1
linux/drivers/iio/light/apds9306.c
Al Viro 5f60d5f6bb move asm/unaligned.h to linux/unaligned.h
asm/unaligned.h is always an include of asm-generic/unaligned.h;
might as well move that thing to linux/unaligned.h and include
that - there's nothing arch-specific in that header.

auto-generated by the following:

for i in `git grep -l -w asm/unaligned.h`; do
	sed -i -e "s/asm\/unaligned.h/linux\/unaligned.h/" $i
done
for i in `git grep -l -w asm-generic/unaligned.h`; do
	sed -i -e "s/asm-generic\/unaligned.h/linux\/unaligned.h/" $i
done
git mv include/asm-generic/unaligned.h include/linux/unaligned.h
git mv tools/include/asm-generic/unaligned.h tools/include/linux/unaligned.h
sed -i -e "/unaligned.h/d" include/asm-generic/Kbuild
sed -i -e "s/__ASM_GENERIC/__LINUX/" include/linux/unaligned.h tools/include/linux/unaligned.h
2024-10-02 17:23:23 -04:00

1362 lines
36 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* APDS-9306/APDS-9306-065 Ambient Light Sensor
* I2C Address: 0x52
* Datasheet: https://docs.broadcom.com/doc/AV02-4755EN
*
* Copyright (C) 2024 Subhajit Ghosh <subhajit.ghosh@tweaklogic.com>
*/
#include <linux/bits.h>
#include <linux/cleanup.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/minmax.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <linux/types.h>
#include <linux/units.h>
#include <linux/iio/iio.h>
#include <linux/iio/iio-gts-helper.h>
#include <linux/iio/events.h>
#include <linux/iio/sysfs.h>
#include <linux/unaligned.h>
#define APDS9306_MAIN_CTRL_REG 0x00
#define APDS9306_ALS_MEAS_RATE_REG 0x04
#define APDS9306_ALS_GAIN_REG 0x05
#define APDS9306_PART_ID_REG 0x06
#define APDS9306_MAIN_STATUS_REG 0x07
#define APDS9306_CLEAR_DATA_0_REG 0x0A
#define APDS9306_CLEAR_DATA_1_REG 0x0B
#define APDS9306_CLEAR_DATA_2_REG 0x0C
#define APDS9306_ALS_DATA_0_REG 0x0D
#define APDS9306_ALS_DATA_1_REG 0x0E
#define APDS9306_ALS_DATA_2_REG 0x0F
#define APDS9306_INT_CFG_REG 0x19
#define APDS9306_INT_PERSISTENCE_REG 0x1A
#define APDS9306_ALS_THRES_UP_0_REG 0x21
#define APDS9306_ALS_THRES_UP_1_REG 0x22
#define APDS9306_ALS_THRES_UP_2_REG 0x23
#define APDS9306_ALS_THRES_LOW_0_REG 0x24
#define APDS9306_ALS_THRES_LOW_1_REG 0x25
#define APDS9306_ALS_THRES_LOW_2_REG 0x26
#define APDS9306_ALS_THRES_VAR_REG 0x27
#define APDS9306_ALS_INT_STAT_MASK BIT(4)
#define APDS9306_ALS_DATA_STAT_MASK BIT(3)
#define APDS9306_ALS_THRES_VAL_MAX (BIT(20) - 1)
#define APDS9306_ALS_THRES_VAR_NUM_VALS 8
#define APDS9306_ALS_PERSIST_NUM_VALS 16
#define APDS9306_ALS_READ_DATA_DELAY_US (20 * USEC_PER_MSEC)
#define APDS9306_NUM_REPEAT_RATES 7
#define APDS9306_INT_SRC_CLEAR 0
#define APDS9306_INT_SRC_ALS 1
#define APDS9306_SAMP_FREQ_10HZ 0
/**
* struct part_id_gts_multiplier - Part no. and corresponding gts multiplier
*
* GTS (Gain Time Scale) are helper functions for Light sensors which along
* with hardware gains also has gains associated with Integration times.
*
* There are two variants of the device with slightly different characteristics,
* they have same ADC count for different Lux levels as mentioned in the
* datasheet. This multiplier array is used to store the derived Lux per count
* value for the two variants to be used by the GTS helper functions.
*
* @part_id: Part ID of the device
* @max_scale_int: Multiplier for iio_init_iio_gts()
* @max_scale_nano: Multiplier for iio_init_iio_gts()
*/
struct part_id_gts_multiplier {
int part_id;
int max_scale_int;
int max_scale_nano;
};
/*
* As per the datasheet, at HW Gain = 3x, Integration time 100mS (32x),
* typical 2000 ADC counts are observed for 49.8 uW per sq cm (340.134 lux)
* for apds9306 and 43 uW per sq cm (293.69 lux) for apds9306-065.
* Assuming lux per count is linear across all integration time ranges.
*
* Lux = (raw + offset) * scale; offset can be any value by userspace.
* HG = Hardware Gain; ITG = Gain by changing integration time.
* Scale table by IIO GTS Helpers = (1 / HG) * (1 / ITG) * Multiplier.
*
* The Lux values provided in the datasheet are at ITG=32x and HG=3x,
* at typical 2000 count for both variants of the device.
*
* Lux per ADC count at 3x and 32x for apds9306 = 340.134 / 2000
* Lux per ADC count at 3x and 32x for apds9306-065 = 293.69 / 2000
*
* The Multiplier for the scale table provided to userspace:
* IIO GTS scale Multiplier for apds9306 = (340.134 / 2000) * 32 * 3 = 16.326432
* and for apds9306-065 = (293.69 / 2000) * 32 * 3 = 14.09712
*/
static const struct part_id_gts_multiplier apds9306_gts_mul[] = {
{
.part_id = 0xB1,
.max_scale_int = 16,
.max_scale_nano = 3264320,
}, {
.part_id = 0xB3,
.max_scale_int = 14,
.max_scale_nano = 9712000,
},
};
static const int apds9306_repeat_rate_freq[APDS9306_NUM_REPEAT_RATES][2] = {
{ 40, 0 },
{ 20, 0 },
{ 10, 0 },
{ 5, 0 },
{ 2, 0 },
{ 1, 0 },
{ 0, 500000 },
};
static const int apds9306_repeat_rate_period[APDS9306_NUM_REPEAT_RATES] = {
25000, 50000, 100000, 200000, 500000, 1000000, 2000000,
};
/**
* struct apds9306_regfields - apds9306 regmap fields definitions
*
* @sw_reset: Software reset regfield
* @en: Enable regfield
* @intg_time: Resolution regfield
* @repeat_rate: Measurement Rate regfield
* @gain: Hardware gain regfield
* @int_src: Interrupt channel regfield
* @int_thresh_var_en: Interrupt variance threshold regfield
* @int_en: Interrupt enable regfield
* @int_persist_val: Interrupt persistence regfield
* @int_thresh_var_val: Interrupt threshold variance value regfield
*/
struct apds9306_regfields {
struct regmap_field *sw_reset;
struct regmap_field *en;
struct regmap_field *intg_time;
struct regmap_field *repeat_rate;
struct regmap_field *gain;
struct regmap_field *int_src;
struct regmap_field *int_thresh_var_en;
struct regmap_field *int_en;
struct regmap_field *int_persist_val;
struct regmap_field *int_thresh_var_val;
};
/**
* struct apds9306_data - apds9306 private data and registers definitions
*
* @dev: Pointer to the device structure
* @gts: IIO Gain Time Scale structure
* @mutex: Lock for protecting adc reads, device settings changes where
* some calculations are required before or after setting or
* getting the raw settings values from regmap writes or reads
* respectively.
* @regmap: Regmap structure pointer
* @rf: Regmap register fields structure
* @nlux_per_count: Nano lux per ADC count for a particular model
* @read_data_available: Flag set by IRQ handler for ADC data available
*/
struct apds9306_data {
struct device *dev;
struct iio_gts gts;
struct mutex mutex;
struct regmap *regmap;
struct apds9306_regfields rf;
int nlux_per_count;
int read_data_available;
};
/*
* Available scales with gain 1x - 18x, timings 3.125, 25, 50, 100, 200, 400 ms
* Time impacts to gain: 1x, 8x, 16x, 32x, 64x, 128x
*/
#define APDS9306_GSEL_1X 0x00
#define APDS9306_GSEL_3X 0x01
#define APDS9306_GSEL_6X 0x02
#define APDS9306_GSEL_9X 0x03
#define APDS9306_GSEL_18X 0x04
static const struct iio_gain_sel_pair apds9306_gains[] = {
GAIN_SCALE_GAIN(1, APDS9306_GSEL_1X),
GAIN_SCALE_GAIN(3, APDS9306_GSEL_3X),
GAIN_SCALE_GAIN(6, APDS9306_GSEL_6X),
GAIN_SCALE_GAIN(9, APDS9306_GSEL_9X),
GAIN_SCALE_GAIN(18, APDS9306_GSEL_18X),
};
#define APDS9306_MEAS_MODE_400MS 0x00
#define APDS9306_MEAS_MODE_200MS 0x01
#define APDS9306_MEAS_MODE_100MS 0x02
#define APDS9306_MEAS_MODE_50MS 0x03
#define APDS9306_MEAS_MODE_25MS 0x04
#define APDS9306_MEAS_MODE_3125US 0x05
static const struct iio_itime_sel_mul apds9306_itimes[] = {
GAIN_SCALE_ITIME_US(400000, APDS9306_MEAS_MODE_400MS, BIT(7)),
GAIN_SCALE_ITIME_US(200000, APDS9306_MEAS_MODE_200MS, BIT(6)),
GAIN_SCALE_ITIME_US(100000, APDS9306_MEAS_MODE_100MS, BIT(5)),
GAIN_SCALE_ITIME_US(50000, APDS9306_MEAS_MODE_50MS, BIT(4)),
GAIN_SCALE_ITIME_US(25000, APDS9306_MEAS_MODE_25MS, BIT(3)),
GAIN_SCALE_ITIME_US(3125, APDS9306_MEAS_MODE_3125US, BIT(0)),
};
static const struct iio_event_spec apds9306_event_spec[] = {
{
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_RISING,
.mask_shared_by_all = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_FALLING,
.mask_shared_by_all = BIT(IIO_EV_INFO_VALUE),
}, {
.type = IIO_EV_TYPE_THRESH,
.dir = IIO_EV_DIR_EITHER,
.mask_shared_by_all = BIT(IIO_EV_INFO_PERIOD),
.mask_separate = BIT(IIO_EV_INFO_ENABLE),
}, {
.type = IIO_EV_TYPE_THRESH_ADAPTIVE,
.mask_shared_by_all = BIT(IIO_EV_INFO_VALUE) |
BIT(IIO_EV_INFO_ENABLE),
},
};
static const struct iio_chan_spec apds9306_channels_with_events[] = {
{
.type = IIO_LIGHT,
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE),
.event_spec = apds9306_event_spec,
.num_event_specs = ARRAY_SIZE(apds9306_event_spec),
}, {
.type = IIO_INTENSITY,
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.channel2 = IIO_MOD_LIGHT_CLEAR,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.modified = 1,
.event_spec = apds9306_event_spec,
.num_event_specs = ARRAY_SIZE(apds9306_event_spec),
},
};
static const struct iio_chan_spec apds9306_channels_without_events[] = {
{
.type = IIO_LIGHT,
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE),
}, {
.type = IIO_INTENSITY,
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME) |
BIT(IIO_CHAN_INFO_SAMP_FREQ),
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
.modified = 1,
.channel2 = IIO_MOD_LIGHT_CLEAR,
},
};
/* INT_PERSISTENCE available */
static IIO_CONST_ATTR(thresh_either_period_available, "[0 1 15]");
/* ALS_THRESH_VAR available */
static IIO_CONST_ATTR(thresh_adaptive_either_values_available, "[0 1 7]");
static struct attribute *apds9306_event_attributes[] = {
&iio_const_attr_thresh_either_period_available.dev_attr.attr,
&iio_const_attr_thresh_adaptive_either_values_available.dev_attr.attr,
NULL
};
static const struct attribute_group apds9306_event_attr_group = {
.attrs = apds9306_event_attributes,
};
static const struct regmap_range apds9306_readable_ranges[] = {
regmap_reg_range(APDS9306_MAIN_CTRL_REG, APDS9306_ALS_THRES_VAR_REG)
};
static const struct regmap_range apds9306_writable_ranges[] = {
regmap_reg_range(APDS9306_MAIN_CTRL_REG, APDS9306_ALS_GAIN_REG),
regmap_reg_range(APDS9306_INT_CFG_REG, APDS9306_ALS_THRES_VAR_REG)
};
static const struct regmap_range apds9306_volatile_ranges[] = {
regmap_reg_range(APDS9306_MAIN_STATUS_REG, APDS9306_MAIN_STATUS_REG),
regmap_reg_range(APDS9306_CLEAR_DATA_0_REG, APDS9306_ALS_DATA_2_REG)
};
static const struct regmap_range apds9306_precious_ranges[] = {
regmap_reg_range(APDS9306_MAIN_STATUS_REG, APDS9306_MAIN_STATUS_REG)
};
static const struct regmap_access_table apds9306_readable_table = {
.yes_ranges = apds9306_readable_ranges,
.n_yes_ranges = ARRAY_SIZE(apds9306_readable_ranges)
};
static const struct regmap_access_table apds9306_writable_table = {
.yes_ranges = apds9306_writable_ranges,
.n_yes_ranges = ARRAY_SIZE(apds9306_writable_ranges)
};
static const struct regmap_access_table apds9306_volatile_table = {
.yes_ranges = apds9306_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(apds9306_volatile_ranges)
};
static const struct regmap_access_table apds9306_precious_table = {
.yes_ranges = apds9306_precious_ranges,
.n_yes_ranges = ARRAY_SIZE(apds9306_precious_ranges)
};
static const struct regmap_config apds9306_regmap = {
.name = "apds9306_regmap",
.reg_bits = 8,
.val_bits = 8,
.rd_table = &apds9306_readable_table,
.wr_table = &apds9306_writable_table,
.volatile_table = &apds9306_volatile_table,
.precious_table = &apds9306_precious_table,
.max_register = APDS9306_ALS_THRES_VAR_REG,
.cache_type = REGCACHE_RBTREE,
};
static const struct reg_field apds9306_rf_sw_reset =
REG_FIELD(APDS9306_MAIN_CTRL_REG, 4, 4);
static const struct reg_field apds9306_rf_en =
REG_FIELD(APDS9306_MAIN_CTRL_REG, 1, 1);
static const struct reg_field apds9306_rf_intg_time =
REG_FIELD(APDS9306_ALS_MEAS_RATE_REG, 4, 6);
static const struct reg_field apds9306_rf_repeat_rate =
REG_FIELD(APDS9306_ALS_MEAS_RATE_REG, 0, 2);
static const struct reg_field apds9306_rf_gain =
REG_FIELD(APDS9306_ALS_GAIN_REG, 0, 2);
static const struct reg_field apds9306_rf_int_src =
REG_FIELD(APDS9306_INT_CFG_REG, 4, 5);
static const struct reg_field apds9306_rf_int_thresh_var_en =
REG_FIELD(APDS9306_INT_CFG_REG, 3, 3);
static const struct reg_field apds9306_rf_int_en =
REG_FIELD(APDS9306_INT_CFG_REG, 2, 2);
static const struct reg_field apds9306_rf_int_persist_val =
REG_FIELD(APDS9306_INT_PERSISTENCE_REG, 4, 7);
static const struct reg_field apds9306_rf_int_thresh_var_val =
REG_FIELD(APDS9306_ALS_THRES_VAR_REG, 0, 2);
static int apds9306_regfield_init(struct apds9306_data *data)
{
struct device *dev = data->dev;
struct regmap *regmap = data->regmap;
struct regmap_field *tmp;
struct apds9306_regfields *rf = &data->rf;
tmp = devm_regmap_field_alloc(dev, regmap, apds9306_rf_sw_reset);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
rf->sw_reset = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9306_rf_en);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
rf->en = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9306_rf_intg_time);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
rf->intg_time = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9306_rf_repeat_rate);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
rf->repeat_rate = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9306_rf_gain);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
rf->gain = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9306_rf_int_src);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
rf->int_src = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9306_rf_int_thresh_var_en);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
rf->int_thresh_var_en = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9306_rf_int_en);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
rf->int_en = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9306_rf_int_persist_val);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
rf->int_persist_val = tmp;
tmp = devm_regmap_field_alloc(dev, regmap, apds9306_rf_int_thresh_var_val);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
rf->int_thresh_var_val = tmp;
return 0;
}
static int apds9306_power_state(struct apds9306_data *data, bool state)
{
struct apds9306_regfields *rf = &data->rf;
int ret;
/* Reset not included as it causes ugly I2C bus error */
if (state) {
ret = regmap_field_write(rf->en, 1);
if (ret)
return ret;
/* 5ms wake up time */
fsleep(5000);
return 0;
}
return regmap_field_write(rf->en, 0);
}
static int apds9306_read_data(struct apds9306_data *data, int *val, int reg)
{
struct device *dev = data->dev;
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct apds9306_regfields *rf = &data->rf;
u64 ev_code;
int ret, delay, intg_time, intg_time_idx, repeat_rate_idx, int_src;
int status = 0;
u8 buff[3];
ret = pm_runtime_resume_and_get(data->dev);
if (ret)
return ret;
ret = regmap_field_read(rf->intg_time, &intg_time_idx);
if (ret)
return ret;
ret = regmap_field_read(rf->repeat_rate, &repeat_rate_idx);
if (ret)
return ret;
ret = regmap_field_read(rf->int_src, &int_src);
if (ret)
return ret;
intg_time = iio_gts_find_int_time_by_sel(&data->gts, intg_time_idx);
if (intg_time < 0)
return intg_time;
/* Whichever is greater - integration time period or sampling period. */
delay = max(intg_time, apds9306_repeat_rate_period[repeat_rate_idx]);
/*
* Clear stale data flag that might have been set by the interrupt
* handler if it got data available flag set in the status reg.
*/
data->read_data_available = 0;
/*
* If this function runs parallel with the interrupt handler, either
* this reads and clears the status registers or the interrupt handler
* does. The interrupt handler sets a flag for read data available
* in our private structure which we read here.
*/
ret = regmap_read_poll_timeout(data->regmap, APDS9306_MAIN_STATUS_REG,
status, data->read_data_available ||
(status & (APDS9306_ALS_DATA_STAT_MASK |
APDS9306_ALS_INT_STAT_MASK)),
APDS9306_ALS_READ_DATA_DELAY_US, delay * 2);
if (ret)
return ret;
/* If we reach here before the interrupt handler we push an event */
if ((status & APDS9306_ALS_INT_STAT_MASK)) {
if (int_src == APDS9306_INT_SRC_ALS)
ev_code = IIO_UNMOD_EVENT_CODE(IIO_LIGHT, 0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_EITHER);
else
ev_code = IIO_MOD_EVENT_CODE(IIO_INTENSITY, 0,
IIO_MOD_LIGHT_CLEAR,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_EITHER);
iio_push_event(indio_dev, ev_code, iio_get_time_ns(indio_dev));
}
ret = regmap_bulk_read(data->regmap, reg, buff, sizeof(buff));
if (ret) {
dev_err_ratelimited(dev, "read data failed\n");
return ret;
}
*val = get_unaligned_le24(&buff);
pm_runtime_mark_last_busy(data->dev);
pm_runtime_put_autosuspend(data->dev);
return 0;
}
static int apds9306_intg_time_get(struct apds9306_data *data, int *val2)
{
struct apds9306_regfields *rf = &data->rf;
int ret, intg_time_idx;
ret = regmap_field_read(rf->intg_time, &intg_time_idx);
if (ret)
return ret;
ret = iio_gts_find_int_time_by_sel(&data->gts, intg_time_idx);
if (ret < 0)
return ret;
*val2 = ret;
return 0;
}
static int apds9306_intg_time_set(struct apds9306_data *data, int val2)
{
struct device *dev = data->dev;
struct apds9306_regfields *rf = &data->rf;
int ret, intg_old, gain_old, gain_new, gain_new_closest, intg_time_idx;
int gain_idx;
bool ok;
if (!iio_gts_valid_time(&data->gts, val2)) {
dev_err_ratelimited(dev, "Unsupported integration time %u\n", val2);
return -EINVAL;
}
ret = regmap_field_read(rf->intg_time, &intg_time_idx);
if (ret)
return ret;
ret = regmap_field_read(rf->gain, &gain_idx);
if (ret)
return ret;
intg_old = iio_gts_find_int_time_by_sel(&data->gts, intg_time_idx);
if (intg_old < 0)
return intg_old;
if (intg_old == val2)
return 0;
gain_old = iio_gts_find_gain_by_sel(&data->gts, gain_idx);
if (gain_old < 0)
return gain_old;
iio_gts_find_new_gain_by_old_gain_time(&data->gts, gain_old, intg_old,
val2, &gain_new);
if (gain_new < 0) {
dev_err_ratelimited(dev, "Unsupported gain with time\n");
return gain_new;
}
gain_new_closest = iio_find_closest_gain_low(&data->gts, gain_new, &ok);
if (gain_new_closest < 0) {
gain_new_closest = iio_gts_get_min_gain(&data->gts);
if (gain_new_closest < 0)
return gain_new_closest;
}
if (!ok)
dev_dbg(dev, "Unable to find optimum gain, setting minimum");
ret = iio_gts_find_sel_by_int_time(&data->gts, val2);
if (ret < 0)
return ret;
ret = regmap_field_write(rf->intg_time, ret);
if (ret)
return ret;
ret = iio_gts_find_sel_by_gain(&data->gts, gain_new_closest);
if (ret < 0)
return ret;
return regmap_field_write(rf->gain, ret);
}
static int apds9306_sampling_freq_get(struct apds9306_data *data, int *val,
int *val2)
{
struct apds9306_regfields *rf = &data->rf;
int ret, repeat_rate_idx;
ret = regmap_field_read(rf->repeat_rate, &repeat_rate_idx);
if (ret)
return ret;
if (repeat_rate_idx >= ARRAY_SIZE(apds9306_repeat_rate_freq))
return -EINVAL;
*val = apds9306_repeat_rate_freq[repeat_rate_idx][0];
*val2 = apds9306_repeat_rate_freq[repeat_rate_idx][1];
return 0;
}
static int apds9306_sampling_freq_set(struct apds9306_data *data, int val,
int val2)
{
struct apds9306_regfields *rf = &data->rf;
int i;
for (i = 0; i < ARRAY_SIZE(apds9306_repeat_rate_freq); i++) {
if (apds9306_repeat_rate_freq[i][0] == val &&
apds9306_repeat_rate_freq[i][1] == val2)
return regmap_field_write(rf->repeat_rate, i);
}
return -EINVAL;
}
static int apds9306_scale_get(struct apds9306_data *data, int *val, int *val2)
{
struct apds9306_regfields *rf = &data->rf;
int gain, intg, ret, intg_time_idx, gain_idx;
ret = regmap_field_read(rf->gain, &gain_idx);
if (ret)
return ret;
ret = regmap_field_read(rf->intg_time, &intg_time_idx);
if (ret)
return ret;
gain = iio_gts_find_gain_by_sel(&data->gts, gain_idx);
if (gain < 0)
return gain;
intg = iio_gts_find_int_time_by_sel(&data->gts, intg_time_idx);
if (intg < 0)
return intg;
return iio_gts_get_scale(&data->gts, gain, intg, val, val2);
}
static int apds9306_scale_set(struct apds9306_data *data, int val, int val2)
{
struct apds9306_regfields *rf = &data->rf;
int i, ret, time_sel, gain_sel, intg_time_idx;
ret = regmap_field_read(rf->intg_time, &intg_time_idx);
if (ret)
return ret;
ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts,
intg_time_idx, val, val2, &gain_sel);
if (ret) {
for (i = 0; i < data->gts.num_itime; i++) {
time_sel = data->gts.itime_table[i].sel;
if (time_sel == intg_time_idx)
continue;
ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts,
time_sel, val, val2, &gain_sel);
if (!ret)
break;
}
if (ret)
return -EINVAL;
ret = regmap_field_write(rf->intg_time, time_sel);
if (ret)
return ret;
}
return regmap_field_write(rf->gain, gain_sel);
}
static int apds9306_event_period_get(struct apds9306_data *data, int *val)
{
struct apds9306_regfields *rf = &data->rf;
int period, ret;
ret = regmap_field_read(rf->int_persist_val, &period);
if (ret)
return ret;
if (!in_range(period, 0, APDS9306_ALS_PERSIST_NUM_VALS))
return -EINVAL;
*val = period;
return ret;
}
static int apds9306_event_period_set(struct apds9306_data *data, int val)
{
struct apds9306_regfields *rf = &data->rf;
if (!in_range(val, 0, APDS9306_ALS_PERSIST_NUM_VALS))
return -EINVAL;
return regmap_field_write(rf->int_persist_val, val);
}
static int apds9306_event_thresh_get(struct apds9306_data *data, int dir,
int *val)
{
int var, ret;
u8 buff[3];
if (dir == IIO_EV_DIR_RISING)
var = APDS9306_ALS_THRES_UP_0_REG;
else if (dir == IIO_EV_DIR_FALLING)
var = APDS9306_ALS_THRES_LOW_0_REG;
else
return -EINVAL;
ret = regmap_bulk_read(data->regmap, var, buff, sizeof(buff));
if (ret)
return ret;
*val = get_unaligned_le24(&buff);
return 0;
}
static int apds9306_event_thresh_set(struct apds9306_data *data, int dir,
int val)
{
int var;
u8 buff[3];
if (dir == IIO_EV_DIR_RISING)
var = APDS9306_ALS_THRES_UP_0_REG;
else if (dir == IIO_EV_DIR_FALLING)
var = APDS9306_ALS_THRES_LOW_0_REG;
else
return -EINVAL;
if (!in_range(val, 0, APDS9306_ALS_THRES_VAL_MAX))
return -EINVAL;
put_unaligned_le24(val, buff);
return regmap_bulk_write(data->regmap, var, buff, sizeof(buff));
}
static int apds9306_event_thresh_adaptive_get(struct apds9306_data *data, int *val)
{
struct apds9306_regfields *rf = &data->rf;
int thr_adpt, ret;
ret = regmap_field_read(rf->int_thresh_var_val, &thr_adpt);
if (ret)
return ret;
if (!in_range(thr_adpt, 0, APDS9306_ALS_THRES_VAR_NUM_VALS))
return -EINVAL;
*val = thr_adpt;
return ret;
}
static int apds9306_event_thresh_adaptive_set(struct apds9306_data *data, int val)
{
struct apds9306_regfields *rf = &data->rf;
if (!in_range(val, 0, APDS9306_ALS_THRES_VAR_NUM_VALS))
return -EINVAL;
return regmap_field_write(rf->int_thresh_var_val, val);
}
static int apds9306_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
struct apds9306_data *data = iio_priv(indio_dev);
int ret, reg;
switch (mask) {
case IIO_CHAN_INFO_RAW:
if (chan->channel2 == IIO_MOD_LIGHT_CLEAR)
reg = APDS9306_CLEAR_DATA_0_REG;
else
reg = APDS9306_ALS_DATA_0_REG;
/*
* Changing device parameters during adc operation, resets
* the ADC which has to avoided.
*/
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = apds9306_read_data(data, val, reg);
iio_device_release_direct_mode(indio_dev);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_INT_TIME:
ret = apds9306_intg_time_get(data, val2);
if (ret)
return ret;
*val = 0;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = apds9306_sampling_freq_get(data, val, val2);
if (ret)
return ret;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SCALE:
ret = apds9306_scale_get(data, val, val2);
if (ret)
return ret;
return IIO_VAL_INT_PLUS_NANO;
default:
return -EINVAL;
}
};
static int apds9306_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
struct apds9306_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
return iio_gts_avail_times(&data->gts, vals, type, length);
case IIO_CHAN_INFO_SCALE:
return iio_gts_all_avail_scales(&data->gts, vals, type, length);
case IIO_CHAN_INFO_SAMP_FREQ:
*length = ARRAY_SIZE(apds9306_repeat_rate_freq) * 2;
*vals = (const int *)apds9306_repeat_rate_freq;
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int apds9306_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return IIO_VAL_INT_PLUS_NANO;
case IIO_CHAN_INFO_INT_TIME:
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SAMP_FREQ:
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
}
static int apds9306_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val,
int val2, long mask)
{
struct apds9306_data *data = iio_priv(indio_dev);
guard(mutex)(&data->mutex);
switch (mask) {
case IIO_CHAN_INFO_INT_TIME:
if (val)
return -EINVAL;
return apds9306_intg_time_set(data, val2);
case IIO_CHAN_INFO_SCALE:
return apds9306_scale_set(data, val, val2);
case IIO_CHAN_INFO_SAMP_FREQ:
return apds9306_sampling_freq_set(data, val, val2);
default:
return -EINVAL;
}
}
static irqreturn_t apds9306_irq_handler(int irq, void *priv)
{
struct iio_dev *indio_dev = priv;
struct apds9306_data *data = iio_priv(indio_dev);
struct apds9306_regfields *rf = &data->rf;
u64 ev_code;
int ret, status, int_src;
/*
* The interrupt line is released and the interrupt flag is
* cleared as a result of reading the status register. All the
* status flags are cleared as a result of this read.
*/
ret = regmap_read(data->regmap, APDS9306_MAIN_STATUS_REG, &status);
if (ret < 0) {
dev_err_ratelimited(data->dev, "status reg read failed\n");
return IRQ_HANDLED;
}
ret = regmap_field_read(rf->int_src, &int_src);
if (ret)
return ret;
if ((status & APDS9306_ALS_INT_STAT_MASK)) {
if (int_src == APDS9306_INT_SRC_ALS)
ev_code = IIO_UNMOD_EVENT_CODE(IIO_LIGHT, 0,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_EITHER);
else
ev_code = IIO_MOD_EVENT_CODE(IIO_INTENSITY, 0,
IIO_MOD_LIGHT_CLEAR,
IIO_EV_TYPE_THRESH,
IIO_EV_DIR_EITHER);
iio_push_event(indio_dev, ev_code, iio_get_time_ns(indio_dev));
}
/*
* If a one-shot read through sysfs is underway at the same time
* as this interrupt handler is executing and a read data available
* flag was set, this flag is set to inform read_poll_timeout()
* to exit.
*/
if ((status & APDS9306_ALS_DATA_STAT_MASK))
data->read_data_available = 1;
return IRQ_HANDLED;
}
static int apds9306_read_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int *val, int *val2)
{
struct apds9306_data *data = iio_priv(indio_dev);
int ret;
switch (type) {
case IIO_EV_TYPE_THRESH:
if (dir == IIO_EV_DIR_EITHER && info == IIO_EV_INFO_PERIOD)
ret = apds9306_event_period_get(data, val);
else
ret = apds9306_event_thresh_get(data, dir, val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_EV_TYPE_THRESH_ADAPTIVE:
ret = apds9306_event_thresh_adaptive_get(data, val);
if (ret)
return ret;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int apds9306_write_event(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
enum iio_event_info info,
int val, int val2)
{
struct apds9306_data *data = iio_priv(indio_dev);
switch (type) {
case IIO_EV_TYPE_THRESH:
if (dir == IIO_EV_DIR_EITHER && info == IIO_EV_INFO_PERIOD)
return apds9306_event_period_set(data, val);
return apds9306_event_thresh_set(data, dir, val);
case IIO_EV_TYPE_THRESH_ADAPTIVE:
return apds9306_event_thresh_adaptive_set(data, val);
default:
return -EINVAL;
}
}
static int apds9306_read_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir)
{
struct apds9306_data *data = iio_priv(indio_dev);
struct apds9306_regfields *rf = &data->rf;
int int_en, int_src, ret;
switch (type) {
case IIO_EV_TYPE_THRESH: {
guard(mutex)(&data->mutex);
ret = regmap_field_read(rf->int_src, &int_src);
if (ret)
return ret;
ret = regmap_field_read(rf->int_en, &int_en);
if (ret)
return ret;
if (chan->type == IIO_LIGHT)
return int_en && (int_src == APDS9306_INT_SRC_ALS);
if (chan->type == IIO_INTENSITY)
return int_en && (int_src == APDS9306_INT_SRC_CLEAR);
return -EINVAL;
}
case IIO_EV_TYPE_THRESH_ADAPTIVE:
ret = regmap_field_read(rf->int_thresh_var_en, &int_en);
if (ret)
return ret;
return int_en;
default:
return -EINVAL;
}
}
static int apds9306_write_event_config(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
enum iio_event_type type,
enum iio_event_direction dir,
int state)
{
struct apds9306_data *data = iio_priv(indio_dev);
struct apds9306_regfields *rf = &data->rf;
int ret, enabled;
switch (type) {
case IIO_EV_TYPE_THRESH: {
guard(mutex)(&data->mutex);
ret = regmap_field_read(rf->int_en, &enabled);
if (ret)
return ret;
/*
* If interrupt is enabled, the channel is set before enabling
* the interrupt. In case of disable, no need to switch
* channels. In case of different channel is selected while
* interrupt in on, just change the channel.
*/
if (state) {
if (chan->type == IIO_LIGHT)
ret = regmap_field_write(rf->int_src, 1);
else if (chan->type == IIO_INTENSITY)
ret = regmap_field_write(rf->int_src, 0);
else
return -EINVAL;
if (ret)
return ret;
if (enabled)
return 0;
ret = regmap_field_write(rf->int_en, 1);
if (ret)
return ret;
return pm_runtime_resume_and_get(data->dev);
} else {
if (!enabled)
return 0;
ret = regmap_field_write(rf->int_en, 0);
if (ret)
return ret;
pm_runtime_mark_last_busy(data->dev);
pm_runtime_put_autosuspend(data->dev);
return 0;
}
}
case IIO_EV_TYPE_THRESH_ADAPTIVE:
if (state)
return regmap_field_write(rf->int_thresh_var_en, 1);
else
return regmap_field_write(rf->int_thresh_var_en, 0);
default:
return -EINVAL;
}
}
static const struct iio_info apds9306_info_no_events = {
.read_avail = apds9306_read_avail,
.read_raw = apds9306_read_raw,
.write_raw = apds9306_write_raw,
.write_raw_get_fmt = apds9306_write_raw_get_fmt,
};
static const struct iio_info apds9306_info = {
.read_avail = apds9306_read_avail,
.read_raw = apds9306_read_raw,
.write_raw = apds9306_write_raw,
.write_raw_get_fmt = apds9306_write_raw_get_fmt,
.read_event_value = apds9306_read_event,
.write_event_value = apds9306_write_event,
.read_event_config = apds9306_read_event_config,
.write_event_config = apds9306_write_event_config,
.event_attrs = &apds9306_event_attr_group,
};
static int apds9306_init_iio_gts(struct apds9306_data *data)
{
int i, ret, part_id;
ret = regmap_read(data->regmap, APDS9306_PART_ID_REG, &part_id);
if (ret)
return ret;
for (i = 0; i < ARRAY_SIZE(apds9306_gts_mul); i++)
if (part_id == apds9306_gts_mul[i].part_id)
break;
if (i == ARRAY_SIZE(apds9306_gts_mul))
return -ENOENT;
return devm_iio_init_iio_gts(data->dev,
apds9306_gts_mul[i].max_scale_int,
apds9306_gts_mul[i].max_scale_nano,
apds9306_gains, ARRAY_SIZE(apds9306_gains),
apds9306_itimes, ARRAY_SIZE(apds9306_itimes),
&data->gts);
}
static void apds9306_powerdown(void *ptr)
{
struct apds9306_data *data = (struct apds9306_data *)ptr;
struct apds9306_regfields *rf = &data->rf;
int ret;
ret = regmap_field_write(rf->int_thresh_var_en, 0);
if (ret)
return;
ret = regmap_field_write(rf->int_en, 0);
if (ret)
return;
apds9306_power_state(data, false);
}
static int apds9306_device_init(struct apds9306_data *data)
{
struct apds9306_regfields *rf = &data->rf;
int ret;
ret = apds9306_init_iio_gts(data);
if (ret)
return ret;
ret = regmap_field_write(rf->intg_time, APDS9306_MEAS_MODE_100MS);
if (ret)
return ret;
ret = regmap_field_write(rf->repeat_rate, APDS9306_SAMP_FREQ_10HZ);
if (ret)
return ret;
ret = regmap_field_write(rf->gain, APDS9306_GSEL_3X);
if (ret)
return ret;
ret = regmap_field_write(rf->int_src, APDS9306_INT_SRC_ALS);
if (ret)
return ret;
ret = regmap_field_write(rf->int_en, 0);
if (ret)
return ret;
return regmap_field_write(rf->int_thresh_var_en, 0);
}
static int apds9306_pm_init(struct apds9306_data *data)
{
struct device *dev = data->dev;
int ret;
ret = apds9306_power_state(data, true);
if (ret)
return ret;
ret = pm_runtime_set_active(dev);
if (ret)
return ret;
ret = devm_pm_runtime_enable(dev);
if (ret)
return ret;
pm_runtime_set_autosuspend_delay(dev, 5000);
pm_runtime_use_autosuspend(dev);
pm_runtime_get(dev);
return 0;
}
static int apds9306_probe(struct i2c_client *client)
{
struct device *dev = &client->dev;
struct apds9306_data *data;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
mutex_init(&data->mutex);
data->regmap = devm_regmap_init_i2c(client, &apds9306_regmap);
if (IS_ERR(data->regmap))
return dev_err_probe(dev, PTR_ERR(data->regmap),
"regmap initialization failed\n");
data->dev = dev;
i2c_set_clientdata(client, indio_dev);
ret = apds9306_regfield_init(data);
if (ret)
return dev_err_probe(dev, ret, "regfield initialization failed\n");
ret = devm_regulator_get_enable(dev, "vdd");
if (ret)
return dev_err_probe(dev, ret, "Failed to enable regulator\n");
indio_dev->name = "apds9306";
indio_dev->modes = INDIO_DIRECT_MODE;
if (client->irq) {
indio_dev->info = &apds9306_info;
indio_dev->channels = apds9306_channels_with_events;
indio_dev->num_channels = ARRAY_SIZE(apds9306_channels_with_events);
ret = devm_request_threaded_irq(dev, client->irq, NULL,
apds9306_irq_handler, IRQF_ONESHOT,
"apds9306_event", indio_dev);
if (ret)
return dev_err_probe(dev, ret,
"failed to assign interrupt.\n");
} else {
indio_dev->info = &apds9306_info_no_events;
indio_dev->channels = apds9306_channels_without_events;
indio_dev->num_channels =
ARRAY_SIZE(apds9306_channels_without_events);
}
ret = apds9306_pm_init(data);
if (ret)
return dev_err_probe(dev, ret, "failed pm init\n");
ret = apds9306_device_init(data);
if (ret)
return dev_err_probe(dev, ret, "failed to init device\n");
ret = devm_add_action_or_reset(dev, apds9306_powerdown, data);
if (ret)
return dev_err_probe(dev, ret, "failed to add action or reset\n");
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
return dev_err_probe(dev, ret, "failed iio device registration\n");
pm_runtime_put_autosuspend(dev);
return 0;
}
static int apds9306_runtime_suspend(struct device *dev)
{
struct apds9306_data *data = iio_priv(dev_get_drvdata(dev));
return apds9306_power_state(data, false);
}
static int apds9306_runtime_resume(struct device *dev)
{
struct apds9306_data *data = iio_priv(dev_get_drvdata(dev));
return apds9306_power_state(data, true);
}
static DEFINE_RUNTIME_DEV_PM_OPS(apds9306_pm_ops,
apds9306_runtime_suspend,
apds9306_runtime_resume,
NULL);
static const struct of_device_id apds9306_of_match[] = {
{ .compatible = "avago,apds9306" },
{ }
};
MODULE_DEVICE_TABLE(of, apds9306_of_match);
static struct i2c_driver apds9306_driver = {
.driver = {
.name = "apds9306",
.pm = pm_ptr(&apds9306_pm_ops),
.of_match_table = apds9306_of_match,
},
.probe = apds9306_probe,
};
module_i2c_driver(apds9306_driver);
MODULE_AUTHOR("Subhajit Ghosh <subhajit.ghosh@tweaklogic.com>");
MODULE_DESCRIPTION("APDS9306 Ambient Light Sensor driver");
MODULE_LICENSE("GPL");
MODULE_IMPORT_NS(IIO_GTS_HELPER);