibmveth_assert(pool->skbuff[index] == NULL);
dma_addr = dma_map_single(&adapter->vdev->dev, skb->data,
pool->buff_size, DMA_FROM_DEVICE);
if (dma_mapping_error(&adapter->vdev->dev, dma_addr))
goto failure;
pool->free_map[free_index] = IBM_VETH_INVALID_MAP;
pool->dma_addr[index] = dma_addr;
pool->skbuff[index] = skb;
correlator = ((u64)pool->index << 32) | index;
*(u64*)skb->data = correlator;
desc.fields.flags_len = IBMVETH_BUF_VALID | pool->buff_size;
desc.fields.address = dma_addr;
lpar_rc = h_add_logical_lan_buffer(adapter->vdev->unit_address, desc.desc);
if (lpar_rc != H_SUCCESS)
goto failure;
else {
buffers_added++;
adapter->replenish_add_buff_success++;
}
}
mb();
atomic_add(buffers_added, &(pool->available));
return;
failure:
pool->free_map[free_index] = index;
pool->skbuff[index] = NULL;
if (pool->consumer_index == 0)
pool->consumer_index = pool->size - 1;
else
pool->consumer_index--;
if (!dma_mapping_error(&adapter->vdev->dev, dma_addr))
dma_unmap_single(&adapter->vdev->dev,
pool->dma_addr[index], pool->buff_size,
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
adapter->replenish_add_buff_failure++;
mb();
atomic_add(buffers_added, &(pool->available));
}
/* replenish routine */
static void ibmveth_replenish_task(struct ibmveth_adapter *adapter)
{
int i;
adapter->replenish_task_cycles++;
for (i = (IbmVethNumBufferPools - 1); i >= 0; i--)
if(adapter->rx_buff_pool[i].active)
ibmveth_replenish_buffer_pool(adapter,
&adapter->rx_buff_pool[i]);
adapter->rx_no_buffer = *(u64*)(((char*)adapter->buffer_list_addr) + 4096 - 8);
}
/* empty and free ana buffer pool - also used to do cleanup in error paths */
static void ibmveth_free_buffer_pool(struct ibmveth_adapter *adapter, struct ibmveth_buff_pool *pool)
{
int i;
kfree(pool->free_map);
pool->free_map = NULL;
if(pool->skbuff && pool->dma_addr) {
for(i = 0; i < pool->size; ++i) {
struct sk_buff *skb = pool->skbuff[i];
if(skb) {
dma_unmap_single(&adapter->vdev->dev,
pool->dma_addr[i],
pool->buff_size,
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
pool->skbuff[i] = NULL;
}
}
}
if(pool->dma_addr) {
kfree(pool->dma_addr);
pool->dma_addr = NULL;
}
if(pool->skbuff) {
kfree(pool->skbuff);
pool->skbuff = NULL;
}
}
/* remove a buffer from a pool */
static void ibmveth_remove_buffer_from_pool(struct ibmveth_adapter *adapter, u64 correlator)
{
unsigned int pool = correlator >> 32;
unsigned int index = correlator & 0xffffffffUL;
unsigned int free_index;
struct sk_buff *skb;
ibmveth_assert(pool < IbmVethNumBufferPools);
ibmveth_assert(index < adapter->rx_buff_pool[pool].size);
skb = adapter->rx_buff_pool[pool].skbuff[index];
ibmveth_assert(skb != NULL);
adapter->rx_buff_pool[pool].skbuff[index] = NULL;
dma_unmap_single(&adapter->vdev->dev,
adapter->rx_buff_pool[pool].dma_addr[index],
adapter->rx_buff_pool[pool].buff_size,
DMA_FROM_DEVICE);
free_index = adapter->rx_buff_pool[pool].producer_index;
adapter->rx_buff_pool[pool].producer_index
= (adapter->rx_buff_pool[pool].producer_index + 1)
% adapter->rx_buff_pool[pool].size;
adapter->rx_buff_pool[pool].free_map[free_index] = index;
mb();
atomic_dec(&(adapter->rx_buff_pool[pool].available));
}
/* get the current buffer on the rx queue */
static inline struct sk_buff *ibmveth_rxq_get_buffer(struct ibmveth_adapter *adapter)
{
u64 correlator = adapter->rx_queue.queue_addr[adapter->rx_queue.index].correlator;
unsigned int pool = correlator >> 32;
unsigned int index = correlator & 0xffffffffUL;
ibmveth_assert(pool < IbmVethNumBufferPools);
ibmveth_assert(index < adapter->rx_buff_pool[pool].size);
return adapter->rx_buff_pool[pool].skbuff[index];
}
/* recycle the current buffer on the rx queue */
static void ibmveth_rxq_recycle_buffer(struct ibmveth_adapter *adapter)
{
u32 q_index = adapter->rx_queue.index;
u64 correlator = adapter->rx_queue.queue_addr[q_index].correlator;
unsigned int pool = correlator >> 32;
unsigned int index = correlator & 0xffffffffUL;
union ibmveth_buf_desc desc;
unsigned long lpar_rc;
ibmveth_assert(pool < IbmVethNumBufferPools);
ibmveth_assert(index < adapter->rx_buff_pool[pool].size);
if(!adapter->rx_buff_pool[pool].active) {
ibmveth_rxq_harvest_buffer(adapter);
ibmveth_free_buffer_pool(adapter, &adapter->rx_buff_pool[pool]);
return;
}
desc.fields.flags_len = IBMVETH_BUF_VALID |
adapter->rx_buff_pool[pool].buff_size;
desc.fields.address = adapter->rx_buff_pool[pool].dma_addr[index];
lpar_rc = h_add_logical_lan_buffer(adapter->vdev->unit_address, desc.desc);
if(lpar_rc != H_SUCCESS) {
ibmveth_debug_printk("h_add_logical_lan_buffer failed during recycle rc=%ld", lpar_rc);
ibmveth_remove_buffer_from_pool(adapter, adapter->rx_queue.queue_addr[adapter->rx_queue.index].correlator);
}
if(++adapter->rx_queue.index == adapter->rx_queue.num_slots) {
adapter->rx_queue.index = 0;
adapter->rx_queue.toggle = !adapter->rx_queue.toggle;
}
}
static void ibmveth_rxq_harvest_buffer(struct ibmveth_adapter *adapter)
{
ibmveth_remove_buffer_from_pool(adapter, adapter->rx_queue.queue_addr[adapter->rx_queue.index].correlator);
if(++adapter->rx_queue.index == adapter->rx_queue.num_slots) {
adapter->rx_queue.index = 0;
adapter->rx_queue.toggle = !adapter->rx_queue.toggle;
}
}
static void ibmveth_cleanup(struct ibmveth_adapter *adapter)
{
int i;
struct device *dev = &adapter->vdev->dev;
if(adapter->buffer_list_addr != NULL) {
if (!dma_mapping_error(dev, adapter->buffer_list_dma)) {
dma_unmap_single(dev, adapter->buffer_list_dma, 4096,
DMA_BIDIRECTIONAL);
adapter->buffer_list_dma = DMA_ERROR_CODE;
}
free_page((unsigned long)adapter->buffer_list_addr);
adapter->buffer_list_addr = NULL;
}
if(adapter->filter_list_addr != NULL) {
if (!dma_mapping_error(dev, adapter->filter_list_dma)) {
dma_unmap_single(dev, adapter->filter_list_dma, 4096,
DMA_BIDIRECTIONAL);
adapter->filter_list_dma = DMA_ERROR_CODE;
}
free_page((unsigned long)adapter->filter_list_addr);
adapter->filter_list_addr = NULL;
}
if(adapter->rx_queue.queue_addr != NULL) {
if (!dma_mapping_error(dev, adapter->rx_queue.queue_dma)) {
dma_unmap_single(dev,
adapter->rx_queue.queue_dma,
adapter->rx_queue.queue_len,
DMA_BIDIRECTIONAL);
adapter->rx_queue.queue_dma = DMA_ERROR_CODE;
}
kfree(adapter->rx_queue.queue_addr);
adapter->rx_queue.queue_addr = NULL;
}
for(i = 0; i<IbmVethNumBufferPools; i++)
if (adapter->rx_buff_pool[i].active)
ibmveth_free_buffer_pool(adapter,
&adapter->rx_buff_pool[i]);
if (adapter->bounce_buffer != NULL) {
if (!dma_mapping_error(dev, adapter->bounce_buffer_dma)) {
dma_unmap_single(&adapter->vdev->dev,
adapter->bounce_buffer_dma,
adapter->netdev->mtu + IBMVETH_BUFF_OH,
DMA_BIDIRECTIONAL);
adapter->bounce_buffer_dma = DMA_ERROR_CODE;
}
kfree(adapter->bounce_buffer);
adapter->bounce_buffer = NULL;
}
}
static int ibmveth_register_logical_lan(struct ibmveth_adapter *adapter,
union ibmveth_buf_desc rxq_desc, u64 mac_address)
{
int rc, try_again = 1;
/* After a kexec the adapter will still be open, so our attempt to
* open it will fail. So if we get a failure we free the adapter and
* try again, but only once. */
retry:
rc = h_register_logical_lan(adapter->vdev->unit_address,
adapter->buffer_list_dma, rxq_desc.desc,
adapter->filter_list_dma, mac_address);
if (rc != H_SUCCESS && try_again) {
do {
rc = h_free_logical_lan(adapter->vdev->unit_address);
} while (H_IS_LONG_BUSY(rc) || (rc == H_BUSY));
try_again = 0;
goto retry;
}
return rc;
}
static int ibmveth_open(struct net_device *netdev)
{
struct ibmveth_adapter *adapter = netdev_priv(netdev);
u64 mac_address = 0;
int rxq_entries = 1;
unsigned long lpar_rc;
int rc;
union ibmveth_buf_desc rxq_desc;
int i;
struct device *dev;
ibmveth_debug_printk("open starting\n");
napi_enable(&adapter->napi);
for(i = 0; i<IbmVethNumBufferPools; i++)
rxq_entries += adapter->rx_buff_pool[i].size;
adapter->buffer_list_addr = (void*) get_zeroed_page(GFP_KERNEL);
adapter->filter_list_addr = (void*) get_zeroed_page(GFP_KERNEL);
if(!adapter->buffer_list_addr || !adapter->filter_list_addr) {
ibmveth_error_printk("unable to allocate filter or buffer list pages\n");
ibmveth_cleanup(adapter);
napi_disable(&adapter->napi);
return -ENOMEM;
}
adapter->rx_queue.queue_len = sizeof(struct ibmveth_rx_q_entry) * rxq_entries;
adapter->rx_queue.queue_addr = kmalloc(adapter->rx_queue.queue_len, GFP_KERNEL);
if(!adapter->rx_queue.queue_addr) {
ibmveth_error_printk("unable to allocate rx queue pages\n");
ibmveth_cleanup(adapter);
napi_disable(&adapter->napi);
return -ENOMEM;
}
dev = &adapter->vdev->dev;
adapter->buffer_list_dma = dma_map_single(dev,
adapter->buffer_list_addr, 4096, DMA_BIDIRECTIONAL);
adapter->filter_list_dma = dma_map_single(dev,
adapter->filter_list_addr, 4096, DMA_BIDIRECTIONAL);
adapter->rx_queue.queue_dma = dma_map_single(dev,
adapter->rx_queue.queue_addr,
adapter->rx_queue.queue_len, DMA_BIDIRECTIONAL);
if ((dma_mapping_error(dev, adapter->buffer_list_dma)) ||
(dma_mapping_error(dev, adapter->filter_list_dma)) ||
(dma_mapping_error(dev, adapter->rx_queue.queue_dma))) {
ibmveth_error_printk("unable to map filter or buffer list pages\n");
ibmveth_cleanup(adapter);
napi_disable(&adapter->napi);
return -ENOMEM;
}
adapter->rx_queue.index = 0;
adapter->rx_queue.num_slots = rxq_entries;
adapter->rx_queue.toggle = 1;
memcpy(&mac_address, netdev->dev_addr, netdev->addr_len);
mac_address = mac_address >> 16;
rxq_desc.fields.flags_len = IBMVETH_BUF_VALID | adapter->rx_queue.queue_len;
rxq_desc.fields.address = adapter->rx_queue.queue_dma;
ibmveth_debug_printk("buffer list @ 0x%p\n", adapter->buffer_list_addr);
ibmveth_debug_printk("filter list @ 0x%p\n", adapter->filter_list_addr);
ibmveth_debug_printk("receive q @ 0x%p\n", adapter->rx_queue.queue_addr);
h_vio_signal(adapter->vdev->unit_address, VIO_IRQ_DISABLE);
lpar_rc = ibmveth_register_logical_lan(adapter, rxq_desc, mac_address);
if(lpar_rc != H_SUCCESS) {
ibmveth_error_printk("h_register_logical_lan failed with %ld\n", lpar_rc);
ibmveth_error_printk("buffer TCE:0x%llx filter TCE:0x%llx rxq desc:0x%llx MAC:0x%llx\n",
adapter->buffer_list_dma,
adapter->filter_list_dma,
rxq_desc.desc,
mac_address);
ibmveth_cleanup(adapter);
napi_disable(&adapter->napi);
return -ENONET;
}
for(i = 0; i<IbmVethNumBufferPools; i++) {
if(!adapter->rx_buff_pool[i].active)
continue;
if (ibmveth_alloc_buffer_pool(&adapter->rx_buff_pool[i])) {
ibmveth_error_printk("unable to alloc pool\n");
adapter->rx_buff_pool[i].active = 0;
ibmveth_cleanup(adapter);
napi_disable(&adapter->napi);
return -ENOMEM ;
}
}
ibmveth_debug_printk("registering irq 0x%x\n", netdev->irq);
if((rc = request_irq(netdev->irq, &ibmveth_interrupt, 0, netdev->name, netdev)) != 0) {
ibmveth_error_printk("unable to request irq 0x%x, rc %d\n", netdev->irq, rc);
do {
rc = h_free_logical_lan(adapter->vdev->unit_address);
} while (H_IS_LONG_BUSY(rc) || (rc == H_BUSY));
ibmveth_cleanup(adapter);
napi_disable(&adapter->napi);
return rc;
}
adapter->bounce_buffer =
kmalloc(netdev->mtu + IBMVETH_BUFF_OH, GFP_KERNEL);
if (!adapter->bounce_buffer) {
ibmveth_error_printk("unable to allocate bounce buffer\n");
ibmveth_cleanup(adapter);
napi_disable(&adapter->napi);
return -ENOMEM;
}
adapter->bounce_buffer_dma =
dma_map_single(&adapter->vdev->dev, adapter->bounce_buffer,
netdev->mtu + IBMVETH_BUFF_OH, DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, adapter->bounce_buffer_dma)) {
ibmveth_error_printk("unable to map bounce buffer\n");
ibmveth_cleanup(adapter);
napi_disable(&adapter->napi);
return -ENOMEM;
}
ibmveth_debug_printk("initial replenish cycle\n");
ibmveth_interrupt(netdev->irq, netdev);
netif_start_queue(netdev);
ibmveth_debug_printk("open complete\n");
return 0;
}
static int ibmveth_close(struct net_device *netdev)
{
struct ibmveth_adapter *adapter = netdev_priv(netdev);
long lpar_rc;
ibmveth_debug_printk("close starting\n");
napi_disable(&adapter->napi);
if (!adapter->pool_config)
netif_stop_queue(netdev);
free_irq(netdev->irq, netdev);
do {
lpar_rc = h_free_logical_lan(adapter->vdev->unit_address);
} while (H_IS_LONG_BUSY(lpar_rc) || (lpar_rc == H_BUSY));
if(lpar_rc != H_SUCCESS)
{
ibmveth_error_printk("h_free_logical_lan failed with %lx, continuing with close\n",
lpar_rc);
}
adapter->rx_no_buffer = *(u64*)(((char*)adapter->buffer_list_addr) + 4096 - 8);
ibmveth_cleanup(adapter);
ibmveth_debug_printk("close complete\n");
return 0;
}
static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) {
cmd->supported = (SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_FIBRE);
cmd->advertising = (ADVERTISED_1000baseT_Full | ADVERTISED_Autoneg | ADVERTISED_FIBRE);
cmd->speed = SPEED_1000;
cmd->duplex = DUPLEX_FULL;
cmd->port = PORT_FIBRE;
cmd->phy_address = 0;
cmd->transceiver = XCVR_INTERNAL;
cmd->autoneg = AUTONEG_ENABLE;
cmd->maxtxpkt = 0;
cmd->maxrxpkt = 1;
return 0;
}
static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info) {
strncpy(info->driver, ibmveth_driver_name, sizeof(info->driver) - 1);
strncpy(info->version, ibmveth_driver_version, sizeof(info->version) - 1);
}
static u32 netdev_get_link(struct net_device *dev) {
return 1;
}
static void ibmveth_set_rx_csum_flags(struct net_device *dev, u32 data)
{
struct ibmveth_adapter *adapter = netdev_priv(dev);
if (data)
adapter->rx_csum = 1;
else {
/*
* Since the ibmveth firmware interface does not have the concept of
* separate tx/rx checksum offload enable, if rx checksum is disabled
* we also have to disable tx checksum offload. Once we disable rx
* checksum offload, we are no longer allowed to send tx buffers that
* are not properly checksummed.
*/
adapter->rx_csum = 0;
dev->features &= ~NETIF_F_IP_CSUM;
}
}
static void ibmveth_set_tx_csum_flags(struct net_device *dev, u32 data)
{
struct ibmveth_adapter *adapter = netdev_priv(dev);
if (data) {
dev->features |= NETIF_F_IP_CSUM;
adapter->rx_csum = 1;
} else
dev->features &= ~NETIF_F_IP_CSUM;
}
static int ibmveth_set_csum_offload(struct net_device *dev, u32 data,
void (*done) (struct net_device *, u32))
{
struct ibmveth_adapter *adapter = netdev_priv(dev);
unsigned long set_attr, clr_attr, ret_attr;
long ret;
int rc1 = 0, rc2 = 0;
int restart = 0;
if (netif_running(dev)) {
restart = 1;
adapter->pool_config = 1;
ibmveth_close(dev);
adapter->pool_config = 0;
}
set_attr = 0;
clr_attr = 0;
if (data)
set_attr = IBMVETH_ILLAN_IPV4_TCP_CSUM;
else
clr_attr = IBMVETH_ILLAN_IPV4_TCP_CSUM;
ret = h_illan_attributes(adapter->vdev->unit_address, 0, 0, &ret_attr);
if (ret == H_SUCCESS && !(ret_attr & IBMVETH_ILLAN_ACTIVE_TRUNK) &&
!(ret_attr & IBMVETH_ILLAN_TRUNK_PRI_MASK) &&
(ret_attr & IBMVETH_ILLAN_PADDED_PKT_CSUM)) {
ret = h_illan_attributes(adapter->vdev->unit_address, clr_attr,
set_attr, &ret_attr);
if (ret != H_SUCCESS) {
rc1 = -EIO;
ibmveth_error_printk("unable to change checksum offload settings."
" %d rc=%ld\n", data, ret);
ret = h_illan_attributes(adapter->vdev->unit_address,
set_attr, clr_attr, &ret_attr);
} else
done(dev, data);
} else {
rc1 = -EIO;
ibmveth_error_printk("unable to change checksum offload settings."
" %d rc=%ld ret_attr=%lx\n", data, ret, ret_attr);
}
if (restart)
rc2 = ibmveth_open(dev);
return rc1 ? rc1 : rc2;
}
static int ibmveth_set_rx_csum(struct net_device *dev, u32 data)
{
struct ibmveth_adapter *adapter = netdev_priv(dev);
if ((data && adapter->rx_csum) || (!data && !adapter->rx_csum))
return 0;
return ibmveth_set_csum_offload(dev, data, ibmveth_set_rx_csum_flags);
}
static int ibmveth_set_tx_csum(struct net_device *dev, u32 data)
{
struct ibmveth_adapter *adapter = netdev_priv(dev);
int rc = 0;
if (data && (dev->features & NETIF_F_IP_CSUM))
return 0;
if (!data && !(dev->features & NETIF_F_IP_CSUM))
return 0;
if (data && !adapter->rx_csum)
rc = ibmveth_set_csum_offload(dev, data, ibmveth_set_tx_csum_flags);
else
ibmveth_set_tx_csum_flags(dev, data);
return rc;
}
static u32 ibmveth_get_rx_csum(struct net_device *dev)
{
struct ibmveth_adapter *adapter = netdev_priv(dev);
return adapter->rx_csum;
}
static void ibmveth_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
int i;
if (stringset != ETH_SS_STATS)
return;
for (i = 0; i < ARRAY_SIZE(ibmveth_stats); i++, data += ETH_GSTRING_LEN)
memcpy(data, ibmveth_stats[i].name, ETH_GSTRING_LEN);
}
static int ibmveth_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_STATS:
return ARRAY_SIZE(ibmveth_stats);
default:
return -EOPNOTSUPP;
}
}
static void ibmveth_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
int i;
struct ibmveth_adapter *adapter = netdev_priv(dev);
for (i = 0; i < ARRAY_SIZE(ibmveth_stats); i++)
data[i] = IBMVETH_GET_STAT(adapter, ibmveth_stats[i].offset);
}
static const struct ethtool_ops netdev_ethtool_ops = {
.get_drvinfo = netdev_get_drvinfo,
.get_settings = netdev_get_settings,
.get_link = netdev_get_link,
.set_tx_csum = ibmveth_set_tx_csum,
.get_rx_csum = ibmveth_get_rx_csum,
.set_rx_csum = ibmveth_set_rx_csum,
.get_strings = ibmveth_get_strings,
.get_sset_count = ibmveth_get_sset_count,
.get_ethtool_stats = ibmveth_get_ethtool_stats,
};
static int ibmveth_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
return -EOPNOTSUPP;
}
#define page_offset(v) ((unsigned long)(v) & ((1 << 12) - 1))
static int ibmveth_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct ibmveth_adapter *adapter = netdev_priv(netdev);
union ibmveth_buf_desc desc;
unsigned long lpar_rc;
unsigned long correlator;
unsigned long flags;
unsigned int retry_count;
unsigned int tx_dropped = 0;
unsigned int tx_bytes = 0;
unsigned int tx_packets = 0;
unsigned int tx_send_failed = 0;
unsigned int tx_map_failed = 0;
int used_bounce = 0;
unsigned long data_dma_addr;
desc.fields.flags_len = IBMVETH_BUF_VALID | skb->len;
if (skb->ip_summed == CHECKSUM_PARTIAL &&
ip_hdr(skb)->protocol != IPPROTO_TCP && skb_checksum_help(skb)) {
ibmveth_error_printk("tx: failed to checksum packet\n");
tx_dropped++;
goto out;
}
if (skb->ip_summed == CHECKSUM_PARTIAL) {
unsigned char *buf = skb_transport_header(skb) + skb->csum_offset;
desc.fields.flags_len |= (IBMVETH_BUF_NO_CSUM | IBMVETH_BUF_CSUM_GOOD);
/* Need to zero out the checksum */
buf[0] = 0;
buf[1] = 0;
}
data_dma_addr = dma_map_single(&adapter->vdev->dev, skb->data,
skb->len, DMA_TO_DEVICE);
if (dma_mapping_error(&adapter->vdev->dev, data_dma_addr)) {
if (!firmware_has_feature(FW_FEATURE_CMO))
ibmveth_error_printk("tx: unable to map xmit buffer\n");
skb_copy_from_linear_data(skb, adapter->bounce_buffer,
skb->len);
desc.fields.address = adapter->bounce_buffer_dma;
tx_map_failed++;
used_bounce = 1;
wmb();
} else
desc.fields.address = data_dma_addr;
/* send the frame. Arbitrarily set retrycount to 1024 */
correlator = 0;
retry_count = 1024;
do {
lpar_rc = h_send_logical_lan(adapter->vdev->unit_address,
desc.desc, 0, 0, 0, 0, 0,
correlator, &correlator);
} while ((lpar_rc == H_BUSY) && (retry_count--));
if(lpar_rc != H_SUCCESS && lpar_rc != H_DROPPED) {
ibmveth_error_printk("tx: h_send_logical_lan failed with rc=%ld\n", lpar_rc);
ibmveth_error_printk("tx: valid=%d, len=%d, address=0x%08x\n",
(desc.fields.flags_len & IBMVETH_BUF_VALID) ? 1 : 0,
skb->len, desc.fields.address);
tx_send_failed++;
tx_dropped++;
} else {
tx_packets++;
tx_bytes += skb->len;
netdev->trans_start = jiffies;
}
if (!used_bounce)
dma_unmap_single(&adapter->vdev->dev, data_dma_addr,
skb->len, DMA_TO_DEVICE);
out: spin_lock_irqsave(&adapter->stats_lock, flags);
netdev->stats.tx_dropped += tx_dropped;
netdev->stats.tx_bytes += tx_bytes;
netdev->stats.tx_packets += tx_packets;
adapter->tx_send_failed += tx_send_failed;
adapter->tx_map_failed += tx_map_failed;
spin_unlock_irqrestore(&adapter->stats_lock, flags);
dev_kfree_skb(skb);
return 0;
}
static int ibmveth_poll(struct napi_struct *napi, int budget)
{
struct ibmveth_adapter *adapter = container_of(napi, struct ibmveth_adapter, napi);
struct net_device *netdev = adapter->netdev;
int frames_processed = 0;
unsigned long lpar_rc;
restart_poll:
do {
struct sk_buff *skb;
if (!ibmveth_rxq_pending_buffer(adapter))
break;
rmb();
if (!ibmveth_rxq_buffer_valid(adapter)) {
wmb(); /* suggested by larson1 */
adapter->rx_invalid_buffer++;
ibmveth_debug_printk("recycling invalid buffer\n");
ibmveth_rxq_recycle_buffer(adapter);
} else {
int length = ibmveth_rxq_frame_length(adapter);
int offset = ibmveth_rxq_frame_offset(adapter);
int csum_good = ibmveth_rxq_csum_good(adapter);
skb = ibmveth_rxq_get_buffer(adapter);
if (csum_good)
skb->ip_summed = CHECKSUM_UNNECESSARY;
ibmveth_rxq_harvest_buffer(adapter);
skb_reserve(skb, offset);
skb_put(skb, length);
skb->protocol = eth_type_trans(skb, netdev);
netif_receive_skb(skb); /* send it up */
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += length;
frames_processed++;
}
} while (frames_processed < budget);
ibmveth_replenish_task(adapter);
if (frames_processed < budget) {
/* We think we are done - reenable interrupts,
* then check once more to make sure we are done.
*/
lpar_rc = h_vio_signal(adapter->vdev->unit_address,
VIO_IRQ_ENABLE);
ibmveth_assert(lpar_rc == H_SUCCESS);
napi_complete(napi);
if (ibmveth_rxq_pending_buffer(adapter) &&
napi_reschedule(napi)) {
lpar_rc = h_vio_signal(adapter->vdev->unit_address,
VIO_IRQ_DISABLE);
goto restart_poll;
}
}
return frames_processed;
}
static irqreturn_t ibmveth_interrupt(int irq, void *dev_instance)
{
struct net_device *netdev = dev_instance;
struct ibmveth_adapter *adapter = netdev_priv(netdev);
unsigned long lpar_rc;
if (napi_schedule_prep(&adapter->napi)) {
lpar_rc = h_vio_signal(adapter->vdev->unit_address,
VIO_IRQ_DISABLE);
ibmveth_assert(lpar_rc == H_SUCCESS);
__napi_schedule(&adapter->napi);
}
return IRQ_HANDLED;
}
static void ibmveth_set_multicast_list(struct net_device *netdev)
{
struct ibmveth_adapter *adapter = netdev_priv(netdev);
unsigned long lpar_rc;
if((netdev->flags & IFF_PROMISC) || (netdev->mc_count > adapter->mcastFilterSize)) {
lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address,
IbmVethMcastEnableRecv |
IbmVethMcastDisableFiltering,
0);
if(lpar_rc != H_SUCCESS) {
ibmveth_error_printk("h_multicast_ctrl rc=%ld when entering promisc mode\n", lpar_rc);
}
} else {
struct dev_mc_list *mclist = netdev->mc_list;
int i;
/* clear the filter table & disable filtering */
lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address,
IbmVethMcastEnableRecv |
IbmVethMcastDisableFiltering |
IbmVethMcastClearFilterTable,
0);
if(lpar_rc != H_SUCCESS) {
ibmveth_error_printk("h_multicast_ctrl rc=%ld when attempting to clear filter table\n", lpar_rc);
}
/* add the addresses to the filter table */
for(i = 0; i < netdev->mc_count; ++i, mclist = mclist->next) {
// add the multicast address to the filter table
unsigned long mcast_addr = 0;
memcpy(((char *)&mcast_addr)+2, mclist->dmi_addr, 6);
lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address,
IbmVethMcastAddFilter,
mcast_addr);
if(lpar_rc != H_SUCCESS) {
ibmveth_error_printk("h_multicast_ctrl rc=%ld when adding an entry to the filter table\n", lpar_rc);
}
}
/* re-enable filtering */
lpar_rc = h_multicast_ctrl(adapter->vdev->unit_address,
IbmVethMcastEnableFiltering,
0);
if(lpar_rc != H_SUCCESS) {
ibmveth_error_printk("h_multicast_ctrl rc=%ld when enabling filtering\n", lpar_rc);
}
}
}
static int ibmveth_change_mtu(struct net_device *dev, int new_mtu)
{
struct ibmveth_adapter *adapter = netdev_priv(dev);
struct vio_dev *viodev = adapter->vdev;
int new_mtu_oh = new_mtu + IBMVETH_BUFF_OH;
int i;
if (new_mtu < IBMVETH_MAX_MTU)
return -EINVAL;
for (i = 0; i < IbmVethNumBufferPools; i++)
if (new_mtu_oh < adapter->rx_buff_pool[i].buff_size)
break;
if (i == IbmVethNumBufferPools)
return -EINVAL;
/* Deactivate all the buffer pools so that the next loop can activate
only the buffer pools necessary to hold the new MTU */
for (i = 0; i < IbmVethNumBufferPools; i++)
if (adapter->rx_buff_pool[i].active) {
ibmveth_free_buffer_pool(adapter,
&adapter->rx_buff_pool[i]);
adapter->rx_buff_pool[i].active = 0;
}
/* Look for an active buffer pool that can hold the new MTU */
for(i = 0; i<IbmVethNumBufferPools; i++) {
adapter->rx_buff_pool[i].active = 1;
if (new_mtu_oh < adapter->rx_buff_pool[i].buff_size) {
if (netif_running(adapter->netdev)) {
adapter->pool_config = 1;
ibmveth_close(adapter->netdev);
adapter->pool_config = 0;
dev->mtu = new_mtu;
vio_cmo_set_dev_desired(viodev,
ibmveth_get_desired_dma
(viodev));
return ibmveth_open(adapter->netdev);
}
dev->mtu = new_mtu;
vio_cmo_set_dev_desired(viodev,
ibmveth_get_desired_dma
(viodev));
return 0;
}
}
return -EINVAL;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
static void ibmveth_poll_controller(struct net_device *dev)
{
ibmveth_replenish_task(netdev_priv(dev));
ibmveth_interrupt(dev->irq, dev);
}
#endif
/**
* ibmveth_get_desired_dma - Calculate IO memory desired by the driver
*
* @vdev: struct vio_dev for the device whose desired IO mem is to be returned
*
* Return value:
* Number of bytes of IO data the driver will need to perform well.
*/
static unsigned long ibmveth_get_desired_dma(struct vio_dev *vdev)
{
struct net_device *netdev = dev_get_drvdata(&vdev->dev);
struct ibmveth_adapter *adapter;
unsigned long ret;
int i;
int rxqentries = 1;
/* netdev inits at probe time along with the structures we need below*/
if (netdev == NULL)
return IOMMU_PAGE_ALIGN(IBMVETH_IO_ENTITLEMENT_DEFAULT);
adapter = netdev_priv(netdev);
ret = IBMVETH_BUFF_LIST_SIZE + IBMVETH_FILT_LIST_SIZE;
ret += IOMMU_PAGE_ALIGN(netdev->mtu);
for (i = 0; i < IbmVethNumBufferPools; i++) {
/* add the size of the active receive buffers */
if (adapter->rx_buff_pool[i].active)
ret +=
adapter->rx_buff_pool[i].size *
IOMMU_PAGE_ALIGN(adapter->rx_buff_pool[i].
buff_size);
rxqentries += adapter->rx_buff_pool[i].size;
}
/* add the size of the receive queue entries */
ret += IOMMU_PAGE_ALIGN(rxqentries * sizeof(struct ibmveth_rx_q_entry));
return ret;
}
static int __devinit ibmveth_probe(struct vio_dev *dev, const struct vio_device_id *id)
{
int rc, i;
long ret;
struct net_device *netdev;
struct ibmveth_adapter *adapter;
unsigned long set_attr, ret_attr;
unsigned char *mac_addr_p;
unsigned int *mcastFilterSize_p;
ibmveth_debug_printk_no_adapter("entering ibmveth_probe for UA 0x%x\n",
dev->unit_address);
mac_addr_p = (unsigned char *) vio_get_attribute(dev,
VETH_MAC_ADDR, NULL);
if(!mac_addr_p) {
printk(KERN_ERR "(%s:%3.3d) ERROR: Can't find VETH_MAC_ADDR "
"attribute\n", __FILE__, __LINE__);
return 0;
}
mcastFilterSize_p = (unsigned int *) vio_get_attribute(dev,
VETH_MCAST_FILTER_SIZE, NULL);
if(!mcastFilterSize_p) {
printk(KERN_ERR "(%s:%3.3d) ERROR: Can't find "
"VETH_MCAST_FILTER_SIZE attribute\n",
__FILE__, __LINE__);
return 0;
}
netdev = alloc_etherdev(sizeof(struct ibmveth_adapter));
if(!netdev)
return -ENOMEM;
adapter = netdev_priv(netdev);
dev->dev.driver_data = netdev;
adapter->vdev = dev;
adapter->netdev = netdev;
adapter->mcastFilterSize= *mcastFilterSize_p;
adapter->pool_config = 0;
netif_napi_add(netdev, &adapter->napi, ibmveth_poll, 16);
/* Some older boxes running PHYP non-natively have an OF that
returns a 8-byte local-mac-address field (and the first
2 bytes have to be ignored) while newer boxes' OF return
a 6-byte field. Note that IEEE 1275 specifies that
local-mac-address must be a 6-byte field.
The RPA doc specifies that the first byte must be 10b, so
we'll just look for it to solve this 8 vs. 6 byte field issue */
if ((*mac_addr_p & 0x3) != 0x02)
mac_addr_p += 2;
adapter->mac_addr = 0;
memcpy(&adapter->mac_addr, mac_addr_p, 6);
netdev->irq = dev->irq;
netdev->open = ibmveth_open;
netdev->stop = ibmveth_close;
netdev->hard_start_xmit = ibmveth_start_xmit;
netdev->set_multicast_list = ibmveth_set_multicast_list;
netdev->do_ioctl = ibmveth_ioctl;
netdev->ethtool_ops = &netdev_ethtool_ops;
netdev->change_mtu = ibmveth_change_mtu;
SET_NETDEV_DEV(netdev, &dev->dev);
#ifdef CONFIG_NET_POLL_CONTROLLER
netdev->poll_controller = ibmveth_poll_controller;
#endif
netdev->features |= NETIF_F_LLTX;
spin_lock_init(&adapter->stats_lock);
memcpy(&netdev->dev_addr, &adapter->mac_addr, netdev->addr_len);
for(i = 0; i<IbmVethNumBufferPools; i++) {
struct kobject *kobj = &adapter->rx_buff_pool[i].kobj;
int error;
ibmveth_init_buffer_pool(&adapter->rx_buff_pool[i], i,
pool_count[i], pool_size[i],
pool_active[i]);
error = kobject_init_and_add(kobj, &ktype_veth_pool,
&dev->dev.kobj, "pool%d", i);
if (!error)
kobject_uevent(kobj, KOBJ_ADD);
}
ibmveth_debug_printk("adapter @ 0x%p\n", adapter);
adapter->buffer_list_dma = DMA_ERROR_CODE;
adapter->filter_list_dma = DMA_ERROR_CODE;
adapter->rx_queue.queue_dma = DMA_ERROR_CODE;
ibmveth_debug_printk("registering netdev...\n");
ret = h_illan_attributes(dev->unit_address, 0, 0, &ret_attr);
if (ret == H_SUCCESS && !(ret_attr & IBMVETH_ILLAN_ACTIVE_TRUNK) &&
!(ret_attr & IBMVETH_ILLAN_TRUNK_PRI_MASK) &&
(ret_attr & IBMVETH_ILLAN_PADDED_PKT_CSUM)) {
set_attr = IBMVETH_ILLAN_IPV4_TCP_CSUM;
ret = h_illan_attributes(dev->unit_address, 0, set_attr, &ret_attr);
if (ret == H_SUCCESS) {
adapter->rx_csum = 1;
netdev->features |= NETIF_F_IP_CSUM;
} else
ret = h_illan_attributes(dev->unit_address, set_attr, 0, &ret_attr);
}
rc = register_netdev(netdev);
if(rc) {
ibmveth_debug_printk("failed to register netdev rc=%d\n", rc);
free_netdev(netdev);
return rc;
}
ibmveth_debug_printk("registered\n");
ibmveth_proc_register_adapter(adapter);
return 0;
}
static int __devexit ibmveth_remove(struct vio_dev *dev)
{
struct net_device *netdev = dev->dev.driver_data;
struct ibmveth_adapter *adapter = netdev_priv(netdev);
int i;
for(i = 0; i<IbmVethNumBufferPools; i++)
kobject_put(&adapter->rx_buff_pool[i].kobj);
unregister_netdev(netdev);
ibmveth_proc_unregister_adapter(adapter);
free_netdev(netdev);
dev_set_drvdata(&dev->dev, NULL);
return 0;
}
#ifdef CONFIG_PROC_FS
static void ibmveth_proc_register_driver(void)
{
ibmveth_proc_dir = proc_mkdir(IBMVETH_PROC_DIR, init_net.proc_net);
if (ibmveth_proc_dir) {
}
}
static void ibmveth_proc_unregister_driver(void)
{
remove_proc_entry(IBMVETH_PROC_DIR, init_net.proc_net);
}
static int ibmveth_show(struct seq_file *seq, void *v)
{
struct ibmveth_adapter *adapter = seq->private;
char *current_mac = ((char*) &adapter->netdev->dev_addr);
char *firmware_mac = ((char*) &adapter->mac_addr) ;
seq_printf(seq, "%s %s\n\n", ibmveth_driver_string, ibmveth_driver_version);
seq_printf(seq, "Unit Address: 0x%x\n", adapter->vdev->unit_address);
seq_printf(seq, "Current MAC: %pM\n", current_mac);
seq_printf(seq, "Firmware MAC: %pM\n", firmware_mac);
seq_printf(seq, "\nAdapter Statistics:\n");
seq_printf(seq, " TX: vio_map_single failres: %lld\n", adapter->tx_map_failed);
seq_printf(seq, " send failures: %lld\n", adapter->tx_send_failed);
seq_printf(seq, " RX: replenish task cycles: %lld\n", adapter->replenish_task_cycles);
seq_printf(seq, " alloc_skb_failures: %lld\n", adapter->replenish_no_mem);
seq_printf(seq, " add buffer failures: %lld\n", adapter->replenish_add_buff_failure);
seq_printf(seq, " invalid buffers: %lld\n", adapter->rx_invalid_buffer);
seq_printf(seq, " no buffers: %lld\n", adapter->rx_no_buffer);
return 0;
}
static int ibmveth_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, ibmveth_show, PDE(inode)->data);
}
static const struct file_operations ibmveth_proc_fops = {
.owner = THIS_MODULE,
.open = ibmveth_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static void ibmveth_proc_register_adapter(struct ibmveth_adapter *adapter)
{
struct proc_dir_entry *entry;
if (ibmveth_proc_dir) {
char u_addr[10];
sprintf(u_addr, "%x", adapter->vdev->unit_address);
entry = proc_create_data(u_addr, S_IFREG, ibmveth_proc_dir,
&ibmveth_proc_fops, adapter);
if (!entry)
ibmveth_error_printk("Cannot create adapter proc entry");
}
return;
}
static void ibmveth_proc_unregister_adapter(struct ibmveth_adapter *adapter)
{
if (ibmveth_proc_dir) {
char u_addr[10];
sprintf(u_addr, "%x", adapter->vdev->unit_address);
remove_proc_entry(u_addr, ibmveth_proc_dir);
}
}
#else /* CONFIG_PROC_FS */
static void ibmveth_proc_register_adapter(struct ibmveth_adapter *adapter)
{
}
static void ibmveth_proc_unregister_adapter(struct ibmveth_adapter *adapter)
{
}
static void ibmveth_proc_register_driver(void)
{
}
static void ibmveth_proc_unregister_driver(void)
{
}
#endif /* CONFIG_PROC_FS */
static struct attribute veth_active_attr;
static struct attribute veth_num_attr;
static struct attribute veth_size_attr;
static ssize_t veth_pool_show(struct kobject * kobj,
struct attribute * attr, char * buf)
{
struct ibmveth_buff_pool *pool = container_of(kobj,
struct ibmveth_buff_pool,
kobj);
if (attr == &veth_active_attr)
return sprintf(buf, "%d\n", pool->active);
else if (attr == &veth_num_attr)
return sprintf(buf, "%d\n", pool->size);
else if (attr == &veth_size_attr)
return sprintf(buf, "%d\n", pool->buff_size);
return 0;
}
static ssize_t veth_pool_store(struct kobject * kobj, struct attribute * attr,
const char * buf, size_t count)
{
struct ibmveth_buff_pool *pool = container_of(kobj,
struct ibmveth_buff_pool,
kobj);
struct net_device *netdev =
container_of(kobj->parent, struct device, kobj)->driver_data;
struct ibmveth_adapter *adapter = netdev_priv(netdev);
long value = simple_strtol(buf, NULL, 10);
long rc;
if (attr == &veth_active_attr) {
if (value && !pool->active) {
if (netif_running(netdev)) {
if(ibmveth_alloc_buffer_pool(pool)) {
ibmveth_error_printk("unable to alloc pool\n");
return -ENOMEM;
}
pool->active = 1;
adapter->pool_config = 1;
ibmveth_close(netdev);
adapter->pool_config = 0;
if ((rc = ibmveth_open(netdev)))
return rc;
} else
pool->active = 1;
} else if (!value && pool->active) {
int mtu = netdev->mtu + IBMVETH_BUFF_OH;
int i;
/* Make sure there is a buffer pool with buffers that
can hold a packet of the size of the MTU */
for (i = 0; i < IbmVethNumBufferPools; i++) {
if (pool == &adapter->rx_buff_pool[i])
continue;
if (!adapter->rx_buff_pool[i].active)
continue;
if (mtu <= adapter->rx_buff_pool[i].buff_size)
break;
}
if (i == IbmVethNumBufferPools) {
ibmveth_error_printk("no active pool >= MTU\n");
return -EPERM;
}
if (netif_running(netdev)) {
adapter->pool_config = 1;
ibmveth_close(netdev);
pool->active = 0;
adapter->pool_config = 0;
if ((rc = ibmveth_open(netdev)))
return rc;
}
pool->active = 0;
}
} else if (attr == &veth_num_attr) {
if (value <= 0 || value > IBMVETH_MAX_POOL_COUNT)
return -EINVAL;
else {
if (netif_running(netdev)) {
adapter->pool_config = 1;
ibmveth_close(netdev);
adapter->pool_config = 0;
pool->size = value;
if ((rc = ibmveth_open(netdev)))
return rc;
} else
pool->size = value;
}
} else if (attr == &veth_size_attr) {
if (value <= IBMVETH_BUFF_OH || value > IBMVETH_MAX_BUF_SIZE)
return -EINVAL;
else {
if (netif_running(netdev)) {
adapter->pool_config = 1;
ibmveth_close(netdev);
adapter->pool_config = 0;
pool->buff_size = value;
if ((rc = ibmveth_open(netdev)))
return rc;
} else
pool->buff_size = value;
}
}
/* kick the interrupt handler to allocate/deallocate pools */
ibmveth_interrupt(netdev->irq, netdev);
return count;
}
#define ATTR(_name, _mode) \
struct attribute veth_##_name##_attr = { \
.name = __stringify(_name), .mode = _mode, \
};
static ATTR(active, 0644);
static ATTR(num, 0644);
static ATTR(size, 0644);
static struct attribute * veth_pool_attrs[] = {
&veth_active_attr,
&veth_num_attr,
&veth_size_attr,
NULL,
};
static struct sysfs_ops veth_pool_ops = {
.show = veth_pool_show,
.store = veth_pool_store,
};
static struct kobj_type ktype_veth_pool = {
.release = NULL,
.sysfs_ops = &veth_pool_ops,
.default_attrs = veth_pool_attrs,
};
static struct vio_device_id ibmveth_device_table[] __devinitdata= {
{ "network", "IBM,l-lan"},
{ "", "" }
};
MODULE_DEVICE_TABLE(vio, ibmveth_device_table);
static struct vio_driver ibmveth_driver = {
.id_table = ibmveth_device_table,
.probe = ibmveth_probe,
.remove = ibmveth_remove,
.get_desired_dma = ibmveth_get_desired_dma,
.driver = {
.name = ibmveth_driver_name,
.owner = THIS_MODULE,
}
};
static int __init ibmveth_module_init(void)
{
ibmveth_printk("%s: %s %s\n", ibmveth_driver_name, ibmveth_driver_string, ibmveth_driver_version);
ibmveth_proc_register_driver();
return vio_register_driver(&ibmveth_driver);
}
static void __exit ibmveth_module_exit(void)
{
vio_unregister_driver(&ibmveth_driver);
ibmveth_proc_unregister_driver();
}
module_init(ibmveth_module_init);
module_exit(ibmveth_module_exit);