d754ed2821
Sync to v6.10-rc3. Signed-off-by: Jani Nikula <jani.nikula@intel.com>
3244 lines
96 KiB
C
3244 lines
96 KiB
C
/*
|
|
* Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Kevin Tian <kevin.tian@intel.com>
|
|
* Eddie Dong <eddie.dong@intel.com>
|
|
* Zhiyuan Lv <zhiyuan.lv@intel.com>
|
|
*
|
|
* Contributors:
|
|
* Min He <min.he@intel.com>
|
|
* Tina Zhang <tina.zhang@intel.com>
|
|
* Pei Zhang <pei.zhang@intel.com>
|
|
* Niu Bing <bing.niu@intel.com>
|
|
* Ping Gao <ping.a.gao@intel.com>
|
|
* Zhi Wang <zhi.a.wang@intel.com>
|
|
*
|
|
|
|
*/
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_reg.h"
|
|
#include "gvt.h"
|
|
#include "i915_pvinfo.h"
|
|
#include "intel_mchbar_regs.h"
|
|
#include "display/bxt_dpio_phy_regs.h"
|
|
#include "display/i9xx_plane_regs.h"
|
|
#include "display/intel_cursor_regs.h"
|
|
#include "display/intel_display_types.h"
|
|
#include "display/intel_dmc_regs.h"
|
|
#include "display/intel_dp_aux_regs.h"
|
|
#include "display/intel_dpio_phy.h"
|
|
#include "display/intel_fbc.h"
|
|
#include "display/intel_fdi_regs.h"
|
|
#include "display/intel_pps_regs.h"
|
|
#include "display/intel_psr_regs.h"
|
|
#include "display/intel_sprite_regs.h"
|
|
#include "display/skl_universal_plane_regs.h"
|
|
#include "display/skl_watermark_regs.h"
|
|
#include "display/vlv_dsi_pll_regs.h"
|
|
#include "gt/intel_gt_regs.h"
|
|
#include <linux/vmalloc.h>
|
|
|
|
/* XXX FIXME i915 has changed PP_XXX definition */
|
|
#define PCH_PP_STATUS _MMIO(0xc7200)
|
|
#define PCH_PP_CONTROL _MMIO(0xc7204)
|
|
#define PCH_PP_ON_DELAYS _MMIO(0xc7208)
|
|
#define PCH_PP_OFF_DELAYS _MMIO(0xc720c)
|
|
#define PCH_PP_DIVISOR _MMIO(0xc7210)
|
|
|
|
unsigned long intel_gvt_get_device_type(struct intel_gvt *gvt)
|
|
{
|
|
struct drm_i915_private *i915 = gvt->gt->i915;
|
|
|
|
if (IS_BROADWELL(i915))
|
|
return D_BDW;
|
|
else if (IS_SKYLAKE(i915))
|
|
return D_SKL;
|
|
else if (IS_KABYLAKE(i915))
|
|
return D_KBL;
|
|
else if (IS_BROXTON(i915))
|
|
return D_BXT;
|
|
else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
|
|
return D_CFL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool intel_gvt_match_device(struct intel_gvt *gvt,
|
|
unsigned long device)
|
|
{
|
|
return intel_gvt_get_device_type(gvt) & device;
|
|
}
|
|
|
|
static void read_vreg(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
memcpy(p_data, &vgpu_vreg(vgpu, offset), bytes);
|
|
}
|
|
|
|
static void write_vreg(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
memcpy(&vgpu_vreg(vgpu, offset), p_data, bytes);
|
|
}
|
|
|
|
struct intel_gvt_mmio_info *intel_gvt_find_mmio_info(struct intel_gvt *gvt,
|
|
unsigned int offset)
|
|
{
|
|
struct intel_gvt_mmio_info *e;
|
|
|
|
hash_for_each_possible(gvt->mmio.mmio_info_table, e, node, offset) {
|
|
if (e->offset == offset)
|
|
return e;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int setup_mmio_info(struct intel_gvt *gvt, u32 offset, u32 size,
|
|
u16 flags, u32 addr_mask, u32 ro_mask, u32 device,
|
|
gvt_mmio_func read, gvt_mmio_func write)
|
|
{
|
|
struct intel_gvt_mmio_info *p;
|
|
u32 start, end, i;
|
|
|
|
if (!intel_gvt_match_device(gvt, device))
|
|
return 0;
|
|
|
|
if (WARN_ON(!IS_ALIGNED(offset, 4)))
|
|
return -EINVAL;
|
|
|
|
start = offset;
|
|
end = offset + size;
|
|
|
|
for (i = start; i < end; i += 4) {
|
|
p = intel_gvt_find_mmio_info(gvt, i);
|
|
if (!p) {
|
|
WARN(1, "assign a handler to a non-tracked mmio %x\n",
|
|
i);
|
|
return -ENODEV;
|
|
}
|
|
p->ro_mask = ro_mask;
|
|
gvt->mmio.mmio_attribute[i / 4] = flags;
|
|
if (read)
|
|
p->read = read;
|
|
if (write)
|
|
p->write = write;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_gvt_render_mmio_to_engine - convert a mmio offset into the engine
|
|
* @gvt: a GVT device
|
|
* @offset: register offset
|
|
*
|
|
* Returns:
|
|
* The engine containing the offset within its mmio page.
|
|
*/
|
|
const struct intel_engine_cs *
|
|
intel_gvt_render_mmio_to_engine(struct intel_gvt *gvt, unsigned int offset)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
offset &= ~GENMASK(11, 0);
|
|
for_each_engine(engine, gvt->gt, id)
|
|
if (engine->mmio_base == offset)
|
|
return engine;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
#define offset_to_fence_num(offset) \
|
|
((offset - i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0))) >> 3)
|
|
|
|
#define fence_num_to_offset(num) \
|
|
(num * 8 + i915_mmio_reg_offset(FENCE_REG_GEN6_LO(0)))
|
|
|
|
|
|
void enter_failsafe_mode(struct intel_vgpu *vgpu, int reason)
|
|
{
|
|
switch (reason) {
|
|
case GVT_FAILSAFE_UNSUPPORTED_GUEST:
|
|
pr_err("Detected your guest driver doesn't support GVT-g.\n");
|
|
break;
|
|
case GVT_FAILSAFE_INSUFFICIENT_RESOURCE:
|
|
pr_err("Graphics resource is not enough for the guest\n");
|
|
break;
|
|
case GVT_FAILSAFE_GUEST_ERR:
|
|
pr_err("GVT Internal error for the guest\n");
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
pr_err("Now vgpu %d will enter failsafe mode.\n", vgpu->id);
|
|
vgpu->failsafe = true;
|
|
}
|
|
|
|
static int sanitize_fence_mmio_access(struct intel_vgpu *vgpu,
|
|
unsigned int fence_num, void *p_data, unsigned int bytes)
|
|
{
|
|
unsigned int max_fence = vgpu_fence_sz(vgpu);
|
|
|
|
if (fence_num >= max_fence) {
|
|
gvt_vgpu_err("access oob fence reg %d/%d\n",
|
|
fence_num, max_fence);
|
|
|
|
/* When guest access oob fence regs without access
|
|
* pv_info first, we treat guest not supporting GVT,
|
|
* and we will let vgpu enter failsafe mode.
|
|
*/
|
|
if (!vgpu->pv_notified)
|
|
enter_failsafe_mode(vgpu,
|
|
GVT_FAILSAFE_UNSUPPORTED_GUEST);
|
|
|
|
memset(p_data, 0, bytes);
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int gamw_echo_dev_rw_ia_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
u32 ips = (*(u32 *)p_data) & GAMW_ECO_ENABLE_64K_IPS_FIELD;
|
|
|
|
if (GRAPHICS_VER(vgpu->gvt->gt->i915) <= 10) {
|
|
if (ips == GAMW_ECO_ENABLE_64K_IPS_FIELD)
|
|
gvt_dbg_core("vgpu%d: ips enabled\n", vgpu->id);
|
|
else if (!ips)
|
|
gvt_dbg_core("vgpu%d: ips disabled\n", vgpu->id);
|
|
else {
|
|
/* All engines must be enabled together for vGPU,
|
|
* since we don't know which engine the ppgtt will
|
|
* bind to when shadowing.
|
|
*/
|
|
gvt_vgpu_err("Unsupported IPS setting %x, cannot enable 64K gtt.\n",
|
|
ips);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
return 0;
|
|
}
|
|
|
|
static int fence_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
int ret;
|
|
|
|
ret = sanitize_fence_mmio_access(vgpu, offset_to_fence_num(off),
|
|
p_data, bytes);
|
|
if (ret)
|
|
return ret;
|
|
read_vreg(vgpu, off, p_data, bytes);
|
|
return 0;
|
|
}
|
|
|
|
static int fence_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
struct intel_gvt *gvt = vgpu->gvt;
|
|
unsigned int fence_num = offset_to_fence_num(off);
|
|
int ret;
|
|
|
|
ret = sanitize_fence_mmio_access(vgpu, fence_num, p_data, bytes);
|
|
if (ret)
|
|
return ret;
|
|
write_vreg(vgpu, off, p_data, bytes);
|
|
|
|
mmio_hw_access_pre(gvt->gt);
|
|
intel_vgpu_write_fence(vgpu, fence_num,
|
|
vgpu_vreg64(vgpu, fence_num_to_offset(fence_num)));
|
|
mmio_hw_access_post(gvt->gt);
|
|
return 0;
|
|
}
|
|
|
|
#define CALC_MODE_MASK_REG(old, new) \
|
|
(((new) & GENMASK(31, 16)) \
|
|
| ((((old) & GENMASK(15, 0)) & ~((new) >> 16)) \
|
|
| ((new) & ((new) >> 16))))
|
|
|
|
static int mul_force_wake_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
u32 old, new;
|
|
u32 ack_reg_offset;
|
|
|
|
old = vgpu_vreg(vgpu, offset);
|
|
new = CALC_MODE_MASK_REG(old, *(u32 *)p_data);
|
|
|
|
if (GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9) {
|
|
switch (offset) {
|
|
case FORCEWAKE_RENDER_GEN9_REG:
|
|
ack_reg_offset = FORCEWAKE_ACK_RENDER_GEN9_REG;
|
|
break;
|
|
case FORCEWAKE_GT_GEN9_REG:
|
|
ack_reg_offset = FORCEWAKE_ACK_GT_GEN9_REG;
|
|
break;
|
|
case FORCEWAKE_MEDIA_GEN9_REG:
|
|
ack_reg_offset = FORCEWAKE_ACK_MEDIA_GEN9_REG;
|
|
break;
|
|
default:
|
|
/*should not hit here*/
|
|
gvt_vgpu_err("invalid forcewake offset 0x%x\n", offset);
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
ack_reg_offset = FORCEWAKE_ACK_HSW_REG;
|
|
}
|
|
|
|
vgpu_vreg(vgpu, offset) = new;
|
|
vgpu_vreg(vgpu, ack_reg_offset) = (new & GENMASK(15, 0));
|
|
return 0;
|
|
}
|
|
|
|
static int gdrst_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
intel_engine_mask_t engine_mask = 0;
|
|
u32 data;
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
data = vgpu_vreg(vgpu, offset);
|
|
|
|
if (data & GEN6_GRDOM_FULL) {
|
|
gvt_dbg_mmio("vgpu%d: request full GPU reset\n", vgpu->id);
|
|
engine_mask = ALL_ENGINES;
|
|
} else {
|
|
if (data & GEN6_GRDOM_RENDER) {
|
|
gvt_dbg_mmio("vgpu%d: request RCS reset\n", vgpu->id);
|
|
engine_mask |= BIT(RCS0);
|
|
}
|
|
if (data & GEN6_GRDOM_MEDIA) {
|
|
gvt_dbg_mmio("vgpu%d: request VCS reset\n", vgpu->id);
|
|
engine_mask |= BIT(VCS0);
|
|
}
|
|
if (data & GEN6_GRDOM_BLT) {
|
|
gvt_dbg_mmio("vgpu%d: request BCS Reset\n", vgpu->id);
|
|
engine_mask |= BIT(BCS0);
|
|
}
|
|
if (data & GEN6_GRDOM_VECS) {
|
|
gvt_dbg_mmio("vgpu%d: request VECS Reset\n", vgpu->id);
|
|
engine_mask |= BIT(VECS0);
|
|
}
|
|
if (data & GEN8_GRDOM_MEDIA2) {
|
|
gvt_dbg_mmio("vgpu%d: request VCS2 Reset\n", vgpu->id);
|
|
engine_mask |= BIT(VCS1);
|
|
}
|
|
if (data & GEN9_GRDOM_GUC) {
|
|
gvt_dbg_mmio("vgpu%d: request GUC Reset\n", vgpu->id);
|
|
vgpu_vreg_t(vgpu, GUC_STATUS) |= GS_MIA_IN_RESET;
|
|
}
|
|
engine_mask &= vgpu->gvt->gt->info.engine_mask;
|
|
}
|
|
|
|
/* vgpu_lock already hold by emulate mmio r/w */
|
|
intel_gvt_reset_vgpu_locked(vgpu, false, engine_mask);
|
|
|
|
/* sw will wait for the device to ack the reset request */
|
|
vgpu_vreg(vgpu, offset) = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gmbus_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
return intel_gvt_i2c_handle_gmbus_read(vgpu, offset, p_data, bytes);
|
|
}
|
|
|
|
static int gmbus_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
return intel_gvt_i2c_handle_gmbus_write(vgpu, offset, p_data, bytes);
|
|
}
|
|
|
|
static int pch_pp_control_mmio_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
|
|
if (vgpu_vreg(vgpu, offset) & PANEL_POWER_ON) {
|
|
vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_ON;
|
|
vgpu_vreg_t(vgpu, PCH_PP_STATUS) |= PP_SEQUENCE_STATE_ON_IDLE;
|
|
vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_SEQUENCE_POWER_DOWN;
|
|
vgpu_vreg_t(vgpu, PCH_PP_STATUS) &= ~PP_CYCLE_DELAY_ACTIVE;
|
|
|
|
} else
|
|
vgpu_vreg_t(vgpu, PCH_PP_STATUS) &=
|
|
~(PP_ON | PP_SEQUENCE_POWER_DOWN
|
|
| PP_CYCLE_DELAY_ACTIVE);
|
|
return 0;
|
|
}
|
|
|
|
static int transconf_mmio_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
|
|
if (vgpu_vreg(vgpu, offset) & TRANS_ENABLE)
|
|
vgpu_vreg(vgpu, offset) |= TRANS_STATE_ENABLE;
|
|
else
|
|
vgpu_vreg(vgpu, offset) &= ~TRANS_STATE_ENABLE;
|
|
return 0;
|
|
}
|
|
|
|
static int lcpll_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
|
|
if (vgpu_vreg(vgpu, offset) & LCPLL_PLL_DISABLE)
|
|
vgpu_vreg(vgpu, offset) &= ~LCPLL_PLL_LOCK;
|
|
else
|
|
vgpu_vreg(vgpu, offset) |= LCPLL_PLL_LOCK;
|
|
|
|
if (vgpu_vreg(vgpu, offset) & LCPLL_CD_SOURCE_FCLK)
|
|
vgpu_vreg(vgpu, offset) |= LCPLL_CD_SOURCE_FCLK_DONE;
|
|
else
|
|
vgpu_vreg(vgpu, offset) &= ~LCPLL_CD_SOURCE_FCLK_DONE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dpy_reg_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
switch (offset) {
|
|
case 0xe651c:
|
|
case 0xe661c:
|
|
case 0xe671c:
|
|
case 0xe681c:
|
|
vgpu_vreg(vgpu, offset) = 1 << 17;
|
|
break;
|
|
case 0xe6c04:
|
|
vgpu_vreg(vgpu, offset) = 0x3;
|
|
break;
|
|
case 0xe6e1c:
|
|
vgpu_vreg(vgpu, offset) = 0x2f << 16;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
read_vreg(vgpu, offset, p_data, bytes);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Only PIPE_A is enabled in current vGPU display and PIPE_A is tied to
|
|
* TRANSCODER_A in HW. DDI/PORT could be PORT_x depends on
|
|
* setup_virtual_dp_monitor().
|
|
* emulate_monitor_status_change() set up PLL for PORT_x as the initial enabled
|
|
* DPLL. Later guest driver may setup a different DPLLx when setting mode.
|
|
* So the correct sequence to find DP stream clock is:
|
|
* Check TRANS_DDI_FUNC_CTL on TRANSCODER_A to get PORT_x.
|
|
* Check correct PLLx for PORT_x to get PLL frequency and DP bitrate.
|
|
* Then Refresh rate then can be calculated based on follow equations:
|
|
* Pixel clock = h_total * v_total * refresh_rate
|
|
* stream clock = Pixel clock
|
|
* ls_clk = DP bitrate
|
|
* Link M/N = strm_clk / ls_clk
|
|
*/
|
|
|
|
static u32 bdw_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
|
|
{
|
|
u32 dp_br = 0;
|
|
u32 ddi_pll_sel = vgpu_vreg_t(vgpu, PORT_CLK_SEL(port));
|
|
|
|
switch (ddi_pll_sel) {
|
|
case PORT_CLK_SEL_LCPLL_2700:
|
|
dp_br = 270000 * 2;
|
|
break;
|
|
case PORT_CLK_SEL_LCPLL_1350:
|
|
dp_br = 135000 * 2;
|
|
break;
|
|
case PORT_CLK_SEL_LCPLL_810:
|
|
dp_br = 81000 * 2;
|
|
break;
|
|
case PORT_CLK_SEL_SPLL:
|
|
{
|
|
switch (vgpu_vreg_t(vgpu, SPLL_CTL) & SPLL_FREQ_MASK) {
|
|
case SPLL_FREQ_810MHz:
|
|
dp_br = 81000 * 2;
|
|
break;
|
|
case SPLL_FREQ_1350MHz:
|
|
dp_br = 135000 * 2;
|
|
break;
|
|
case SPLL_FREQ_2700MHz:
|
|
dp_br = 270000 * 2;
|
|
break;
|
|
default:
|
|
gvt_dbg_dpy("vgpu-%d PORT_%c can't get freq from SPLL 0x%08x\n",
|
|
vgpu->id, port_name(port), vgpu_vreg_t(vgpu, SPLL_CTL));
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case PORT_CLK_SEL_WRPLL1:
|
|
case PORT_CLK_SEL_WRPLL2:
|
|
{
|
|
u32 wrpll_ctl;
|
|
int refclk, n, p, r;
|
|
|
|
if (ddi_pll_sel == PORT_CLK_SEL_WRPLL1)
|
|
wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL1));
|
|
else
|
|
wrpll_ctl = vgpu_vreg_t(vgpu, WRPLL_CTL(DPLL_ID_WRPLL2));
|
|
|
|
switch (wrpll_ctl & WRPLL_REF_MASK) {
|
|
case WRPLL_REF_PCH_SSC:
|
|
refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.ssc;
|
|
break;
|
|
case WRPLL_REF_LCPLL:
|
|
refclk = 2700000;
|
|
break;
|
|
default:
|
|
gvt_dbg_dpy("vgpu-%d PORT_%c WRPLL can't get refclk 0x%08x\n",
|
|
vgpu->id, port_name(port), wrpll_ctl);
|
|
goto out;
|
|
}
|
|
|
|
r = wrpll_ctl & WRPLL_DIVIDER_REF_MASK;
|
|
p = (wrpll_ctl & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
|
|
n = (wrpll_ctl & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
|
|
|
|
dp_br = (refclk * n / 10) / (p * r) * 2;
|
|
break;
|
|
}
|
|
default:
|
|
gvt_dbg_dpy("vgpu-%d PORT_%c has invalid clock select 0x%08x\n",
|
|
vgpu->id, port_name(port), vgpu_vreg_t(vgpu, PORT_CLK_SEL(port)));
|
|
break;
|
|
}
|
|
|
|
out:
|
|
return dp_br;
|
|
}
|
|
|
|
static u32 bxt_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
|
|
{
|
|
u32 dp_br = 0;
|
|
int refclk = vgpu->gvt->gt->i915->display.dpll.ref_clks.nssc;
|
|
enum dpio_phy phy = DPIO_PHY0;
|
|
enum dpio_channel ch = DPIO_CH0;
|
|
struct dpll clock = {};
|
|
u32 temp;
|
|
|
|
/* Port to PHY mapping is fixed, see bxt_ddi_phy_info{} */
|
|
switch (port) {
|
|
case PORT_A:
|
|
phy = DPIO_PHY1;
|
|
ch = DPIO_CH0;
|
|
break;
|
|
case PORT_B:
|
|
phy = DPIO_PHY0;
|
|
ch = DPIO_CH0;
|
|
break;
|
|
case PORT_C:
|
|
phy = DPIO_PHY0;
|
|
ch = DPIO_CH1;
|
|
break;
|
|
default:
|
|
gvt_dbg_dpy("vgpu-%d no PHY for PORT_%c\n", vgpu->id, port_name(port));
|
|
goto out;
|
|
}
|
|
|
|
temp = vgpu_vreg_t(vgpu, BXT_PORT_PLL_ENABLE(port));
|
|
if (!(temp & PORT_PLL_ENABLE) || !(temp & PORT_PLL_LOCK)) {
|
|
gvt_dbg_dpy("vgpu-%d PORT_%c PLL_ENABLE 0x%08x isn't enabled or locked\n",
|
|
vgpu->id, port_name(port), temp);
|
|
goto out;
|
|
}
|
|
|
|
clock.m1 = 2;
|
|
clock.m2 = REG_FIELD_GET(PORT_PLL_M2_INT_MASK,
|
|
vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 0))) << 22;
|
|
if (vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 3)) & PORT_PLL_M2_FRAC_ENABLE)
|
|
clock.m2 |= REG_FIELD_GET(PORT_PLL_M2_FRAC_MASK,
|
|
vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 2)));
|
|
clock.n = REG_FIELD_GET(PORT_PLL_N_MASK,
|
|
vgpu_vreg_t(vgpu, BXT_PORT_PLL(phy, ch, 1)));
|
|
clock.p1 = REG_FIELD_GET(PORT_PLL_P1_MASK,
|
|
vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
|
|
clock.p2 = REG_FIELD_GET(PORT_PLL_P2_MASK,
|
|
vgpu_vreg_t(vgpu, BXT_PORT_PLL_EBB_0(phy, ch)));
|
|
clock.m = clock.m1 * clock.m2;
|
|
clock.p = clock.p1 * clock.p2 * 5;
|
|
|
|
if (clock.n == 0 || clock.p == 0) {
|
|
gvt_dbg_dpy("vgpu-%d PORT_%c PLL has invalid divider\n", vgpu->id, port_name(port));
|
|
goto out;
|
|
}
|
|
|
|
clock.vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock.m), clock.n << 22);
|
|
clock.dot = DIV_ROUND_CLOSEST(clock.vco, clock.p);
|
|
|
|
dp_br = clock.dot;
|
|
|
|
out:
|
|
return dp_br;
|
|
}
|
|
|
|
static u32 skl_vgpu_get_dp_bitrate(struct intel_vgpu *vgpu, enum port port)
|
|
{
|
|
u32 dp_br = 0;
|
|
enum intel_dpll_id dpll_id = DPLL_ID_SKL_DPLL0;
|
|
|
|
/* Find the enabled DPLL for the DDI/PORT */
|
|
if (!(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_OFF(port)) &&
|
|
(vgpu_vreg_t(vgpu, DPLL_CTRL2) & DPLL_CTRL2_DDI_SEL_OVERRIDE(port))) {
|
|
dpll_id += (vgpu_vreg_t(vgpu, DPLL_CTRL2) &
|
|
DPLL_CTRL2_DDI_CLK_SEL_MASK(port)) >>
|
|
DPLL_CTRL2_DDI_CLK_SEL_SHIFT(port);
|
|
} else {
|
|
gvt_dbg_dpy("vgpu-%d DPLL for PORT_%c isn't turned on\n",
|
|
vgpu->id, port_name(port));
|
|
return dp_br;
|
|
}
|
|
|
|
/* Find PLL output frequency from correct DPLL, and get bir rate */
|
|
switch ((vgpu_vreg_t(vgpu, DPLL_CTRL1) &
|
|
DPLL_CTRL1_LINK_RATE_MASK(dpll_id)) >>
|
|
DPLL_CTRL1_LINK_RATE_SHIFT(dpll_id)) {
|
|
case DPLL_CTRL1_LINK_RATE_810:
|
|
dp_br = 81000 * 2;
|
|
break;
|
|
case DPLL_CTRL1_LINK_RATE_1080:
|
|
dp_br = 108000 * 2;
|
|
break;
|
|
case DPLL_CTRL1_LINK_RATE_1350:
|
|
dp_br = 135000 * 2;
|
|
break;
|
|
case DPLL_CTRL1_LINK_RATE_1620:
|
|
dp_br = 162000 * 2;
|
|
break;
|
|
case DPLL_CTRL1_LINK_RATE_2160:
|
|
dp_br = 216000 * 2;
|
|
break;
|
|
case DPLL_CTRL1_LINK_RATE_2700:
|
|
dp_br = 270000 * 2;
|
|
break;
|
|
default:
|
|
dp_br = 0;
|
|
gvt_dbg_dpy("vgpu-%d PORT_%c fail to get DPLL-%d freq\n",
|
|
vgpu->id, port_name(port), dpll_id);
|
|
}
|
|
|
|
return dp_br;
|
|
}
|
|
|
|
static void vgpu_update_refresh_rate(struct intel_vgpu *vgpu)
|
|
{
|
|
struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
|
|
enum port port;
|
|
u32 dp_br, link_m, link_n, htotal, vtotal;
|
|
|
|
/* Find DDI/PORT assigned to TRANSCODER_A, expect B or D */
|
|
port = (vgpu_vreg_t(vgpu, TRANS_DDI_FUNC_CTL(dev_priv, TRANSCODER_A)) &
|
|
TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
|
|
if (port != PORT_B && port != PORT_D) {
|
|
gvt_dbg_dpy("vgpu-%d unsupported PORT_%c\n", vgpu->id, port_name(port));
|
|
return;
|
|
}
|
|
|
|
/* Calculate DP bitrate from PLL */
|
|
if (IS_BROADWELL(dev_priv))
|
|
dp_br = bdw_vgpu_get_dp_bitrate(vgpu, port);
|
|
else if (IS_BROXTON(dev_priv))
|
|
dp_br = bxt_vgpu_get_dp_bitrate(vgpu, port);
|
|
else
|
|
dp_br = skl_vgpu_get_dp_bitrate(vgpu, port);
|
|
|
|
/* Get DP link symbol clock M/N */
|
|
link_m = vgpu_vreg_t(vgpu, PIPE_LINK_M1(dev_priv, TRANSCODER_A));
|
|
link_n = vgpu_vreg_t(vgpu, PIPE_LINK_N1(dev_priv, TRANSCODER_A));
|
|
|
|
/* Get H/V total from transcoder timing */
|
|
htotal = (vgpu_vreg_t(vgpu, TRANS_HTOTAL(dev_priv, TRANSCODER_A)) >> TRANS_HTOTAL_SHIFT);
|
|
vtotal = (vgpu_vreg_t(vgpu, TRANS_VTOTAL(dev_priv, TRANSCODER_A)) >> TRANS_VTOTAL_SHIFT);
|
|
|
|
if (dp_br && link_n && htotal && vtotal) {
|
|
u64 pixel_clk = 0;
|
|
u32 new_rate = 0;
|
|
u32 *old_rate = &(intel_vgpu_port(vgpu, vgpu->display.port_num)->vrefresh_k);
|
|
|
|
/* Calcuate pixel clock by (ls_clk * M / N) */
|
|
pixel_clk = div_u64(mul_u32_u32(link_m, dp_br), link_n);
|
|
pixel_clk *= MSEC_PER_SEC;
|
|
|
|
/* Calcuate refresh rate by (pixel_clk / (h_total * v_total)) */
|
|
new_rate = DIV64_U64_ROUND_CLOSEST(mul_u64_u32_shr(pixel_clk, MSEC_PER_SEC, 0), mul_u32_u32(htotal + 1, vtotal + 1));
|
|
|
|
if (*old_rate != new_rate)
|
|
*old_rate = new_rate;
|
|
|
|
gvt_dbg_dpy("vgpu-%d PIPE_%c refresh rate updated to %d\n",
|
|
vgpu->id, pipe_name(PIPE_A), new_rate);
|
|
}
|
|
}
|
|
|
|
static int pipeconf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
u32 data;
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
data = vgpu_vreg(vgpu, offset);
|
|
|
|
if (data & TRANSCONF_ENABLE) {
|
|
vgpu_vreg(vgpu, offset) |= TRANSCONF_STATE_ENABLE;
|
|
vgpu_update_refresh_rate(vgpu);
|
|
vgpu_update_vblank_emulation(vgpu, true);
|
|
} else {
|
|
vgpu_vreg(vgpu, offset) &= ~TRANSCONF_STATE_ENABLE;
|
|
vgpu_update_vblank_emulation(vgpu, false);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* sorted in ascending order */
|
|
static i915_reg_t force_nonpriv_white_list[] = {
|
|
_MMIO(0xd80),
|
|
GEN9_CS_DEBUG_MODE1, //_MMIO(0x20ec)
|
|
GEN9_CTX_PREEMPT_REG,//_MMIO(0x2248)
|
|
CL_PRIMITIVES_COUNT, //_MMIO(0x2340)
|
|
PS_INVOCATION_COUNT, //_MMIO(0x2348)
|
|
PS_DEPTH_COUNT, //_MMIO(0x2350)
|
|
GEN8_CS_CHICKEN1,//_MMIO(0x2580)
|
|
_MMIO(0x2690),
|
|
_MMIO(0x2694),
|
|
_MMIO(0x2698),
|
|
_MMIO(0x2754),
|
|
_MMIO(0x28a0),
|
|
_MMIO(0x4de0),
|
|
_MMIO(0x4de4),
|
|
_MMIO(0x4dfc),
|
|
GEN7_COMMON_SLICE_CHICKEN1,//_MMIO(0x7010)
|
|
_MMIO(0x7014),
|
|
HDC_CHICKEN0,//_MMIO(0x7300)
|
|
GEN8_HDC_CHICKEN1,//_MMIO(0x7304)
|
|
_MMIO(0x7700),
|
|
_MMIO(0x7704),
|
|
_MMIO(0x7708),
|
|
_MMIO(0x770c),
|
|
_MMIO(0x83a8),
|
|
_MMIO(0xb110),
|
|
_MMIO(0xb118),
|
|
_MMIO(0xe100),
|
|
_MMIO(0xe18c),
|
|
_MMIO(0xe48c),
|
|
_MMIO(0xe5f4),
|
|
_MMIO(0x64844),
|
|
};
|
|
|
|
/* a simple bsearch */
|
|
static inline bool in_whitelist(u32 reg)
|
|
{
|
|
int left = 0, right = ARRAY_SIZE(force_nonpriv_white_list);
|
|
i915_reg_t *array = force_nonpriv_white_list;
|
|
|
|
while (left < right) {
|
|
int mid = (left + right)/2;
|
|
|
|
if (reg > array[mid].reg)
|
|
left = mid + 1;
|
|
else if (reg < array[mid].reg)
|
|
right = mid;
|
|
else
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int force_nonpriv_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
u32 reg_nonpriv = (*(u32 *)p_data) & REG_GENMASK(25, 2);
|
|
const struct intel_engine_cs *engine =
|
|
intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
|
|
|
|
if (bytes != 4 || !IS_ALIGNED(offset, bytes) || !engine) {
|
|
gvt_err("vgpu(%d) Invalid FORCE_NONPRIV offset %x(%dB)\n",
|
|
vgpu->id, offset, bytes);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!in_whitelist(reg_nonpriv) &&
|
|
reg_nonpriv != i915_mmio_reg_offset(RING_NOPID(engine->mmio_base))) {
|
|
gvt_err("vgpu(%d) Invalid FORCE_NONPRIV write %x at offset %x\n",
|
|
vgpu->id, reg_nonpriv, offset);
|
|
} else
|
|
intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ddi_buf_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
|
|
if (vgpu_vreg(vgpu, offset) & DDI_BUF_CTL_ENABLE) {
|
|
vgpu_vreg(vgpu, offset) &= ~DDI_BUF_IS_IDLE;
|
|
} else {
|
|
vgpu_vreg(vgpu, offset) |= DDI_BUF_IS_IDLE;
|
|
if (offset == i915_mmio_reg_offset(DDI_BUF_CTL(PORT_E)))
|
|
vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E))
|
|
&= ~DP_TP_STATUS_AUTOTRAIN_DONE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int fdi_rx_iir_mmio_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
vgpu_vreg(vgpu, offset) &= ~*(u32 *)p_data;
|
|
return 0;
|
|
}
|
|
|
|
#define FDI_LINK_TRAIN_PATTERN1 0
|
|
#define FDI_LINK_TRAIN_PATTERN2 1
|
|
|
|
static int fdi_auto_training_started(struct intel_vgpu *vgpu)
|
|
{
|
|
u32 ddi_buf_ctl = vgpu_vreg_t(vgpu, DDI_BUF_CTL(PORT_E));
|
|
u32 rx_ctl = vgpu_vreg(vgpu, _FDI_RXA_CTL);
|
|
u32 tx_ctl = vgpu_vreg_t(vgpu, DP_TP_CTL(PORT_E));
|
|
|
|
if ((ddi_buf_ctl & DDI_BUF_CTL_ENABLE) &&
|
|
(rx_ctl & FDI_RX_ENABLE) &&
|
|
(rx_ctl & FDI_AUTO_TRAINING) &&
|
|
(tx_ctl & DP_TP_CTL_ENABLE) &&
|
|
(tx_ctl & DP_TP_CTL_FDI_AUTOTRAIN))
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static int check_fdi_rx_train_status(struct intel_vgpu *vgpu,
|
|
enum pipe pipe, unsigned int train_pattern)
|
|
{
|
|
i915_reg_t fdi_rx_imr, fdi_tx_ctl, fdi_rx_ctl;
|
|
unsigned int fdi_rx_check_bits, fdi_tx_check_bits;
|
|
unsigned int fdi_rx_train_bits, fdi_tx_train_bits;
|
|
unsigned int fdi_iir_check_bits;
|
|
|
|
fdi_rx_imr = FDI_RX_IMR(pipe);
|
|
fdi_tx_ctl = FDI_TX_CTL(pipe);
|
|
fdi_rx_ctl = FDI_RX_CTL(pipe);
|
|
|
|
if (train_pattern == FDI_LINK_TRAIN_PATTERN1) {
|
|
fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_1_CPT;
|
|
fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_1;
|
|
fdi_iir_check_bits = FDI_RX_BIT_LOCK;
|
|
} else if (train_pattern == FDI_LINK_TRAIN_PATTERN2) {
|
|
fdi_rx_train_bits = FDI_LINK_TRAIN_PATTERN_2_CPT;
|
|
fdi_tx_train_bits = FDI_LINK_TRAIN_PATTERN_2;
|
|
fdi_iir_check_bits = FDI_RX_SYMBOL_LOCK;
|
|
} else {
|
|
gvt_vgpu_err("Invalid train pattern %d\n", train_pattern);
|
|
return -EINVAL;
|
|
}
|
|
|
|
fdi_rx_check_bits = FDI_RX_ENABLE | fdi_rx_train_bits;
|
|
fdi_tx_check_bits = FDI_TX_ENABLE | fdi_tx_train_bits;
|
|
|
|
/* If imr bit has been masked */
|
|
if (vgpu_vreg_t(vgpu, fdi_rx_imr) & fdi_iir_check_bits)
|
|
return 0;
|
|
|
|
if (((vgpu_vreg_t(vgpu, fdi_tx_ctl) & fdi_tx_check_bits)
|
|
== fdi_tx_check_bits)
|
|
&& ((vgpu_vreg_t(vgpu, fdi_rx_ctl) & fdi_rx_check_bits)
|
|
== fdi_rx_check_bits))
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
#define INVALID_INDEX (~0U)
|
|
|
|
static unsigned int calc_index(unsigned int offset, i915_reg_t _start,
|
|
i915_reg_t _next, i915_reg_t _end)
|
|
{
|
|
u32 start = i915_mmio_reg_offset(_start);
|
|
u32 next = i915_mmio_reg_offset(_next);
|
|
u32 end = i915_mmio_reg_offset(_end);
|
|
u32 stride = next - start;
|
|
|
|
if (offset < start || offset > end)
|
|
return INVALID_INDEX;
|
|
offset -= start;
|
|
return offset / stride;
|
|
}
|
|
|
|
#define FDI_RX_CTL_TO_PIPE(offset) \
|
|
calc_index(offset, FDI_RX_CTL(PIPE_A), FDI_RX_CTL(PIPE_B), FDI_RX_CTL(PIPE_C))
|
|
|
|
#define FDI_TX_CTL_TO_PIPE(offset) \
|
|
calc_index(offset, FDI_TX_CTL(PIPE_A), FDI_TX_CTL(PIPE_B), FDI_TX_CTL(PIPE_C))
|
|
|
|
#define FDI_RX_IMR_TO_PIPE(offset) \
|
|
calc_index(offset, FDI_RX_IMR(PIPE_A), FDI_RX_IMR(PIPE_B), FDI_RX_IMR(PIPE_C))
|
|
|
|
static int update_fdi_rx_iir_status(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
i915_reg_t fdi_rx_iir;
|
|
unsigned int index;
|
|
int ret;
|
|
|
|
if (FDI_RX_CTL_TO_PIPE(offset) != INVALID_INDEX)
|
|
index = FDI_RX_CTL_TO_PIPE(offset);
|
|
else if (FDI_TX_CTL_TO_PIPE(offset) != INVALID_INDEX)
|
|
index = FDI_TX_CTL_TO_PIPE(offset);
|
|
else if (FDI_RX_IMR_TO_PIPE(offset) != INVALID_INDEX)
|
|
index = FDI_RX_IMR_TO_PIPE(offset);
|
|
else {
|
|
gvt_vgpu_err("Unsupported registers %x\n", offset);
|
|
return -EINVAL;
|
|
}
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
|
|
fdi_rx_iir = FDI_RX_IIR(index);
|
|
|
|
ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN1);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret)
|
|
vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_BIT_LOCK;
|
|
|
|
ret = check_fdi_rx_train_status(vgpu, index, FDI_LINK_TRAIN_PATTERN2);
|
|
if (ret < 0)
|
|
return ret;
|
|
if (ret)
|
|
vgpu_vreg_t(vgpu, fdi_rx_iir) |= FDI_RX_SYMBOL_LOCK;
|
|
|
|
if (offset == _FDI_RXA_CTL)
|
|
if (fdi_auto_training_started(vgpu))
|
|
vgpu_vreg_t(vgpu, DP_TP_STATUS(PORT_E)) |=
|
|
DP_TP_STATUS_AUTOTRAIN_DONE;
|
|
return 0;
|
|
}
|
|
|
|
#define DP_TP_CTL_TO_PORT(offset) \
|
|
calc_index(offset, DP_TP_CTL(PORT_A), DP_TP_CTL(PORT_B), DP_TP_CTL(PORT_E))
|
|
|
|
static int dp_tp_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
i915_reg_t status_reg;
|
|
unsigned int index;
|
|
u32 data;
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
|
|
index = DP_TP_CTL_TO_PORT(offset);
|
|
data = (vgpu_vreg(vgpu, offset) & GENMASK(10, 8)) >> 8;
|
|
if (data == 0x2) {
|
|
status_reg = DP_TP_STATUS(index);
|
|
vgpu_vreg_t(vgpu, status_reg) |= (1 << 25);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int dp_tp_status_mmio_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
u32 reg_val;
|
|
u32 sticky_mask;
|
|
|
|
reg_val = *((u32 *)p_data);
|
|
sticky_mask = GENMASK(27, 26) | (1 << 24);
|
|
|
|
vgpu_vreg(vgpu, offset) = (reg_val & ~sticky_mask) |
|
|
(vgpu_vreg(vgpu, offset) & sticky_mask);
|
|
vgpu_vreg(vgpu, offset) &= ~(reg_val & sticky_mask);
|
|
return 0;
|
|
}
|
|
|
|
static int pch_adpa_mmio_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
u32 data;
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
data = vgpu_vreg(vgpu, offset);
|
|
|
|
if (data & ADPA_CRT_HOTPLUG_FORCE_TRIGGER)
|
|
vgpu_vreg(vgpu, offset) &= ~ADPA_CRT_HOTPLUG_FORCE_TRIGGER;
|
|
return 0;
|
|
}
|
|
|
|
static int south_chicken2_mmio_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
u32 data;
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
data = vgpu_vreg(vgpu, offset);
|
|
|
|
if (data & FDI_MPHY_IOSFSB_RESET_CTL)
|
|
vgpu_vreg(vgpu, offset) |= FDI_MPHY_IOSFSB_RESET_STATUS;
|
|
else
|
|
vgpu_vreg(vgpu, offset) &= ~FDI_MPHY_IOSFSB_RESET_STATUS;
|
|
return 0;
|
|
}
|
|
|
|
#define DSPSURF_TO_PIPE(dev_priv, offset) \
|
|
calc_index(offset, DSPSURF(dev_priv, PIPE_A), DSPSURF(dev_priv, PIPE_B), DSPSURF(dev_priv, PIPE_C))
|
|
|
|
static int pri_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
|
|
u32 pipe = DSPSURF_TO_PIPE(dev_priv, offset);
|
|
int event = SKL_FLIP_EVENT(pipe, PLANE_PRIMARY);
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
vgpu_vreg_t(vgpu, DSPSURFLIVE(dev_priv, pipe)) = vgpu_vreg(vgpu, offset);
|
|
|
|
vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(dev_priv, pipe))++;
|
|
|
|
if (vgpu_vreg_t(vgpu, DSPCNTR(dev_priv, pipe)) & PLANE_CTL_ASYNC_FLIP)
|
|
intel_vgpu_trigger_virtual_event(vgpu, event);
|
|
else
|
|
set_bit(event, vgpu->irq.flip_done_event[pipe]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define SPRSURF_TO_PIPE(offset) \
|
|
calc_index(offset, SPRSURF(PIPE_A), SPRSURF(PIPE_B), SPRSURF(PIPE_C))
|
|
|
|
static int spr_surf_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
u32 pipe = SPRSURF_TO_PIPE(offset);
|
|
int event = SKL_FLIP_EVENT(pipe, PLANE_SPRITE0);
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
|
|
|
|
if (vgpu_vreg_t(vgpu, SPRCTL(pipe)) & PLANE_CTL_ASYNC_FLIP)
|
|
intel_vgpu_trigger_virtual_event(vgpu, event);
|
|
else
|
|
set_bit(event, vgpu->irq.flip_done_event[pipe]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int reg50080_mmio_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data,
|
|
unsigned int bytes)
|
|
{
|
|
struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
|
|
enum pipe pipe = REG_50080_TO_PIPE(offset);
|
|
enum plane_id plane = REG_50080_TO_PLANE(offset);
|
|
int event = SKL_FLIP_EVENT(pipe, plane);
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
if (plane == PLANE_PRIMARY) {
|
|
vgpu_vreg_t(vgpu, DSPSURFLIVE(dev_priv, pipe)) = vgpu_vreg(vgpu, offset);
|
|
vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(dev_priv, pipe))++;
|
|
} else {
|
|
vgpu_vreg_t(vgpu, SPRSURFLIVE(pipe)) = vgpu_vreg(vgpu, offset);
|
|
}
|
|
|
|
if ((vgpu_vreg(vgpu, offset) & REG50080_FLIP_TYPE_MASK) == REG50080_FLIP_TYPE_ASYNC)
|
|
intel_vgpu_trigger_virtual_event(vgpu, event);
|
|
else
|
|
set_bit(event, vgpu->irq.flip_done_event[pipe]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int trigger_aux_channel_interrupt(struct intel_vgpu *vgpu,
|
|
unsigned int reg)
|
|
{
|
|
struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
|
|
enum intel_gvt_event_type event;
|
|
|
|
if (reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_A)))
|
|
event = AUX_CHANNEL_A;
|
|
else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_B)) ||
|
|
reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_B)))
|
|
event = AUX_CHANNEL_B;
|
|
else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_C)) ||
|
|
reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_C)))
|
|
event = AUX_CHANNEL_C;
|
|
else if (reg == i915_mmio_reg_offset(PCH_DP_AUX_CH_CTL(AUX_CH_D)) ||
|
|
reg == i915_mmio_reg_offset(DP_AUX_CH_CTL(AUX_CH_D)))
|
|
event = AUX_CHANNEL_D;
|
|
else {
|
|
drm_WARN_ON(&dev_priv->drm, true);
|
|
return -EINVAL;
|
|
}
|
|
|
|
intel_vgpu_trigger_virtual_event(vgpu, event);
|
|
return 0;
|
|
}
|
|
|
|
static int dp_aux_ch_ctl_trans_done(struct intel_vgpu *vgpu, u32 value,
|
|
unsigned int reg, int len, bool data_valid)
|
|
{
|
|
/* mark transaction done */
|
|
value |= DP_AUX_CH_CTL_DONE;
|
|
value &= ~DP_AUX_CH_CTL_SEND_BUSY;
|
|
value &= ~DP_AUX_CH_CTL_RECEIVE_ERROR;
|
|
|
|
if (data_valid)
|
|
value &= ~DP_AUX_CH_CTL_TIME_OUT_ERROR;
|
|
else
|
|
value |= DP_AUX_CH_CTL_TIME_OUT_ERROR;
|
|
|
|
/* message size */
|
|
value &= ~(0xf << 20);
|
|
value |= (len << 20);
|
|
vgpu_vreg(vgpu, reg) = value;
|
|
|
|
if (value & DP_AUX_CH_CTL_INTERRUPT)
|
|
return trigger_aux_channel_interrupt(vgpu, reg);
|
|
return 0;
|
|
}
|
|
|
|
static void dp_aux_ch_ctl_link_training(struct intel_vgpu_dpcd_data *dpcd,
|
|
u8 t)
|
|
{
|
|
if ((t & DPCD_TRAINING_PATTERN_SET_MASK) == DPCD_TRAINING_PATTERN_1) {
|
|
/* training pattern 1 for CR */
|
|
/* set LANE0_CR_DONE, LANE1_CR_DONE */
|
|
dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_CR_DONE;
|
|
/* set LANE2_CR_DONE, LANE3_CR_DONE */
|
|
dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_CR_DONE;
|
|
} else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
|
|
DPCD_TRAINING_PATTERN_2) {
|
|
/* training pattern 2 for EQ */
|
|
/* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane0_1 */
|
|
dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_LANES_EQ_DONE;
|
|
dpcd->data[DPCD_LANE0_1_STATUS] |= DPCD_SYMBOL_LOCKED;
|
|
/* Set CHANNEL_EQ_DONE and SYMBOL_LOCKED for Lane2_3 */
|
|
dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_LANES_EQ_DONE;
|
|
dpcd->data[DPCD_LANE2_3_STATUS] |= DPCD_SYMBOL_LOCKED;
|
|
/* set INTERLANE_ALIGN_DONE */
|
|
dpcd->data[DPCD_LANE_ALIGN_STATUS_UPDATED] |=
|
|
DPCD_INTERLANE_ALIGN_DONE;
|
|
} else if ((t & DPCD_TRAINING_PATTERN_SET_MASK) ==
|
|
DPCD_LINK_TRAINING_DISABLED) {
|
|
/* finish link training */
|
|
/* set sink status as synchronized */
|
|
dpcd->data[DPCD_SINK_STATUS] = DPCD_SINK_IN_SYNC;
|
|
}
|
|
}
|
|
|
|
#define OFFSET_TO_DP_AUX_PORT(offset) (((offset) & 0xF00) >> 8)
|
|
|
|
#define dpy_is_valid_port(port) \
|
|
(((port) >= PORT_A) && ((port) < I915_MAX_PORTS))
|
|
|
|
static int dp_aux_ch_ctl_mmio_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
struct intel_vgpu_display *display = &vgpu->display;
|
|
int msg, addr, ctrl, op, len;
|
|
int port_index = OFFSET_TO_DP_AUX_PORT(offset);
|
|
struct intel_vgpu_dpcd_data *dpcd = NULL;
|
|
struct intel_vgpu_port *port = NULL;
|
|
u32 data;
|
|
|
|
if (!dpy_is_valid_port(port_index)) {
|
|
gvt_vgpu_err("Unsupported DP port access!\n");
|
|
return 0;
|
|
}
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
data = vgpu_vreg(vgpu, offset);
|
|
|
|
if (GRAPHICS_VER(vgpu->gvt->gt->i915) >= 9 &&
|
|
offset != i915_mmio_reg_offset(DP_AUX_CH_CTL(port_index))) {
|
|
/* SKL DPB/C/D aux ctl register changed */
|
|
return 0;
|
|
} else if (IS_BROADWELL(vgpu->gvt->gt->i915) &&
|
|
offset != i915_mmio_reg_offset(port_index ?
|
|
PCH_DP_AUX_CH_CTL(port_index) :
|
|
DP_AUX_CH_CTL(port_index))) {
|
|
/* write to the data registers */
|
|
return 0;
|
|
}
|
|
|
|
if (!(data & DP_AUX_CH_CTL_SEND_BUSY)) {
|
|
/* just want to clear the sticky bits */
|
|
vgpu_vreg(vgpu, offset) = 0;
|
|
return 0;
|
|
}
|
|
|
|
port = &display->ports[port_index];
|
|
dpcd = port->dpcd;
|
|
|
|
/* read out message from DATA1 register */
|
|
msg = vgpu_vreg(vgpu, offset + 4);
|
|
addr = (msg >> 8) & 0xffff;
|
|
ctrl = (msg >> 24) & 0xff;
|
|
len = msg & 0xff;
|
|
op = ctrl >> 4;
|
|
|
|
if (op == GVT_AUX_NATIVE_WRITE) {
|
|
int t;
|
|
u8 buf[16];
|
|
|
|
if ((addr + len + 1) >= DPCD_SIZE) {
|
|
/*
|
|
* Write request exceeds what we supported,
|
|
* DCPD spec: When a Source Device is writing a DPCD
|
|
* address not supported by the Sink Device, the Sink
|
|
* Device shall reply with AUX NACK and “M” equal to
|
|
* zero.
|
|
*/
|
|
|
|
/* NAK the write */
|
|
vgpu_vreg(vgpu, offset + 4) = AUX_NATIVE_REPLY_NAK;
|
|
dp_aux_ch_ctl_trans_done(vgpu, data, offset, 2, true);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write request format: Headr (command + address + size) occupies
|
|
* 4 bytes, followed by (len + 1) bytes of data. See details at
|
|
* intel_dp_aux_transfer().
|
|
*/
|
|
if ((len + 1 + 4) > AUX_BURST_SIZE) {
|
|
gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* unpack data from vreg to buf */
|
|
for (t = 0; t < 4; t++) {
|
|
u32 r = vgpu_vreg(vgpu, offset + 8 + t * 4);
|
|
|
|
buf[t * 4] = (r >> 24) & 0xff;
|
|
buf[t * 4 + 1] = (r >> 16) & 0xff;
|
|
buf[t * 4 + 2] = (r >> 8) & 0xff;
|
|
buf[t * 4 + 3] = r & 0xff;
|
|
}
|
|
|
|
/* write to virtual DPCD */
|
|
if (dpcd && dpcd->data_valid) {
|
|
for (t = 0; t <= len; t++) {
|
|
int p = addr + t;
|
|
|
|
dpcd->data[p] = buf[t];
|
|
/* check for link training */
|
|
if (p == DPCD_TRAINING_PATTERN_SET)
|
|
dp_aux_ch_ctl_link_training(dpcd,
|
|
buf[t]);
|
|
}
|
|
}
|
|
|
|
/* ACK the write */
|
|
vgpu_vreg(vgpu, offset + 4) = 0;
|
|
dp_aux_ch_ctl_trans_done(vgpu, data, offset, 1,
|
|
dpcd && dpcd->data_valid);
|
|
return 0;
|
|
}
|
|
|
|
if (op == GVT_AUX_NATIVE_READ) {
|
|
int idx, i, ret = 0;
|
|
|
|
if ((addr + len + 1) >= DPCD_SIZE) {
|
|
/*
|
|
* read request exceeds what we supported
|
|
* DPCD spec: A Sink Device receiving a Native AUX CH
|
|
* read request for an unsupported DPCD address must
|
|
* reply with an AUX ACK and read data set equal to
|
|
* zero instead of replying with AUX NACK.
|
|
*/
|
|
|
|
/* ACK the READ*/
|
|
vgpu_vreg(vgpu, offset + 4) = 0;
|
|
vgpu_vreg(vgpu, offset + 8) = 0;
|
|
vgpu_vreg(vgpu, offset + 12) = 0;
|
|
vgpu_vreg(vgpu, offset + 16) = 0;
|
|
vgpu_vreg(vgpu, offset + 20) = 0;
|
|
|
|
dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
|
|
true);
|
|
return 0;
|
|
}
|
|
|
|
for (idx = 1; idx <= 5; idx++) {
|
|
/* clear the data registers */
|
|
vgpu_vreg(vgpu, offset + 4 * idx) = 0;
|
|
}
|
|
|
|
/*
|
|
* Read reply format: ACK (1 byte) plus (len + 1) bytes of data.
|
|
*/
|
|
if ((len + 2) > AUX_BURST_SIZE) {
|
|
gvt_vgpu_err("dp_aux_header: len %d is too large\n", len);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* read from virtual DPCD to vreg */
|
|
/* first 4 bytes: [ACK][addr][addr+1][addr+2] */
|
|
if (dpcd && dpcd->data_valid) {
|
|
for (i = 1; i <= (len + 1); i++) {
|
|
int t;
|
|
|
|
t = dpcd->data[addr + i - 1];
|
|
t <<= (24 - 8 * (i % 4));
|
|
ret |= t;
|
|
|
|
if ((i % 4 == 3) || (i == (len + 1))) {
|
|
vgpu_vreg(vgpu, offset +
|
|
(i / 4 + 1) * 4) = ret;
|
|
ret = 0;
|
|
}
|
|
}
|
|
}
|
|
dp_aux_ch_ctl_trans_done(vgpu, data, offset, len + 2,
|
|
dpcd && dpcd->data_valid);
|
|
return 0;
|
|
}
|
|
|
|
/* i2c transaction starts */
|
|
intel_gvt_i2c_handle_aux_ch_write(vgpu, port_index, offset, p_data);
|
|
|
|
if (data & DP_AUX_CH_CTL_INTERRUPT)
|
|
trigger_aux_channel_interrupt(vgpu, offset);
|
|
return 0;
|
|
}
|
|
|
|
static int mbctl_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
*(u32 *)p_data &= (~GEN6_MBCTL_ENABLE_BOOT_FETCH);
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
return 0;
|
|
}
|
|
|
|
static int vga_control_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
bool vga_disable;
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
vga_disable = vgpu_vreg(vgpu, offset) & VGA_DISP_DISABLE;
|
|
|
|
gvt_dbg_core("vgpu%d: %s VGA mode\n", vgpu->id,
|
|
vga_disable ? "Disable" : "Enable");
|
|
return 0;
|
|
}
|
|
|
|
static u32 read_virtual_sbi_register(struct intel_vgpu *vgpu,
|
|
unsigned int sbi_offset)
|
|
{
|
|
struct intel_vgpu_display *display = &vgpu->display;
|
|
int num = display->sbi.number;
|
|
int i;
|
|
|
|
for (i = 0; i < num; ++i)
|
|
if (display->sbi.registers[i].offset == sbi_offset)
|
|
break;
|
|
|
|
if (i == num)
|
|
return 0;
|
|
|
|
return display->sbi.registers[i].value;
|
|
}
|
|
|
|
static void write_virtual_sbi_register(struct intel_vgpu *vgpu,
|
|
unsigned int offset, u32 value)
|
|
{
|
|
struct intel_vgpu_display *display = &vgpu->display;
|
|
int num = display->sbi.number;
|
|
int i;
|
|
|
|
for (i = 0; i < num; ++i) {
|
|
if (display->sbi.registers[i].offset == offset)
|
|
break;
|
|
}
|
|
|
|
if (i == num) {
|
|
if (num == SBI_REG_MAX) {
|
|
gvt_vgpu_err("SBI caching meets maximum limits\n");
|
|
return;
|
|
}
|
|
display->sbi.number++;
|
|
}
|
|
|
|
display->sbi.registers[i].offset = offset;
|
|
display->sbi.registers[i].value = value;
|
|
}
|
|
|
|
static int sbi_data_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
|
|
SBI_OPCODE_SHIFT) == SBI_CMD_CRRD) {
|
|
unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
|
|
SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
|
|
vgpu_vreg(vgpu, offset) = read_virtual_sbi_register(vgpu,
|
|
sbi_offset);
|
|
}
|
|
read_vreg(vgpu, offset, p_data, bytes);
|
|
return 0;
|
|
}
|
|
|
|
static int sbi_ctl_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
u32 data;
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
data = vgpu_vreg(vgpu, offset);
|
|
|
|
data &= ~(SBI_STAT_MASK << SBI_STAT_SHIFT);
|
|
data |= SBI_READY;
|
|
|
|
data &= ~(SBI_RESPONSE_MASK << SBI_RESPONSE_SHIFT);
|
|
data |= SBI_RESPONSE_SUCCESS;
|
|
|
|
vgpu_vreg(vgpu, offset) = data;
|
|
|
|
if (((vgpu_vreg_t(vgpu, SBI_CTL_STAT) & SBI_OPCODE_MASK) >>
|
|
SBI_OPCODE_SHIFT) == SBI_CMD_CRWR) {
|
|
unsigned int sbi_offset = (vgpu_vreg_t(vgpu, SBI_ADDR) &
|
|
SBI_ADDR_OFFSET_MASK) >> SBI_ADDR_OFFSET_SHIFT;
|
|
|
|
write_virtual_sbi_register(vgpu, sbi_offset,
|
|
vgpu_vreg_t(vgpu, SBI_DATA));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define _vgtif_reg(x) \
|
|
(VGT_PVINFO_PAGE + offsetof(struct vgt_if, x))
|
|
|
|
static int pvinfo_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
bool invalid_read = false;
|
|
|
|
read_vreg(vgpu, offset, p_data, bytes);
|
|
|
|
switch (offset) {
|
|
case _vgtif_reg(magic) ... _vgtif_reg(vgt_id):
|
|
if (offset + bytes > _vgtif_reg(vgt_id) + 4)
|
|
invalid_read = true;
|
|
break;
|
|
case _vgtif_reg(avail_rs.mappable_gmadr.base) ...
|
|
_vgtif_reg(avail_rs.fence_num):
|
|
if (offset + bytes >
|
|
_vgtif_reg(avail_rs.fence_num) + 4)
|
|
invalid_read = true;
|
|
break;
|
|
case 0x78010: /* vgt_caps */
|
|
case 0x7881c:
|
|
break;
|
|
default:
|
|
invalid_read = true;
|
|
break;
|
|
}
|
|
if (invalid_read)
|
|
gvt_vgpu_err("invalid pvinfo read: [%x:%x] = %x\n",
|
|
offset, bytes, *(u32 *)p_data);
|
|
vgpu->pv_notified = true;
|
|
return 0;
|
|
}
|
|
|
|
static int handle_g2v_notification(struct intel_vgpu *vgpu, int notification)
|
|
{
|
|
enum intel_gvt_gtt_type root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
|
|
struct intel_vgpu_mm *mm;
|
|
u64 *pdps;
|
|
|
|
pdps = (u64 *)&vgpu_vreg64_t(vgpu, vgtif_reg(pdp[0]));
|
|
|
|
switch (notification) {
|
|
case VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE:
|
|
root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
|
|
fallthrough;
|
|
case VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE:
|
|
mm = intel_vgpu_get_ppgtt_mm(vgpu, root_entry_type, pdps);
|
|
return PTR_ERR_OR_ZERO(mm);
|
|
case VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY:
|
|
case VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY:
|
|
return intel_vgpu_put_ppgtt_mm(vgpu, pdps);
|
|
case VGT_G2V_EXECLIST_CONTEXT_CREATE:
|
|
case VGT_G2V_EXECLIST_CONTEXT_DESTROY:
|
|
case 1: /* Remove this in guest driver. */
|
|
break;
|
|
default:
|
|
gvt_vgpu_err("Invalid PV notification %d\n", notification);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int send_display_ready_uevent(struct intel_vgpu *vgpu, int ready)
|
|
{
|
|
struct kobject *kobj = &vgpu->gvt->gt->i915->drm.primary->kdev->kobj;
|
|
char *env[3] = {NULL, NULL, NULL};
|
|
char vmid_str[20];
|
|
char display_ready_str[20];
|
|
|
|
snprintf(display_ready_str, 20, "GVT_DISPLAY_READY=%d", ready);
|
|
env[0] = display_ready_str;
|
|
|
|
snprintf(vmid_str, 20, "VMID=%d", vgpu->id);
|
|
env[1] = vmid_str;
|
|
|
|
return kobject_uevent_env(kobj, KOBJ_ADD, env);
|
|
}
|
|
|
|
static int pvinfo_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
u32 data = *(u32 *)p_data;
|
|
bool invalid_write = false;
|
|
|
|
switch (offset) {
|
|
case _vgtif_reg(display_ready):
|
|
send_display_ready_uevent(vgpu, data ? 1 : 0);
|
|
break;
|
|
case _vgtif_reg(g2v_notify):
|
|
handle_g2v_notification(vgpu, data);
|
|
break;
|
|
/* add xhot and yhot to handled list to avoid error log */
|
|
case _vgtif_reg(cursor_x_hot):
|
|
case _vgtif_reg(cursor_y_hot):
|
|
case _vgtif_reg(pdp[0].lo):
|
|
case _vgtif_reg(pdp[0].hi):
|
|
case _vgtif_reg(pdp[1].lo):
|
|
case _vgtif_reg(pdp[1].hi):
|
|
case _vgtif_reg(pdp[2].lo):
|
|
case _vgtif_reg(pdp[2].hi):
|
|
case _vgtif_reg(pdp[3].lo):
|
|
case _vgtif_reg(pdp[3].hi):
|
|
case _vgtif_reg(execlist_context_descriptor_lo):
|
|
case _vgtif_reg(execlist_context_descriptor_hi):
|
|
break;
|
|
case _vgtif_reg(rsv5[0])..._vgtif_reg(rsv5[3]):
|
|
invalid_write = true;
|
|
enter_failsafe_mode(vgpu, GVT_FAILSAFE_INSUFFICIENT_RESOURCE);
|
|
break;
|
|
default:
|
|
invalid_write = true;
|
|
gvt_vgpu_err("invalid pvinfo write offset %x bytes %x data %x\n",
|
|
offset, bytes, data);
|
|
break;
|
|
}
|
|
|
|
if (!invalid_write)
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pf_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
|
|
u32 val = *(u32 *)p_data;
|
|
|
|
if ((offset == _PS_1A_CTRL || offset == _PS_2A_CTRL ||
|
|
offset == _PS_1B_CTRL || offset == _PS_2B_CTRL ||
|
|
offset == _PS_1C_CTRL) && (val & PS_BINDING_MASK) != PS_BINDING_PIPE) {
|
|
drm_WARN_ONCE(&i915->drm, true,
|
|
"VM(%d): guest is trying to scaling a plane\n",
|
|
vgpu->id);
|
|
return 0;
|
|
}
|
|
|
|
return intel_vgpu_default_mmio_write(vgpu, offset, p_data, bytes);
|
|
}
|
|
|
|
static int power_well_ctl_mmio_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
|
|
if (vgpu_vreg(vgpu, offset) &
|
|
HSW_PWR_WELL_CTL_REQ(HSW_PW_CTL_IDX_GLOBAL))
|
|
vgpu_vreg(vgpu, offset) |=
|
|
HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
|
|
else
|
|
vgpu_vreg(vgpu, offset) &=
|
|
~HSW_PWR_WELL_CTL_STATE(HSW_PW_CTL_IDX_GLOBAL);
|
|
return 0;
|
|
}
|
|
|
|
static int gen9_dbuf_ctl_mmio_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
|
|
if (vgpu_vreg(vgpu, offset) & DBUF_POWER_REQUEST)
|
|
vgpu_vreg(vgpu, offset) |= DBUF_POWER_STATE;
|
|
else
|
|
vgpu_vreg(vgpu, offset) &= ~DBUF_POWER_STATE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fpga_dbg_mmio_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
|
|
if (vgpu_vreg(vgpu, offset) & FPGA_DBG_RM_NOCLAIM)
|
|
vgpu_vreg(vgpu, offset) &= ~FPGA_DBG_RM_NOCLAIM;
|
|
return 0;
|
|
}
|
|
|
|
static int dma_ctrl_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
|
|
u32 mode;
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
mode = vgpu_vreg(vgpu, offset);
|
|
|
|
if (GFX_MODE_BIT_SET_IN_MASK(mode, START_DMA)) {
|
|
drm_WARN_ONCE(&i915->drm, 1,
|
|
"VM(%d): iGVT-g doesn't support GuC\n",
|
|
vgpu->id);
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen9_trtte_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
|
|
u32 trtte = *(u32 *)p_data;
|
|
|
|
if ((trtte & 1) && (trtte & (1 << 1)) == 0) {
|
|
drm_WARN(&i915->drm, 1,
|
|
"VM(%d): Use physical address for TRTT!\n",
|
|
vgpu->id);
|
|
return -EINVAL;
|
|
}
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int gen9_trtt_chicken_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
return 0;
|
|
}
|
|
|
|
static int dpll_status_read(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
u32 v = 0;
|
|
|
|
if (vgpu_vreg(vgpu, 0x46010) & (1 << 31))
|
|
v |= (1 << 0);
|
|
|
|
if (vgpu_vreg(vgpu, 0x46014) & (1 << 31))
|
|
v |= (1 << 8);
|
|
|
|
if (vgpu_vreg(vgpu, 0x46040) & (1 << 31))
|
|
v |= (1 << 16);
|
|
|
|
if (vgpu_vreg(vgpu, 0x46060) & (1 << 31))
|
|
v |= (1 << 24);
|
|
|
|
vgpu_vreg(vgpu, offset) = v;
|
|
|
|
return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
|
|
}
|
|
|
|
static int mailbox_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
u32 value = *(u32 *)p_data;
|
|
u32 cmd = value & 0xff;
|
|
u32 *data0 = &vgpu_vreg_t(vgpu, GEN6_PCODE_DATA);
|
|
|
|
switch (cmd) {
|
|
case GEN9_PCODE_READ_MEM_LATENCY:
|
|
if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
|
|
IS_KABYLAKE(vgpu->gvt->gt->i915) ||
|
|
IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
|
|
IS_COMETLAKE(vgpu->gvt->gt->i915)) {
|
|
/**
|
|
* "Read memory latency" command on gen9.
|
|
* Below memory latency values are read
|
|
* from skylake platform.
|
|
*/
|
|
if (!*data0)
|
|
*data0 = 0x1e1a1100;
|
|
else
|
|
*data0 = 0x61514b3d;
|
|
} else if (IS_BROXTON(vgpu->gvt->gt->i915)) {
|
|
/**
|
|
* "Read memory latency" command on gen9.
|
|
* Below memory latency values are read
|
|
* from Broxton MRB.
|
|
*/
|
|
if (!*data0)
|
|
*data0 = 0x16080707;
|
|
else
|
|
*data0 = 0x16161616;
|
|
}
|
|
break;
|
|
case SKL_PCODE_CDCLK_CONTROL:
|
|
if (IS_SKYLAKE(vgpu->gvt->gt->i915) ||
|
|
IS_KABYLAKE(vgpu->gvt->gt->i915) ||
|
|
IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
|
|
IS_COMETLAKE(vgpu->gvt->gt->i915))
|
|
*data0 = SKL_CDCLK_READY_FOR_CHANGE;
|
|
break;
|
|
case GEN6_PCODE_READ_RC6VIDS:
|
|
*data0 |= 0x1;
|
|
break;
|
|
}
|
|
|
|
gvt_dbg_core("VM(%d) write %x to mailbox, return data0 %x\n",
|
|
vgpu->id, value, *data0);
|
|
/**
|
|
* PCODE_READY clear means ready for pcode read/write,
|
|
* PCODE_ERROR_MASK clear means no error happened. In GVT-g we
|
|
* always emulate as pcode read/write success and ready for access
|
|
* anytime, since we don't touch real physical registers here.
|
|
*/
|
|
value &= ~(GEN6_PCODE_READY | GEN6_PCODE_ERROR_MASK);
|
|
return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
|
|
}
|
|
|
|
static int hws_pga_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
u32 value = *(u32 *)p_data;
|
|
const struct intel_engine_cs *engine =
|
|
intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
|
|
|
|
if (value != 0 &&
|
|
!intel_gvt_ggtt_validate_range(vgpu, value, I915_GTT_PAGE_SIZE)) {
|
|
gvt_vgpu_err("write invalid HWSP address, reg:0x%x, value:0x%x\n",
|
|
offset, value);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Need to emulate all the HWSP register write to ensure host can
|
|
* update the VM CSB status correctly. Here listed registers can
|
|
* support BDW, SKL or other platforms with same HWSP registers.
|
|
*/
|
|
if (unlikely(!engine)) {
|
|
gvt_vgpu_err("access unknown hardware status page register:0x%x\n",
|
|
offset);
|
|
return -EINVAL;
|
|
}
|
|
vgpu->hws_pga[engine->id] = value;
|
|
gvt_dbg_mmio("VM(%d) write: 0x%x to HWSP: 0x%x\n",
|
|
vgpu->id, value, offset);
|
|
|
|
return intel_vgpu_default_mmio_write(vgpu, offset, &value, bytes);
|
|
}
|
|
|
|
static int skl_power_well_ctl_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
u32 v = *(u32 *)p_data;
|
|
|
|
if (IS_BROXTON(vgpu->gvt->gt->i915))
|
|
v &= (1 << 31) | (1 << 29);
|
|
else
|
|
v &= (1 << 31) | (1 << 29) | (1 << 9) |
|
|
(1 << 7) | (1 << 5) | (1 << 3) | (1 << 1);
|
|
v |= (v >> 1);
|
|
|
|
return intel_vgpu_default_mmio_write(vgpu, offset, &v, bytes);
|
|
}
|
|
|
|
static int skl_lcpll_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
u32 v = *(u32 *)p_data;
|
|
|
|
/* other bits are MBZ. */
|
|
v &= (1 << 31) | (1 << 30);
|
|
v & (1 << 31) ? (v |= (1 << 30)) : (v &= ~(1 << 30));
|
|
|
|
vgpu_vreg(vgpu, offset) = v;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bxt_de_pll_enable_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
u32 v = *(u32 *)p_data;
|
|
|
|
if (v & BXT_DE_PLL_PLL_ENABLE)
|
|
v |= BXT_DE_PLL_LOCK;
|
|
|
|
vgpu_vreg(vgpu, offset) = v;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bxt_port_pll_enable_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
u32 v = *(u32 *)p_data;
|
|
|
|
if (v & PORT_PLL_ENABLE)
|
|
v |= PORT_PLL_LOCK;
|
|
|
|
vgpu_vreg(vgpu, offset) = v;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bxt_phy_ctl_family_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
u32 v = *(u32 *)p_data;
|
|
u32 data = v & COMMON_RESET_DIS ? BXT_PHY_LANE_ENABLED : 0;
|
|
|
|
switch (offset) {
|
|
case _PHY_CTL_FAMILY_EDP:
|
|
vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_A) = data;
|
|
break;
|
|
case _PHY_CTL_FAMILY_DDI:
|
|
vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_B) = data;
|
|
vgpu_vreg(vgpu, _BXT_PHY_CTL_DDI_C) = data;
|
|
break;
|
|
}
|
|
|
|
vgpu_vreg(vgpu, offset) = v;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bxt_port_tx_dw3_read(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
u32 v = vgpu_vreg(vgpu, offset);
|
|
|
|
v &= ~UNIQUE_TRANGE_EN_METHOD;
|
|
|
|
vgpu_vreg(vgpu, offset) = v;
|
|
|
|
return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
|
|
}
|
|
|
|
static int bxt_pcs_dw12_grp_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
u32 v = *(u32 *)p_data;
|
|
|
|
if (offset == _PORT_PCS_DW12_GRP_A || offset == _PORT_PCS_DW12_GRP_B) {
|
|
vgpu_vreg(vgpu, offset - 0x600) = v;
|
|
vgpu_vreg(vgpu, offset - 0x800) = v;
|
|
} else {
|
|
vgpu_vreg(vgpu, offset - 0x400) = v;
|
|
vgpu_vreg(vgpu, offset - 0x600) = v;
|
|
}
|
|
|
|
vgpu_vreg(vgpu, offset) = v;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bxt_gt_disp_pwron_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
u32 v = *(u32 *)p_data;
|
|
|
|
if (v & BIT(0)) {
|
|
vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) &=
|
|
~PHY_RESERVED;
|
|
vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY0)) |=
|
|
PHY_POWER_GOOD;
|
|
}
|
|
|
|
if (v & BIT(1)) {
|
|
vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) &=
|
|
~PHY_RESERVED;
|
|
vgpu_vreg_t(vgpu, BXT_PORT_CL1CM_DW0(DPIO_PHY1)) |=
|
|
PHY_POWER_GOOD;
|
|
}
|
|
|
|
|
|
vgpu_vreg(vgpu, offset) = v;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int edp_psr_imr_iir_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
vgpu_vreg(vgpu, offset) = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* FixMe:
|
|
* If guest fills non-priv batch buffer on ApolloLake/Broxton as Mesa i965 did:
|
|
* 717e7539124d (i965: Use a WC map and memcpy for the batch instead of pwrite.)
|
|
* Due to the missing flush of bb filled by VM vCPU, host GPU hangs on executing
|
|
* these MI_BATCH_BUFFER.
|
|
* Temporarily workaround this by setting SNOOP bit for PAT3 used by PPGTT
|
|
* PML4 PTE: PAT(0) PCD(1) PWT(1).
|
|
* The performance is still expected to be low, will need further improvement.
|
|
*/
|
|
static int bxt_ppat_low_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
u64 pat =
|
|
GEN8_PPAT(0, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(1, 0) |
|
|
GEN8_PPAT(2, 0) |
|
|
GEN8_PPAT(3, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(4, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(5, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(6, CHV_PPAT_SNOOP) |
|
|
GEN8_PPAT(7, CHV_PPAT_SNOOP);
|
|
|
|
vgpu_vreg(vgpu, offset) = lower_32_bits(pat);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int guc_status_read(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data,
|
|
unsigned int bytes)
|
|
{
|
|
/* keep MIA_IN_RESET before clearing */
|
|
read_vreg(vgpu, offset, p_data, bytes);
|
|
vgpu_vreg(vgpu, offset) &= ~GS_MIA_IN_RESET;
|
|
return 0;
|
|
}
|
|
|
|
static int mmio_read_from_hw(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
struct intel_gvt *gvt = vgpu->gvt;
|
|
const struct intel_engine_cs *engine =
|
|
intel_gvt_render_mmio_to_engine(gvt, offset);
|
|
|
|
/**
|
|
* Read HW reg in following case
|
|
* a. the offset isn't a ring mmio
|
|
* b. the offset's ring is running on hw.
|
|
* c. the offset is ring time stamp mmio
|
|
*/
|
|
|
|
if (!engine ||
|
|
vgpu == gvt->scheduler.engine_owner[engine->id] ||
|
|
offset == i915_mmio_reg_offset(RING_TIMESTAMP(engine->mmio_base)) ||
|
|
offset == i915_mmio_reg_offset(RING_TIMESTAMP_UDW(engine->mmio_base))) {
|
|
mmio_hw_access_pre(gvt->gt);
|
|
vgpu_vreg(vgpu, offset) =
|
|
intel_uncore_read(gvt->gt->uncore, _MMIO(offset));
|
|
mmio_hw_access_post(gvt->gt);
|
|
}
|
|
|
|
return intel_vgpu_default_mmio_read(vgpu, offset, p_data, bytes);
|
|
}
|
|
|
|
static int elsp_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
|
|
const struct intel_engine_cs *engine = intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
|
|
struct intel_vgpu_execlist *execlist;
|
|
u32 data = *(u32 *)p_data;
|
|
int ret = 0;
|
|
|
|
if (drm_WARN_ON(&i915->drm, !engine))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Due to d3_entered is used to indicate skipping PPGTT invalidation on
|
|
* vGPU reset, it's set on D0->D3 on PCI config write, and cleared after
|
|
* vGPU reset if in resuming.
|
|
* In S0ix exit, the device power state also transite from D3 to D0 as
|
|
* S3 resume, but no vGPU reset (triggered by QEMU devic model). After
|
|
* S0ix exit, all engines continue to work. However the d3_entered
|
|
* remains set which will break next vGPU reset logic (miss the expected
|
|
* PPGTT invalidation).
|
|
* Engines can only work in D0. Thus the 1st elsp write gives GVT a
|
|
* chance to clear d3_entered.
|
|
*/
|
|
if (vgpu->d3_entered)
|
|
vgpu->d3_entered = false;
|
|
|
|
execlist = &vgpu->submission.execlist[engine->id];
|
|
|
|
execlist->elsp_dwords.data[3 - execlist->elsp_dwords.index] = data;
|
|
if (execlist->elsp_dwords.index == 3) {
|
|
ret = intel_vgpu_submit_execlist(vgpu, engine);
|
|
if(ret)
|
|
gvt_vgpu_err("fail submit workload on ring %s\n",
|
|
engine->name);
|
|
}
|
|
|
|
++execlist->elsp_dwords.index;
|
|
execlist->elsp_dwords.index &= 0x3;
|
|
return ret;
|
|
}
|
|
|
|
static int ring_mode_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
u32 data = *(u32 *)p_data;
|
|
const struct intel_engine_cs *engine =
|
|
intel_gvt_render_mmio_to_engine(vgpu->gvt, offset);
|
|
bool enable_execlist;
|
|
int ret;
|
|
|
|
(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(1);
|
|
if (IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
|
|
IS_COMETLAKE(vgpu->gvt->gt->i915))
|
|
(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(2);
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
|
|
if (IS_MASKED_BITS_ENABLED(data, 1)) {
|
|
enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
|
|
return 0;
|
|
}
|
|
|
|
if ((IS_COFFEELAKE(vgpu->gvt->gt->i915) ||
|
|
IS_COMETLAKE(vgpu->gvt->gt->i915)) &&
|
|
IS_MASKED_BITS_ENABLED(data, 2)) {
|
|
enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
|
|
return 0;
|
|
}
|
|
|
|
/* when PPGTT mode enabled, we will check if guest has called
|
|
* pvinfo, if not, we will treat this guest as non-gvtg-aware
|
|
* guest, and stop emulating its cfg space, mmio, gtt, etc.
|
|
*/
|
|
if ((IS_MASKED_BITS_ENABLED(data, GFX_PPGTT_ENABLE) ||
|
|
IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE)) &&
|
|
!vgpu->pv_notified) {
|
|
enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
|
|
return 0;
|
|
}
|
|
if (IS_MASKED_BITS_ENABLED(data, GFX_RUN_LIST_ENABLE) ||
|
|
IS_MASKED_BITS_DISABLED(data, GFX_RUN_LIST_ENABLE)) {
|
|
enable_execlist = !!(data & GFX_RUN_LIST_ENABLE);
|
|
|
|
gvt_dbg_core("EXECLIST %s on ring %s\n",
|
|
(enable_execlist ? "enabling" : "disabling"),
|
|
engine->name);
|
|
|
|
if (!enable_execlist)
|
|
return 0;
|
|
|
|
ret = intel_vgpu_select_submission_ops(vgpu,
|
|
engine->mask,
|
|
INTEL_VGPU_EXECLIST_SUBMISSION);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_vgpu_start_schedule(vgpu);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int gvt_reg_tlb_control_handler(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
unsigned int id = 0;
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
vgpu_vreg(vgpu, offset) = 0;
|
|
|
|
switch (offset) {
|
|
case 0x4260:
|
|
id = RCS0;
|
|
break;
|
|
case 0x4264:
|
|
id = VCS0;
|
|
break;
|
|
case 0x4268:
|
|
id = VCS1;
|
|
break;
|
|
case 0x426c:
|
|
id = BCS0;
|
|
break;
|
|
case 0x4270:
|
|
id = VECS0;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
set_bit(id, (void *)vgpu->submission.tlb_handle_pending);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ring_reset_ctl_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data, unsigned int bytes)
|
|
{
|
|
u32 data;
|
|
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
data = vgpu_vreg(vgpu, offset);
|
|
|
|
if (IS_MASKED_BITS_ENABLED(data, RESET_CTL_REQUEST_RESET))
|
|
data |= RESET_CTL_READY_TO_RESET;
|
|
else if (data & _MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET))
|
|
data &= ~RESET_CTL_READY_TO_RESET;
|
|
|
|
vgpu_vreg(vgpu, offset) = data;
|
|
return 0;
|
|
}
|
|
|
|
static int csfe_chicken1_mmio_write(struct intel_vgpu *vgpu,
|
|
unsigned int offset, void *p_data,
|
|
unsigned int bytes)
|
|
{
|
|
u32 data = *(u32 *)p_data;
|
|
|
|
(*(u32 *)p_data) &= ~_MASKED_BIT_ENABLE(0x18);
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
|
|
if (IS_MASKED_BITS_ENABLED(data, 0x10) ||
|
|
IS_MASKED_BITS_ENABLED(data, 0x8))
|
|
enter_failsafe_mode(vgpu, GVT_FAILSAFE_UNSUPPORTED_GUEST);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define MMIO_F(reg, s, f, am, rm, d, r, w) do { \
|
|
ret = setup_mmio_info(gvt, i915_mmio_reg_offset(reg), \
|
|
s, f, am, rm, d, r, w); \
|
|
if (ret) \
|
|
return ret; \
|
|
} while (0)
|
|
|
|
#define MMIO_DH(reg, d, r, w) \
|
|
MMIO_F(reg, 4, 0, 0, 0, d, r, w)
|
|
|
|
#define MMIO_DFH(reg, d, f, r, w) \
|
|
MMIO_F(reg, 4, f, 0, 0, d, r, w)
|
|
|
|
#define MMIO_GM(reg, d, r, w) \
|
|
MMIO_F(reg, 4, F_GMADR, 0xFFFFF000, 0, d, r, w)
|
|
|
|
#define MMIO_GM_RDR(reg, d, r, w) \
|
|
MMIO_F(reg, 4, F_GMADR | F_CMD_ACCESS, 0xFFFFF000, 0, d, r, w)
|
|
|
|
#define MMIO_RO(reg, d, f, rm, r, w) \
|
|
MMIO_F(reg, 4, F_RO | f, 0, rm, d, r, w)
|
|
|
|
#define MMIO_RING_F(prefix, s, f, am, rm, d, r, w) do { \
|
|
MMIO_F(prefix(RENDER_RING_BASE), s, f, am, rm, d, r, w); \
|
|
MMIO_F(prefix(BLT_RING_BASE), s, f, am, rm, d, r, w); \
|
|
MMIO_F(prefix(GEN6_BSD_RING_BASE), s, f, am, rm, d, r, w); \
|
|
MMIO_F(prefix(VEBOX_RING_BASE), s, f, am, rm, d, r, w); \
|
|
if (HAS_ENGINE(gvt->gt, VCS1)) \
|
|
MMIO_F(prefix(GEN8_BSD2_RING_BASE), s, f, am, rm, d, r, w); \
|
|
} while (0)
|
|
|
|
#define MMIO_RING_DFH(prefix, d, f, r, w) \
|
|
MMIO_RING_F(prefix, 4, f, 0, 0, d, r, w)
|
|
|
|
#define MMIO_RING_GM(prefix, d, r, w) \
|
|
MMIO_RING_F(prefix, 4, F_GMADR, 0xFFFF0000, 0, d, r, w)
|
|
|
|
#define MMIO_RING_GM_RDR(prefix, d, r, w) \
|
|
MMIO_RING_F(prefix, 4, F_GMADR | F_CMD_ACCESS, 0xFFFF0000, 0, d, r, w)
|
|
|
|
#define MMIO_RING_RO(prefix, d, f, rm, r, w) \
|
|
MMIO_RING_F(prefix, 4, F_RO | f, 0, rm, d, r, w)
|
|
|
|
static int init_generic_mmio_info(struct intel_gvt *gvt)
|
|
{
|
|
struct drm_i915_private *dev_priv = gvt->gt->i915;
|
|
int ret;
|
|
|
|
MMIO_RING_DFH(RING_IMR, D_ALL, 0, NULL,
|
|
intel_vgpu_reg_imr_handler);
|
|
|
|
MMIO_DFH(SDEIMR, D_ALL, 0, NULL, intel_vgpu_reg_imr_handler);
|
|
MMIO_DFH(SDEIER, D_ALL, 0, NULL, intel_vgpu_reg_ier_handler);
|
|
MMIO_DFH(SDEIIR, D_ALL, 0, NULL, intel_vgpu_reg_iir_handler);
|
|
|
|
MMIO_RING_DFH(RING_HWSTAM, D_ALL, 0, NULL, NULL);
|
|
|
|
|
|
MMIO_DH(GEN8_GAMW_ECO_DEV_RW_IA, D_BDW_PLUS, NULL,
|
|
gamw_echo_dev_rw_ia_write);
|
|
|
|
MMIO_GM_RDR(BSD_HWS_PGA_GEN7, D_ALL, NULL, NULL);
|
|
MMIO_GM_RDR(BLT_HWS_PGA_GEN7, D_ALL, NULL, NULL);
|
|
MMIO_GM_RDR(VEBOX_HWS_PGA_GEN7, D_ALL, NULL, NULL);
|
|
|
|
#define RING_REG(base) _MMIO((base) + 0x28)
|
|
MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
#undef RING_REG
|
|
|
|
#define RING_REG(base) _MMIO((base) + 0x134)
|
|
MMIO_RING_DFH(RING_REG, D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
#undef RING_REG
|
|
|
|
#define RING_REG(base) _MMIO((base) + 0x6c)
|
|
MMIO_RING_DFH(RING_REG, D_ALL, 0, mmio_read_from_hw, NULL);
|
|
#undef RING_REG
|
|
MMIO_DH(GEN7_SC_INSTDONE, D_BDW_PLUS, mmio_read_from_hw, NULL);
|
|
|
|
MMIO_GM_RDR(_MMIO(0x2148), D_ALL, NULL, NULL);
|
|
MMIO_GM_RDR(CCID(RENDER_RING_BASE), D_ALL, NULL, NULL);
|
|
MMIO_GM_RDR(_MMIO(0x12198), D_ALL, NULL, NULL);
|
|
|
|
MMIO_RING_DFH(RING_TAIL, D_ALL, 0, NULL, NULL);
|
|
MMIO_RING_DFH(RING_HEAD, D_ALL, 0, NULL, NULL);
|
|
MMIO_RING_DFH(RING_CTL, D_ALL, 0, NULL, NULL);
|
|
MMIO_RING_DFH(RING_ACTHD, D_ALL, 0, mmio_read_from_hw, NULL);
|
|
MMIO_RING_GM(RING_START, D_ALL, NULL, NULL);
|
|
|
|
/* RING MODE */
|
|
#define RING_REG(base) _MMIO((base) + 0x29c)
|
|
MMIO_RING_DFH(RING_REG, D_ALL,
|
|
F_MODE_MASK | F_CMD_ACCESS | F_CMD_WRITE_PATCH, NULL,
|
|
ring_mode_mmio_write);
|
|
#undef RING_REG
|
|
|
|
MMIO_RING_DFH(RING_MI_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
|
|
NULL, NULL);
|
|
MMIO_RING_DFH(RING_INSTPM, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
|
|
NULL, NULL);
|
|
MMIO_RING_DFH(RING_TIMESTAMP, D_ALL, F_CMD_ACCESS,
|
|
mmio_read_from_hw, NULL);
|
|
MMIO_RING_DFH(RING_TIMESTAMP_UDW, D_ALL, F_CMD_ACCESS,
|
|
mmio_read_from_hw, NULL);
|
|
|
|
MMIO_DFH(GEN7_GT_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(CACHE_MODE_0_GEN7, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
|
|
NULL, NULL);
|
|
MMIO_DFH(CACHE_MODE_1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(CACHE_MODE_0, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x2124), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
|
|
MMIO_DFH(_MMIO(0x20dc), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_3D_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x2088), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(FF_SLICE_CS_CHICKEN2, D_ALL,
|
|
F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x2470), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(GAM_ECOCHK, D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(GEN7_COMMON_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
|
|
NULL, NULL);
|
|
MMIO_DFH(COMMON_SLICE_CHICKEN2, D_ALL, F_MODE_MASK | F_CMD_ACCESS,
|
|
NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x9030), D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x20a0), D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x2420), D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x2430), D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x2434), D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x2438), D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x243c), D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x7018), D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(HSW_HALF_SLICE_CHICKEN3, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(GEN7_HALF_SLICE_CHICKEN1, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
|
|
/* display */
|
|
MMIO_DH(TRANSCONF(dev_priv, TRANSCODER_A), D_ALL, NULL,
|
|
pipeconf_mmio_write);
|
|
MMIO_DH(TRANSCONF(dev_priv, TRANSCODER_B), D_ALL, NULL,
|
|
pipeconf_mmio_write);
|
|
MMIO_DH(TRANSCONF(dev_priv, TRANSCODER_C), D_ALL, NULL,
|
|
pipeconf_mmio_write);
|
|
MMIO_DH(TRANSCONF(dev_priv, TRANSCODER_EDP), D_ALL, NULL,
|
|
pipeconf_mmio_write);
|
|
MMIO_DH(DSPSURF(dev_priv, PIPE_A), D_ALL, NULL, pri_surf_mmio_write);
|
|
MMIO_DH(REG_50080(PIPE_A, PLANE_PRIMARY), D_ALL, NULL,
|
|
reg50080_mmio_write);
|
|
MMIO_DH(DSPSURF(dev_priv, PIPE_B), D_ALL, NULL, pri_surf_mmio_write);
|
|
MMIO_DH(REG_50080(PIPE_B, PLANE_PRIMARY), D_ALL, NULL,
|
|
reg50080_mmio_write);
|
|
MMIO_DH(DSPSURF(dev_priv, PIPE_C), D_ALL, NULL, pri_surf_mmio_write);
|
|
MMIO_DH(REG_50080(PIPE_C, PLANE_PRIMARY), D_ALL, NULL,
|
|
reg50080_mmio_write);
|
|
MMIO_DH(SPRSURF(PIPE_A), D_ALL, NULL, spr_surf_mmio_write);
|
|
MMIO_DH(REG_50080(PIPE_A, PLANE_SPRITE0), D_ALL, NULL,
|
|
reg50080_mmio_write);
|
|
MMIO_DH(SPRSURF(PIPE_B), D_ALL, NULL, spr_surf_mmio_write);
|
|
MMIO_DH(REG_50080(PIPE_B, PLANE_SPRITE0), D_ALL, NULL,
|
|
reg50080_mmio_write);
|
|
MMIO_DH(SPRSURF(PIPE_C), D_ALL, NULL, spr_surf_mmio_write);
|
|
MMIO_DH(REG_50080(PIPE_C, PLANE_SPRITE0), D_ALL, NULL,
|
|
reg50080_mmio_write);
|
|
|
|
MMIO_F(PCH_GMBUS0, 4 * 4, 0, 0, 0, D_ALL, gmbus_mmio_read,
|
|
gmbus_mmio_write);
|
|
MMIO_F(PCH_GPIO_BASE, 6 * 4, F_UNALIGN, 0, 0, D_ALL, NULL, NULL);
|
|
|
|
MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
|
|
dp_aux_ch_ctl_mmio_write);
|
|
MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
|
|
dp_aux_ch_ctl_mmio_write);
|
|
MMIO_F(PCH_DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_PRE_SKL, NULL,
|
|
dp_aux_ch_ctl_mmio_write);
|
|
|
|
MMIO_DH(PCH_ADPA, D_PRE_SKL, NULL, pch_adpa_mmio_write);
|
|
|
|
MMIO_DH(_MMIO(_PCH_TRANSACONF), D_ALL, NULL, transconf_mmio_write);
|
|
MMIO_DH(_MMIO(_PCH_TRANSBCONF), D_ALL, NULL, transconf_mmio_write);
|
|
|
|
MMIO_DH(FDI_RX_IIR(PIPE_A), D_ALL, NULL, fdi_rx_iir_mmio_write);
|
|
MMIO_DH(FDI_RX_IIR(PIPE_B), D_ALL, NULL, fdi_rx_iir_mmio_write);
|
|
MMIO_DH(FDI_RX_IIR(PIPE_C), D_ALL, NULL, fdi_rx_iir_mmio_write);
|
|
MMIO_DH(FDI_RX_IMR(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
|
|
MMIO_DH(FDI_RX_IMR(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
|
|
MMIO_DH(FDI_RX_IMR(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
|
|
MMIO_DH(FDI_RX_CTL(PIPE_A), D_ALL, NULL, update_fdi_rx_iir_status);
|
|
MMIO_DH(FDI_RX_CTL(PIPE_B), D_ALL, NULL, update_fdi_rx_iir_status);
|
|
MMIO_DH(FDI_RX_CTL(PIPE_C), D_ALL, NULL, update_fdi_rx_iir_status);
|
|
MMIO_DH(PCH_PP_CONTROL, D_ALL, NULL, pch_pp_control_mmio_write);
|
|
MMIO_DH(_MMIO(0xe651c), D_ALL, dpy_reg_mmio_read, NULL);
|
|
MMIO_DH(_MMIO(0xe661c), D_ALL, dpy_reg_mmio_read, NULL);
|
|
MMIO_DH(_MMIO(0xe671c), D_ALL, dpy_reg_mmio_read, NULL);
|
|
MMIO_DH(_MMIO(0xe681c), D_ALL, dpy_reg_mmio_read, NULL);
|
|
MMIO_DH(_MMIO(0xe6c04), D_ALL, dpy_reg_mmio_read, NULL);
|
|
MMIO_DH(_MMIO(0xe6e1c), D_ALL, dpy_reg_mmio_read, NULL);
|
|
|
|
MMIO_RO(PCH_PORT_HOTPLUG, D_ALL, 0,
|
|
PORTA_HOTPLUG_STATUS_MASK
|
|
| PORTB_HOTPLUG_STATUS_MASK
|
|
| PORTC_HOTPLUG_STATUS_MASK
|
|
| PORTD_HOTPLUG_STATUS_MASK,
|
|
NULL, NULL);
|
|
|
|
MMIO_DH(LCPLL_CTL, D_ALL, NULL, lcpll_ctl_mmio_write);
|
|
MMIO_DH(SOUTH_CHICKEN2, D_ALL, NULL, south_chicken2_mmio_write);
|
|
MMIO_DH(SFUSE_STRAP, D_ALL, NULL, NULL);
|
|
MMIO_DH(SBI_DATA, D_ALL, sbi_data_mmio_read, NULL);
|
|
MMIO_DH(SBI_CTL_STAT, D_ALL, NULL, sbi_ctl_mmio_write);
|
|
|
|
MMIO_F(DP_AUX_CH_CTL(AUX_CH_A), 6 * 4, 0, 0, 0, D_ALL, NULL,
|
|
dp_aux_ch_ctl_mmio_write);
|
|
|
|
MMIO_DH(DDI_BUF_CTL(PORT_A), D_ALL, NULL, ddi_buf_ctl_mmio_write);
|
|
MMIO_DH(DDI_BUF_CTL(PORT_B), D_ALL, NULL, ddi_buf_ctl_mmio_write);
|
|
MMIO_DH(DDI_BUF_CTL(PORT_C), D_ALL, NULL, ddi_buf_ctl_mmio_write);
|
|
MMIO_DH(DDI_BUF_CTL(PORT_D), D_ALL, NULL, ddi_buf_ctl_mmio_write);
|
|
MMIO_DH(DDI_BUF_CTL(PORT_E), D_ALL, NULL, ddi_buf_ctl_mmio_write);
|
|
|
|
MMIO_DH(DP_TP_CTL(PORT_A), D_ALL, NULL, dp_tp_ctl_mmio_write);
|
|
MMIO_DH(DP_TP_CTL(PORT_B), D_ALL, NULL, dp_tp_ctl_mmio_write);
|
|
MMIO_DH(DP_TP_CTL(PORT_C), D_ALL, NULL, dp_tp_ctl_mmio_write);
|
|
MMIO_DH(DP_TP_CTL(PORT_D), D_ALL, NULL, dp_tp_ctl_mmio_write);
|
|
MMIO_DH(DP_TP_CTL(PORT_E), D_ALL, NULL, dp_tp_ctl_mmio_write);
|
|
|
|
MMIO_DH(DP_TP_STATUS(PORT_A), D_ALL, NULL, dp_tp_status_mmio_write);
|
|
MMIO_DH(DP_TP_STATUS(PORT_B), D_ALL, NULL, dp_tp_status_mmio_write);
|
|
MMIO_DH(DP_TP_STATUS(PORT_C), D_ALL, NULL, dp_tp_status_mmio_write);
|
|
MMIO_DH(DP_TP_STATUS(PORT_D), D_ALL, NULL, dp_tp_status_mmio_write);
|
|
MMIO_DH(DP_TP_STATUS(PORT_E), D_ALL, NULL, NULL);
|
|
|
|
MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_A), D_ALL, NULL, NULL);
|
|
MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_B), D_ALL, NULL, NULL);
|
|
MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_C), D_ALL, NULL, NULL);
|
|
MMIO_DH(_MMIO(_TRANS_DDI_FUNC_CTL_EDP), D_ALL, NULL, NULL);
|
|
|
|
MMIO_DH(FORCEWAKE, D_ALL, NULL, NULL);
|
|
MMIO_DFH(GTFIFODBG, D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(GTFIFOCTL, D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DH(FORCEWAKE_MT, D_PRE_SKL, NULL, mul_force_wake_write);
|
|
MMIO_DH(FORCEWAKE_ACK_HSW, D_BDW, NULL, NULL);
|
|
MMIO_DH(GEN6_RC_CONTROL, D_ALL, NULL, NULL);
|
|
MMIO_DH(GEN6_RC_STATE, D_ALL, NULL, NULL);
|
|
MMIO_DH(HSW_PWR_WELL_CTL1, D_BDW, NULL, power_well_ctl_mmio_write);
|
|
MMIO_DH(HSW_PWR_WELL_CTL2, D_BDW, NULL, power_well_ctl_mmio_write);
|
|
MMIO_DH(HSW_PWR_WELL_CTL3, D_BDW, NULL, power_well_ctl_mmio_write);
|
|
MMIO_DH(HSW_PWR_WELL_CTL4, D_BDW, NULL, power_well_ctl_mmio_write);
|
|
MMIO_DH(HSW_PWR_WELL_CTL5, D_BDW, NULL, power_well_ctl_mmio_write);
|
|
MMIO_DH(HSW_PWR_WELL_CTL6, D_BDW, NULL, power_well_ctl_mmio_write);
|
|
|
|
MMIO_DH(GEN6_GDRST, D_ALL, NULL, gdrst_mmio_write);
|
|
MMIO_F(FENCE_REG_GEN6_LO(0), 0x80, 0, 0, 0, D_ALL, fence_mmio_read, fence_mmio_write);
|
|
MMIO_DH(CPU_VGACNTRL, D_ALL, NULL, vga_control_mmio_write);
|
|
|
|
MMIO_DH(GEN7_ERR_INT, D_ALL, NULL, NULL);
|
|
MMIO_DH(GFX_FLSH_CNTL_GEN6, D_ALL, NULL, NULL);
|
|
|
|
MMIO_DH(GEN6_MBCTL, D_ALL, NULL, mbctl_write);
|
|
MMIO_DFH(GEN7_UCGCTL4, D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
|
|
MMIO_DH(FPGA_DBG, D_ALL, NULL, fpga_dbg_mmio_write);
|
|
MMIO_DFH(_MMIO(0x215c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x2178), D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x12178), D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x1217c), D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
|
|
MMIO_F(_MMIO(0x2290), 8, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
|
|
MMIO_F(_MMIO(0x5200), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
|
|
MMIO_F(_MMIO(0x5240), 32, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
|
|
MMIO_F(_MMIO(0x5280), 16, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
|
|
|
|
MMIO_DFH(_MMIO(0x1c17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x1c178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(BCS_SWCTRL, D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
|
|
MMIO_F(HS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
|
|
MMIO_F(DS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
|
|
MMIO_F(IA_VERTICES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
|
|
MMIO_F(IA_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
|
|
MMIO_F(VS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
|
|
MMIO_F(GS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
|
|
MMIO_F(GS_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
|
|
MMIO_F(CL_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
|
|
MMIO_F(CL_PRIMITIVES_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
|
|
MMIO_F(PS_INVOCATION_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
|
|
MMIO_F(PS_DEPTH_COUNT, 8, F_CMD_ACCESS, 0, 0, D_ALL, NULL, NULL);
|
|
MMIO_DH(_MMIO(0x4260), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
|
|
MMIO_DH(_MMIO(0x4264), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
|
|
MMIO_DH(_MMIO(0x4268), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
|
|
MMIO_DH(_MMIO(0x426c), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
|
|
MMIO_DH(_MMIO(0x4270), D_BDW_PLUS, NULL, gvt_reg_tlb_control_handler);
|
|
MMIO_DFH(_MMIO(0x4094), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
|
|
MMIO_DFH(ARB_MODE, D_ALL, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_RING_GM(RING_BBADDR, D_ALL, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x2220), D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x12220), D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x22220), D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_RING_DFH(RING_SYNC_1, D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_RING_DFH(RING_SYNC_0, D_ALL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x22178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x1a178), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x1a17c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x2217c), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
|
|
MMIO_DH(EDP_PSR_IMR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
|
|
MMIO_DH(EDP_PSR_IIR, D_BDW_PLUS, NULL, edp_psr_imr_iir_write);
|
|
MMIO_DH(GUC_STATUS, D_ALL, guc_status_read, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_bdw_mmio_info(struct intel_gvt *gvt)
|
|
{
|
|
int ret;
|
|
|
|
MMIO_DH(GEN8_GT_IMR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
|
|
MMIO_DH(GEN8_GT_IER(0), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
|
|
MMIO_DH(GEN8_GT_IIR(0), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
|
|
|
|
MMIO_DH(GEN8_GT_IMR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
|
|
MMIO_DH(GEN8_GT_IER(1), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
|
|
MMIO_DH(GEN8_GT_IIR(1), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
|
|
|
|
MMIO_DH(GEN8_GT_IMR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
|
|
MMIO_DH(GEN8_GT_IER(2), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
|
|
MMIO_DH(GEN8_GT_IIR(2), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
|
|
|
|
MMIO_DH(GEN8_GT_IMR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
|
|
MMIO_DH(GEN8_GT_IER(3), D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
|
|
MMIO_DH(GEN8_GT_IIR(3), D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
|
|
|
|
MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_A), D_BDW_PLUS, NULL,
|
|
intel_vgpu_reg_imr_handler);
|
|
MMIO_DH(GEN8_DE_PIPE_IER(PIPE_A), D_BDW_PLUS, NULL,
|
|
intel_vgpu_reg_ier_handler);
|
|
MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_A), D_BDW_PLUS, NULL,
|
|
intel_vgpu_reg_iir_handler);
|
|
|
|
MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_B), D_BDW_PLUS, NULL,
|
|
intel_vgpu_reg_imr_handler);
|
|
MMIO_DH(GEN8_DE_PIPE_IER(PIPE_B), D_BDW_PLUS, NULL,
|
|
intel_vgpu_reg_ier_handler);
|
|
MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_B), D_BDW_PLUS, NULL,
|
|
intel_vgpu_reg_iir_handler);
|
|
|
|
MMIO_DH(GEN8_DE_PIPE_IMR(PIPE_C), D_BDW_PLUS, NULL,
|
|
intel_vgpu_reg_imr_handler);
|
|
MMIO_DH(GEN8_DE_PIPE_IER(PIPE_C), D_BDW_PLUS, NULL,
|
|
intel_vgpu_reg_ier_handler);
|
|
MMIO_DH(GEN8_DE_PIPE_IIR(PIPE_C), D_BDW_PLUS, NULL,
|
|
intel_vgpu_reg_iir_handler);
|
|
|
|
MMIO_DH(GEN8_DE_PORT_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
|
|
MMIO_DH(GEN8_DE_PORT_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
|
|
MMIO_DH(GEN8_DE_PORT_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
|
|
|
|
MMIO_DH(GEN8_DE_MISC_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
|
|
MMIO_DH(GEN8_DE_MISC_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
|
|
MMIO_DH(GEN8_DE_MISC_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
|
|
|
|
MMIO_DH(GEN8_PCU_IMR, D_BDW_PLUS, NULL, intel_vgpu_reg_imr_handler);
|
|
MMIO_DH(GEN8_PCU_IER, D_BDW_PLUS, NULL, intel_vgpu_reg_ier_handler);
|
|
MMIO_DH(GEN8_PCU_IIR, D_BDW_PLUS, NULL, intel_vgpu_reg_iir_handler);
|
|
|
|
MMIO_DH(GEN8_MASTER_IRQ, D_BDW_PLUS, NULL,
|
|
intel_vgpu_reg_master_irq_handler);
|
|
|
|
MMIO_RING_DFH(RING_ACTHD_UDW, D_BDW_PLUS, 0,
|
|
mmio_read_from_hw, NULL);
|
|
|
|
#define RING_REG(base) _MMIO((base) + 0xd0)
|
|
MMIO_RING_F(RING_REG, 4, F_RO, 0,
|
|
~_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET), D_BDW_PLUS, NULL,
|
|
ring_reset_ctl_write);
|
|
#undef RING_REG
|
|
|
|
#define RING_REG(base) _MMIO((base) + 0x230)
|
|
MMIO_RING_DFH(RING_REG, D_BDW_PLUS, 0, NULL, elsp_mmio_write);
|
|
#undef RING_REG
|
|
|
|
#define RING_REG(base) _MMIO((base) + 0x234)
|
|
MMIO_RING_F(RING_REG, 8, F_RO, 0, ~0, D_BDW_PLUS,
|
|
NULL, NULL);
|
|
#undef RING_REG
|
|
|
|
#define RING_REG(base) _MMIO((base) + 0x244)
|
|
MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
#undef RING_REG
|
|
|
|
#define RING_REG(base) _MMIO((base) + 0x370)
|
|
MMIO_RING_F(RING_REG, 48, F_RO, 0, ~0, D_BDW_PLUS, NULL, NULL);
|
|
#undef RING_REG
|
|
|
|
#define RING_REG(base) _MMIO((base) + 0x3a0)
|
|
MMIO_RING_DFH(RING_REG, D_BDW_PLUS, F_MODE_MASK, NULL, NULL);
|
|
#undef RING_REG
|
|
|
|
MMIO_DH(GEN6_PCODE_MAILBOX, D_BDW_PLUS, NULL, mailbox_write);
|
|
|
|
#define RING_REG(base) _MMIO((base) + 0x270)
|
|
MMIO_RING_F(RING_REG, 32, F_CMD_ACCESS, 0, 0, D_BDW_PLUS, NULL, NULL);
|
|
#undef RING_REG
|
|
|
|
MMIO_RING_GM(RING_HWS_PGA, D_BDW_PLUS, NULL, hws_pga_write);
|
|
|
|
MMIO_DFH(HDC_CHICKEN0, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
|
|
MMIO_DFH(GEN8_ROW_CHICKEN, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
|
|
NULL, NULL);
|
|
MMIO_DFH(GEN7_ROW_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS,
|
|
NULL, NULL);
|
|
MMIO_DFH(GEN8_UCGCTL6, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
|
|
MMIO_DFH(_MMIO(0xb1f0), D_BDW, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0xb1c0), D_BDW, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(GEN8_L3SQCREG4, D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0xb100), D_BDW, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0xb10c), D_BDW, F_CMD_ACCESS, NULL, NULL);
|
|
|
|
MMIO_F(_MMIO(0x24d0), 48, F_CMD_ACCESS | F_CMD_WRITE_PATCH, 0, 0,
|
|
D_BDW_PLUS, NULL, force_nonpriv_write);
|
|
|
|
MMIO_DFH(_MMIO(0x83a4), D_BDW, F_CMD_ACCESS, NULL, NULL);
|
|
|
|
MMIO_DFH(_MMIO(0x8430), D_BDW, F_CMD_ACCESS, NULL, NULL);
|
|
|
|
MMIO_DFH(_MMIO(0xe194), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0xe188), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(HALF_SLICE_CHICKEN2, D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x2580), D_BDW_PLUS, F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
|
|
MMIO_DFH(_MMIO(0x2248), D_BDW, F_CMD_ACCESS, NULL, NULL);
|
|
|
|
MMIO_DFH(_MMIO(0xe220), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0xe230), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0xe240), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0xe260), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0xe270), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0xe280), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0xe2a0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0xe2b0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0xe2c0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x21f0), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
return 0;
|
|
}
|
|
|
|
static int init_skl_mmio_info(struct intel_gvt *gvt)
|
|
{
|
|
int ret;
|
|
|
|
MMIO_DH(FORCEWAKE_RENDER_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
|
|
MMIO_DH(FORCEWAKE_ACK_RENDER_GEN9, D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(FORCEWAKE_GT_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
|
|
MMIO_DH(FORCEWAKE_ACK_GT_GEN9, D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(FORCEWAKE_MEDIA_GEN9, D_SKL_PLUS, NULL, mul_force_wake_write);
|
|
MMIO_DH(FORCEWAKE_ACK_MEDIA_GEN9, D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_F(DP_AUX_CH_CTL(AUX_CH_B), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
|
|
dp_aux_ch_ctl_mmio_write);
|
|
MMIO_F(DP_AUX_CH_CTL(AUX_CH_C), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
|
|
dp_aux_ch_ctl_mmio_write);
|
|
MMIO_F(DP_AUX_CH_CTL(AUX_CH_D), 6 * 4, 0, 0, 0, D_SKL_PLUS, NULL,
|
|
dp_aux_ch_ctl_mmio_write);
|
|
|
|
MMIO_DH(HSW_PWR_WELL_CTL2, D_SKL_PLUS, NULL, skl_power_well_ctl_write);
|
|
|
|
MMIO_DH(DBUF_CTL_S(0), D_SKL_PLUS, NULL, gen9_dbuf_ctl_mmio_write);
|
|
|
|
MMIO_DFH(GEN9_GAMT_ECO_REG_RW_IA, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(MMCD_MISC_CTRL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DH(CHICKEN_PAR1_1, D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(LCPLL1_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
|
|
MMIO_DH(LCPLL2_CTL, D_SKL_PLUS, NULL, skl_lcpll_write);
|
|
MMIO_DH(DPLL_STATUS, D_SKL_PLUS, dpll_status_read, NULL);
|
|
|
|
MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
|
|
MMIO_DH(SKL_PS_WIN_POS(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
|
|
MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
|
|
MMIO_DH(SKL_PS_WIN_POS(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
|
|
MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
|
|
MMIO_DH(SKL_PS_WIN_POS(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
|
|
|
|
MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
|
|
MMIO_DH(SKL_PS_WIN_SZ(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
|
|
MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
|
|
MMIO_DH(SKL_PS_WIN_SZ(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
|
|
MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
|
|
MMIO_DH(SKL_PS_WIN_SZ(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
|
|
|
|
MMIO_DH(SKL_PS_CTRL(PIPE_A, 0), D_SKL_PLUS, NULL, pf_write);
|
|
MMIO_DH(SKL_PS_CTRL(PIPE_A, 1), D_SKL_PLUS, NULL, pf_write);
|
|
MMIO_DH(SKL_PS_CTRL(PIPE_B, 0), D_SKL_PLUS, NULL, pf_write);
|
|
MMIO_DH(SKL_PS_CTRL(PIPE_B, 1), D_SKL_PLUS, NULL, pf_write);
|
|
MMIO_DH(SKL_PS_CTRL(PIPE_C, 0), D_SKL_PLUS, NULL, pf_write);
|
|
MMIO_DH(SKL_PS_CTRL(PIPE_C, 1), D_SKL_PLUS, NULL, pf_write);
|
|
|
|
MMIO_DH(PLANE_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(PLANE_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(PLANE_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(CUR_BUF_CFG(PIPE_A), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(CUR_BUF_CFG(PIPE_B), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(CUR_BUF_CFG(PIPE_C), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(PLANE_WM_TRANS(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_WM_TRANS(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_WM_TRANS(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(PLANE_WM_TRANS(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_WM_TRANS(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_WM_TRANS(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(PLANE_WM_TRANS(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_WM_TRANS(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_WM_TRANS(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(CUR_WM_TRANS(PIPE_A), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(CUR_WM_TRANS(PIPE_B), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(CUR_WM_TRANS(PIPE_C), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_NV12_BUF_CFG(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(PLANE_AUX_DIST(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_DIST(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_DIST(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_DIST(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(PLANE_AUX_DIST(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_DIST(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_DIST(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_DIST(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(PLANE_AUX_DIST(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_DIST(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_DIST(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_DIST(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 0), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 1), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 2), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_OFFSET(PIPE_A, 3), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 0), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 1), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 2), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_OFFSET(PIPE_B, 3), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 0), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 1), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 2), D_SKL_PLUS, NULL, NULL);
|
|
MMIO_DH(PLANE_AUX_OFFSET(PIPE_C, 3), D_SKL_PLUS, NULL, NULL);
|
|
|
|
MMIO_DFH(BDW_SCRATCH1, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
|
|
MMIO_F(GEN9_GFX_MOCS(0), 0x7f8, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
|
|
NULL, NULL);
|
|
MMIO_F(GEN7_L3CNTLREG2, 0x80, F_CMD_ACCESS, 0, 0, D_SKL_PLUS,
|
|
NULL, NULL);
|
|
|
|
MMIO_DFH(GEN7_FF_SLICE_CS_CHICKEN1, D_SKL_PLUS,
|
|
F_MODE_MASK | F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(GEN9_CS_DEBUG_MODE1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
|
|
NULL, NULL);
|
|
|
|
/* TRTT */
|
|
MMIO_DFH(TRVATTL3PTRDW(0), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(TRVATTL3PTRDW(1), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(TRVATTL3PTRDW(2), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(TRVATTL3PTRDW(3), D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(TRVADR, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(TRTTE, D_SKL_PLUS, F_CMD_ACCESS | F_PM_SAVE,
|
|
NULL, gen9_trtte_write);
|
|
MMIO_DFH(_MMIO(0x4dfc), D_SKL_PLUS, F_PM_SAVE,
|
|
NULL, gen9_trtt_chicken_write);
|
|
|
|
MMIO_DFH(GEN8_GARBCNTL, D_SKL_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DH(DMA_CTRL, D_SKL_PLUS, NULL, dma_ctrl_write);
|
|
|
|
#define CSFE_CHICKEN1_REG(base) _MMIO((base) + 0xD4)
|
|
MMIO_RING_DFH(CSFE_CHICKEN1_REG, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
|
|
NULL, csfe_chicken1_mmio_write);
|
|
#undef CSFE_CHICKEN1_REG
|
|
MMIO_DFH(GEN8_HDC_CHICKEN1, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
|
|
NULL, NULL);
|
|
MMIO_DFH(GEN9_WM_CHICKEN3, D_SKL_PLUS, F_MODE_MASK | F_CMD_ACCESS,
|
|
NULL, NULL);
|
|
|
|
MMIO_DFH(GAMT_CHKN_BIT_REG, D_KBL | D_CFL, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0xe4cc), D_BDW_PLUS, F_CMD_ACCESS, NULL, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_bxt_mmio_info(struct intel_gvt *gvt)
|
|
{
|
|
int ret;
|
|
|
|
MMIO_DH(BXT_P_CR_GT_DISP_PWRON, D_BXT, NULL, bxt_gt_disp_pwron_write);
|
|
MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY0), D_BXT,
|
|
NULL, bxt_phy_ctl_family_write);
|
|
MMIO_DH(BXT_PHY_CTL_FAMILY(DPIO_PHY1), D_BXT,
|
|
NULL, bxt_phy_ctl_family_write);
|
|
MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_A), D_BXT,
|
|
NULL, bxt_port_pll_enable_write);
|
|
MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_B), D_BXT,
|
|
NULL, bxt_port_pll_enable_write);
|
|
MMIO_DH(BXT_PORT_PLL_ENABLE(PORT_C), D_BXT, NULL,
|
|
bxt_port_pll_enable_write);
|
|
|
|
MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH0), D_BXT,
|
|
NULL, bxt_pcs_dw12_grp_write);
|
|
MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY0, DPIO_CH0, 0), D_BXT,
|
|
bxt_port_tx_dw3_read, NULL);
|
|
MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY0, DPIO_CH1), D_BXT,
|
|
NULL, bxt_pcs_dw12_grp_write);
|
|
MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY0, DPIO_CH1, 0), D_BXT,
|
|
bxt_port_tx_dw3_read, NULL);
|
|
MMIO_DH(BXT_PORT_PCS_DW12_GRP(DPIO_PHY1, DPIO_CH0), D_BXT,
|
|
NULL, bxt_pcs_dw12_grp_write);
|
|
MMIO_DH(BXT_PORT_TX_DW3_LN(DPIO_PHY1, DPIO_CH0, 0), D_BXT,
|
|
bxt_port_tx_dw3_read, NULL);
|
|
MMIO_DH(BXT_DE_PLL_ENABLE, D_BXT, NULL, bxt_de_pll_enable_write);
|
|
MMIO_DFH(GEN8_L3SQCREG1, D_BXT, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(GEN8_L3CNTLREG, D_BXT, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_DFH(_MMIO(0x20D8), D_BXT, F_CMD_ACCESS, NULL, NULL);
|
|
MMIO_F(GEN8_RING_CS_GPR(RENDER_RING_BASE, 0), 0x40, F_CMD_ACCESS,
|
|
0, 0, D_BXT, NULL, NULL);
|
|
MMIO_F(GEN8_RING_CS_GPR(GEN6_BSD_RING_BASE, 0), 0x40, F_CMD_ACCESS,
|
|
0, 0, D_BXT, NULL, NULL);
|
|
MMIO_F(GEN8_RING_CS_GPR(BLT_RING_BASE, 0), 0x40, F_CMD_ACCESS,
|
|
0, 0, D_BXT, NULL, NULL);
|
|
MMIO_F(GEN8_RING_CS_GPR(VEBOX_RING_BASE, 0), 0x40, F_CMD_ACCESS,
|
|
0, 0, D_BXT, NULL, NULL);
|
|
|
|
MMIO_DFH(GEN9_CTX_PREEMPT_REG, D_BXT, F_CMD_ACCESS, NULL, NULL);
|
|
|
|
MMIO_DH(GEN8_PRIVATE_PAT_LO, D_BXT, NULL, bxt_ppat_low_write);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct gvt_mmio_block *find_mmio_block(struct intel_gvt *gvt,
|
|
unsigned int offset)
|
|
{
|
|
struct gvt_mmio_block *block = gvt->mmio.mmio_block;
|
|
int num = gvt->mmio.num_mmio_block;
|
|
int i;
|
|
|
|
for (i = 0; i < num; i++, block++) {
|
|
if (offset >= i915_mmio_reg_offset(block->offset) &&
|
|
offset < i915_mmio_reg_offset(block->offset) + block->size)
|
|
return block;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* intel_gvt_clean_mmio_info - clean up MMIO information table for GVT device
|
|
* @gvt: GVT device
|
|
*
|
|
* This function is called at the driver unloading stage, to clean up the MMIO
|
|
* information table of GVT device
|
|
*
|
|
*/
|
|
void intel_gvt_clean_mmio_info(struct intel_gvt *gvt)
|
|
{
|
|
struct hlist_node *tmp;
|
|
struct intel_gvt_mmio_info *e;
|
|
int i;
|
|
|
|
hash_for_each_safe(gvt->mmio.mmio_info_table, i, tmp, e, node)
|
|
kfree(e);
|
|
|
|
kfree(gvt->mmio.mmio_block);
|
|
gvt->mmio.mmio_block = NULL;
|
|
gvt->mmio.num_mmio_block = 0;
|
|
|
|
vfree(gvt->mmio.mmio_attribute);
|
|
gvt->mmio.mmio_attribute = NULL;
|
|
}
|
|
|
|
static int handle_mmio(struct intel_gvt_mmio_table_iter *iter, u32 offset,
|
|
u32 size)
|
|
{
|
|
struct intel_gvt *gvt = iter->data;
|
|
struct intel_gvt_mmio_info *info, *p;
|
|
u32 start, end, i;
|
|
|
|
if (WARN_ON(!IS_ALIGNED(offset, 4)))
|
|
return -EINVAL;
|
|
|
|
start = offset;
|
|
end = offset + size;
|
|
|
|
for (i = start; i < end; i += 4) {
|
|
p = intel_gvt_find_mmio_info(gvt, i);
|
|
if (p) {
|
|
WARN(1, "dup mmio definition offset %x\n", i);
|
|
|
|
/* We return -EEXIST here to make GVT-g load fail.
|
|
* So duplicated MMIO can be found as soon as
|
|
* possible.
|
|
*/
|
|
return -EEXIST;
|
|
}
|
|
|
|
info = kzalloc(sizeof(*info), GFP_KERNEL);
|
|
if (!info)
|
|
return -ENOMEM;
|
|
|
|
info->offset = i;
|
|
info->read = intel_vgpu_default_mmio_read;
|
|
info->write = intel_vgpu_default_mmio_write;
|
|
INIT_HLIST_NODE(&info->node);
|
|
hash_add(gvt->mmio.mmio_info_table, &info->node, info->offset);
|
|
gvt->mmio.num_tracked_mmio++;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int handle_mmio_block(struct intel_gvt_mmio_table_iter *iter,
|
|
u32 offset, u32 size)
|
|
{
|
|
struct intel_gvt *gvt = iter->data;
|
|
struct gvt_mmio_block *block = gvt->mmio.mmio_block;
|
|
void *ret;
|
|
|
|
ret = krealloc(block,
|
|
(gvt->mmio.num_mmio_block + 1) * sizeof(*block),
|
|
GFP_KERNEL);
|
|
if (!ret)
|
|
return -ENOMEM;
|
|
|
|
gvt->mmio.mmio_block = block = ret;
|
|
|
|
block += gvt->mmio.num_mmio_block;
|
|
|
|
memset(block, 0, sizeof(*block));
|
|
|
|
block->offset = _MMIO(offset);
|
|
block->size = size;
|
|
|
|
gvt->mmio.num_mmio_block++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int handle_mmio_cb(struct intel_gvt_mmio_table_iter *iter, u32 offset,
|
|
u32 size)
|
|
{
|
|
if (size < 1024 || offset == i915_mmio_reg_offset(GEN9_GFX_MOCS(0)))
|
|
return handle_mmio(iter, offset, size);
|
|
else
|
|
return handle_mmio_block(iter, offset, size);
|
|
}
|
|
|
|
static int init_mmio_info(struct intel_gvt *gvt)
|
|
{
|
|
struct intel_gvt_mmio_table_iter iter = {
|
|
.i915 = gvt->gt->i915,
|
|
.data = gvt,
|
|
.handle_mmio_cb = handle_mmio_cb,
|
|
};
|
|
|
|
return intel_gvt_iterate_mmio_table(&iter);
|
|
}
|
|
|
|
static int init_mmio_block_handlers(struct intel_gvt *gvt)
|
|
{
|
|
struct gvt_mmio_block *block;
|
|
|
|
block = find_mmio_block(gvt, VGT_PVINFO_PAGE);
|
|
if (!block) {
|
|
WARN(1, "fail to assign handlers to mmio block %x\n",
|
|
i915_mmio_reg_offset(gvt->mmio.mmio_block->offset));
|
|
return -ENODEV;
|
|
}
|
|
|
|
block->read = pvinfo_mmio_read;
|
|
block->write = pvinfo_mmio_write;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_gvt_setup_mmio_info - setup MMIO information table for GVT device
|
|
* @gvt: GVT device
|
|
*
|
|
* This function is called at the initialization stage, to setup the MMIO
|
|
* information table for GVT device
|
|
*
|
|
* Returns:
|
|
* zero on success, negative if failed.
|
|
*/
|
|
int intel_gvt_setup_mmio_info(struct intel_gvt *gvt)
|
|
{
|
|
struct intel_gvt_device_info *info = &gvt->device_info;
|
|
struct drm_i915_private *i915 = gvt->gt->i915;
|
|
int size = info->mmio_size / 4 * sizeof(*gvt->mmio.mmio_attribute);
|
|
int ret;
|
|
|
|
gvt->mmio.mmio_attribute = vzalloc(size);
|
|
if (!gvt->mmio.mmio_attribute)
|
|
return -ENOMEM;
|
|
|
|
ret = init_mmio_info(gvt);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = init_mmio_block_handlers(gvt);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = init_generic_mmio_info(gvt);
|
|
if (ret)
|
|
goto err;
|
|
|
|
if (IS_BROADWELL(i915)) {
|
|
ret = init_bdw_mmio_info(gvt);
|
|
if (ret)
|
|
goto err;
|
|
} else if (IS_SKYLAKE(i915) ||
|
|
IS_KABYLAKE(i915) ||
|
|
IS_COFFEELAKE(i915) ||
|
|
IS_COMETLAKE(i915)) {
|
|
ret = init_bdw_mmio_info(gvt);
|
|
if (ret)
|
|
goto err;
|
|
ret = init_skl_mmio_info(gvt);
|
|
if (ret)
|
|
goto err;
|
|
} else if (IS_BROXTON(i915)) {
|
|
ret = init_bdw_mmio_info(gvt);
|
|
if (ret)
|
|
goto err;
|
|
ret = init_skl_mmio_info(gvt);
|
|
if (ret)
|
|
goto err;
|
|
ret = init_bxt_mmio_info(gvt);
|
|
if (ret)
|
|
goto err;
|
|
}
|
|
|
|
return 0;
|
|
err:
|
|
intel_gvt_clean_mmio_info(gvt);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* intel_gvt_for_each_tracked_mmio - iterate each tracked mmio
|
|
* @gvt: a GVT device
|
|
* @handler: the handler
|
|
* @data: private data given to handler
|
|
*
|
|
* Returns:
|
|
* Zero on success, negative error code if failed.
|
|
*/
|
|
int intel_gvt_for_each_tracked_mmio(struct intel_gvt *gvt,
|
|
int (*handler)(struct intel_gvt *gvt, u32 offset, void *data),
|
|
void *data)
|
|
{
|
|
struct gvt_mmio_block *block = gvt->mmio.mmio_block;
|
|
struct intel_gvt_mmio_info *e;
|
|
int i, j, ret;
|
|
|
|
hash_for_each(gvt->mmio.mmio_info_table, i, e, node) {
|
|
ret = handler(gvt, e->offset, data);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
for (i = 0; i < gvt->mmio.num_mmio_block; i++, block++) {
|
|
/* pvinfo data doesn't come from hw mmio */
|
|
if (i915_mmio_reg_offset(block->offset) == VGT_PVINFO_PAGE)
|
|
continue;
|
|
|
|
for (j = 0; j < block->size; j += 4) {
|
|
ret = handler(gvt, i915_mmio_reg_offset(block->offset) + j, data);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_vgpu_default_mmio_read - default MMIO read handler
|
|
* @vgpu: a vGPU
|
|
* @offset: access offset
|
|
* @p_data: data return buffer
|
|
* @bytes: access data length
|
|
*
|
|
* Returns:
|
|
* Zero on success, negative error code if failed.
|
|
*/
|
|
int intel_vgpu_default_mmio_read(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
read_vreg(vgpu, offset, p_data, bytes);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_vgpu_default_mmio_write() - default MMIO write handler
|
|
* @vgpu: a vGPU
|
|
* @offset: access offset
|
|
* @p_data: write data buffer
|
|
* @bytes: access data length
|
|
*
|
|
* Returns:
|
|
* Zero on success, negative error code if failed.
|
|
*/
|
|
int intel_vgpu_default_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_vgpu_mask_mmio_write - write mask register
|
|
* @vgpu: a vGPU
|
|
* @offset: access offset
|
|
* @p_data: write data buffer
|
|
* @bytes: access data length
|
|
*
|
|
* Returns:
|
|
* Zero on success, negative error code if failed.
|
|
*/
|
|
int intel_vgpu_mask_mmio_write(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *p_data, unsigned int bytes)
|
|
{
|
|
u32 mask, old_vreg;
|
|
|
|
old_vreg = vgpu_vreg(vgpu, offset);
|
|
write_vreg(vgpu, offset, p_data, bytes);
|
|
mask = vgpu_vreg(vgpu, offset) >> 16;
|
|
vgpu_vreg(vgpu, offset) = (old_vreg & ~mask) |
|
|
(vgpu_vreg(vgpu, offset) & mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_gvt_in_force_nonpriv_whitelist - if a mmio is in whitelist to be
|
|
* force-nopriv register
|
|
*
|
|
* @gvt: a GVT device
|
|
* @offset: register offset
|
|
*
|
|
* Returns:
|
|
* True if the register is in force-nonpriv whitelist;
|
|
* False if outside;
|
|
*/
|
|
bool intel_gvt_in_force_nonpriv_whitelist(struct intel_gvt *gvt,
|
|
unsigned int offset)
|
|
{
|
|
return in_whitelist(offset);
|
|
}
|
|
|
|
/**
|
|
* intel_vgpu_mmio_reg_rw - emulate tracked mmio registers
|
|
* @vgpu: a vGPU
|
|
* @offset: register offset
|
|
* @pdata: data buffer
|
|
* @bytes: data length
|
|
* @is_read: read or write
|
|
*
|
|
* Returns:
|
|
* Zero on success, negative error code if failed.
|
|
*/
|
|
int intel_vgpu_mmio_reg_rw(struct intel_vgpu *vgpu, unsigned int offset,
|
|
void *pdata, unsigned int bytes, bool is_read)
|
|
{
|
|
struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
|
|
struct intel_gvt *gvt = vgpu->gvt;
|
|
struct intel_gvt_mmio_info *mmio_info;
|
|
struct gvt_mmio_block *mmio_block;
|
|
gvt_mmio_func func;
|
|
int ret;
|
|
|
|
if (drm_WARN_ON(&i915->drm, bytes > 8))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Handle special MMIO blocks.
|
|
*/
|
|
mmio_block = find_mmio_block(gvt, offset);
|
|
if (mmio_block) {
|
|
func = is_read ? mmio_block->read : mmio_block->write;
|
|
if (func)
|
|
return func(vgpu, offset, pdata, bytes);
|
|
goto default_rw;
|
|
}
|
|
|
|
/*
|
|
* Normal tracked MMIOs.
|
|
*/
|
|
mmio_info = intel_gvt_find_mmio_info(gvt, offset);
|
|
if (!mmio_info) {
|
|
gvt_dbg_mmio("untracked MMIO %08x len %d\n", offset, bytes);
|
|
goto default_rw;
|
|
}
|
|
|
|
if (is_read)
|
|
return mmio_info->read(vgpu, offset, pdata, bytes);
|
|
else {
|
|
u64 ro_mask = mmio_info->ro_mask;
|
|
u32 old_vreg = 0;
|
|
u64 data = 0;
|
|
|
|
if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
|
|
old_vreg = vgpu_vreg(vgpu, offset);
|
|
}
|
|
|
|
if (likely(!ro_mask))
|
|
ret = mmio_info->write(vgpu, offset, pdata, bytes);
|
|
else if (!~ro_mask) {
|
|
gvt_vgpu_err("try to write RO reg %x\n", offset);
|
|
return 0;
|
|
} else {
|
|
/* keep the RO bits in the virtual register */
|
|
memcpy(&data, pdata, bytes);
|
|
data &= ~ro_mask;
|
|
data |= vgpu_vreg(vgpu, offset) & ro_mask;
|
|
ret = mmio_info->write(vgpu, offset, &data, bytes);
|
|
}
|
|
|
|
/* higher 16bits of mode ctl regs are mask bits for change */
|
|
if (intel_gvt_mmio_has_mode_mask(gvt, mmio_info->offset)) {
|
|
u32 mask = vgpu_vreg(vgpu, offset) >> 16;
|
|
|
|
vgpu_vreg(vgpu, offset) = (old_vreg & ~mask)
|
|
| (vgpu_vreg(vgpu, offset) & mask);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
|
|
default_rw:
|
|
return is_read ?
|
|
intel_vgpu_default_mmio_read(vgpu, offset, pdata, bytes) :
|
|
intel_vgpu_default_mmio_write(vgpu, offset, pdata, bytes);
|
|
}
|
|
|
|
void intel_gvt_restore_fence(struct intel_gvt *gvt)
|
|
{
|
|
struct intel_vgpu *vgpu;
|
|
int i, id;
|
|
|
|
idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
|
|
mmio_hw_access_pre(gvt->gt);
|
|
for (i = 0; i < vgpu_fence_sz(vgpu); i++)
|
|
intel_vgpu_write_fence(vgpu, i, vgpu_vreg64(vgpu, fence_num_to_offset(i)));
|
|
mmio_hw_access_post(gvt->gt);
|
|
}
|
|
}
|
|
|
|
static int mmio_pm_restore_handler(struct intel_gvt *gvt, u32 offset, void *data)
|
|
{
|
|
struct intel_vgpu *vgpu = data;
|
|
struct drm_i915_private *dev_priv = gvt->gt->i915;
|
|
|
|
if (gvt->mmio.mmio_attribute[offset >> 2] & F_PM_SAVE)
|
|
intel_uncore_write(&dev_priv->uncore, _MMIO(offset), vgpu_vreg(vgpu, offset));
|
|
|
|
return 0;
|
|
}
|
|
|
|
void intel_gvt_restore_mmio(struct intel_gvt *gvt)
|
|
{
|
|
struct intel_vgpu *vgpu;
|
|
int id;
|
|
|
|
idr_for_each_entry(&(gvt)->vgpu_idr, vgpu, id) {
|
|
mmio_hw_access_pre(gvt->gt);
|
|
intel_gvt_for_each_tracked_mmio(gvt, mmio_pm_restore_handler, vgpu);
|
|
mmio_hw_access_post(gvt->gt);
|
|
}
|
|
}
|