3f53d7e442
UAPI Changes: - Limit the number of relocations to INT_MAX (Tvrtko) Only impact should be synthetic tests. Driver Changes: - Fix for #11396: GPU Hang and rcs0 reset on Cherrytrail platform - Fix Virtual Memory mapping boundaries calculation (Andi) - Fix for #11255: Long hangs in buddy allocator with DG2/A380 without Resizable BAR since 6.9 (David) - Mark the GT as dead when mmio is unreliable (Chris, Andi) - Workaround additions / fixes for MTL, ARL and DG2 (John H, Nitin) - Enable partial memory mapping of GPU virtual memory (Andi, Chris) - Prevent NULL deref on intel_memory_regions_hw_probe (Jonathan, Dan) - Avoid UAF on intel_engines_release (Krzysztof) - Don't update PWR_CLK_STATE starting Gen12 (Umesh) - Code and dmesg cleanups (Andi, Jesus, Luca) Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> From: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/ZshcfSqgfnl8Mh4P@jlahtine-mobl.ger.corp.intel.com
1697 lines
44 KiB
C
1697 lines
44 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2008-2018 Intel Corporation
|
|
*/
|
|
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/string_helpers.h>
|
|
|
|
#include "display/intel_display_reset.h"
|
|
#include "display/intel_overlay.h"
|
|
|
|
#include "gem/i915_gem_context.h"
|
|
|
|
#include "gt/intel_gt_regs.h"
|
|
|
|
#include "gt/uc/intel_gsc_fw.h"
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_file_private.h"
|
|
#include "i915_gpu_error.h"
|
|
#include "i915_irq.h"
|
|
#include "i915_reg.h"
|
|
#include "intel_breadcrumbs.h"
|
|
#include "intel_engine_pm.h"
|
|
#include "intel_engine_regs.h"
|
|
#include "intel_gt.h"
|
|
#include "intel_gt_pm.h"
|
|
#include "intel_gt_print.h"
|
|
#include "intel_gt_requests.h"
|
|
#include "intel_mchbar_regs.h"
|
|
#include "intel_pci_config.h"
|
|
#include "intel_reset.h"
|
|
|
|
#include "uc/intel_guc.h"
|
|
|
|
#define RESET_MAX_RETRIES 3
|
|
|
|
static void client_mark_guilty(struct i915_gem_context *ctx, bool banned)
|
|
{
|
|
struct drm_i915_file_private *file_priv = ctx->file_priv;
|
|
unsigned long prev_hang;
|
|
unsigned int score;
|
|
|
|
if (IS_ERR_OR_NULL(file_priv))
|
|
return;
|
|
|
|
score = 0;
|
|
if (banned)
|
|
score = I915_CLIENT_SCORE_CONTEXT_BAN;
|
|
|
|
prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
|
|
if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
|
|
score += I915_CLIENT_SCORE_HANG_FAST;
|
|
|
|
if (score) {
|
|
atomic_add(score, &file_priv->ban_score);
|
|
|
|
drm_dbg(&ctx->i915->drm,
|
|
"client %s: gained %u ban score, now %u\n",
|
|
ctx->name, score,
|
|
atomic_read(&file_priv->ban_score));
|
|
}
|
|
}
|
|
|
|
static bool mark_guilty(struct i915_request *rq)
|
|
{
|
|
struct i915_gem_context *ctx;
|
|
unsigned long prev_hang;
|
|
bool banned;
|
|
int i;
|
|
|
|
if (intel_context_is_closed(rq->context))
|
|
return true;
|
|
|
|
rcu_read_lock();
|
|
ctx = rcu_dereference(rq->context->gem_context);
|
|
if (ctx && !kref_get_unless_zero(&ctx->ref))
|
|
ctx = NULL;
|
|
rcu_read_unlock();
|
|
if (!ctx)
|
|
return intel_context_is_banned(rq->context);
|
|
|
|
atomic_inc(&ctx->guilty_count);
|
|
|
|
/* Cool contexts are too cool to be banned! (Used for reset testing.) */
|
|
if (!i915_gem_context_is_bannable(ctx)) {
|
|
banned = false;
|
|
goto out;
|
|
}
|
|
|
|
drm_notice(&ctx->i915->drm,
|
|
"%s context reset due to GPU hang\n",
|
|
ctx->name);
|
|
|
|
/* Record the timestamp for the last N hangs */
|
|
prev_hang = ctx->hang_timestamp[0];
|
|
for (i = 0; i < ARRAY_SIZE(ctx->hang_timestamp) - 1; i++)
|
|
ctx->hang_timestamp[i] = ctx->hang_timestamp[i + 1];
|
|
ctx->hang_timestamp[i] = jiffies;
|
|
|
|
/* If we have hung N+1 times in rapid succession, we ban the context! */
|
|
banned = !i915_gem_context_is_recoverable(ctx);
|
|
if (time_before(jiffies, prev_hang + CONTEXT_FAST_HANG_JIFFIES))
|
|
banned = true;
|
|
if (banned)
|
|
drm_dbg(&ctx->i915->drm, "context %s: guilty %d, banned\n",
|
|
ctx->name, atomic_read(&ctx->guilty_count));
|
|
|
|
client_mark_guilty(ctx, banned);
|
|
|
|
out:
|
|
i915_gem_context_put(ctx);
|
|
return banned;
|
|
}
|
|
|
|
static void mark_innocent(struct i915_request *rq)
|
|
{
|
|
struct i915_gem_context *ctx;
|
|
|
|
rcu_read_lock();
|
|
ctx = rcu_dereference(rq->context->gem_context);
|
|
if (ctx)
|
|
atomic_inc(&ctx->active_count);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
void __i915_request_reset(struct i915_request *rq, bool guilty)
|
|
{
|
|
bool banned = false;
|
|
|
|
RQ_TRACE(rq, "guilty? %s\n", str_yes_no(guilty));
|
|
GEM_BUG_ON(__i915_request_is_complete(rq));
|
|
|
|
rcu_read_lock(); /* protect the GEM context */
|
|
if (guilty) {
|
|
i915_request_set_error_once(rq, -EIO);
|
|
__i915_request_skip(rq);
|
|
banned = mark_guilty(rq);
|
|
} else {
|
|
i915_request_set_error_once(rq, -EAGAIN);
|
|
mark_innocent(rq);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (banned)
|
|
intel_context_ban(rq->context, rq);
|
|
}
|
|
|
|
static bool i915_in_reset(struct pci_dev *pdev)
|
|
{
|
|
u8 gdrst;
|
|
|
|
pci_read_config_byte(pdev, I915_GDRST, &gdrst);
|
|
return gdrst & GRDOM_RESET_STATUS;
|
|
}
|
|
|
|
static int i915_do_reset(struct intel_gt *gt,
|
|
intel_engine_mask_t engine_mask,
|
|
unsigned int retry)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
|
|
int err;
|
|
|
|
/* Assert reset for at least 50 usec, and wait for acknowledgement. */
|
|
pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
|
|
udelay(50);
|
|
err = _wait_for_atomic(i915_in_reset(pdev), 50000, 0);
|
|
|
|
/* Clear the reset request. */
|
|
pci_write_config_byte(pdev, I915_GDRST, 0);
|
|
udelay(50);
|
|
if (!err)
|
|
err = _wait_for_atomic(!i915_in_reset(pdev), 50000, 0);
|
|
|
|
return err;
|
|
}
|
|
|
|
static bool g4x_reset_complete(struct pci_dev *pdev)
|
|
{
|
|
u8 gdrst;
|
|
|
|
pci_read_config_byte(pdev, I915_GDRST, &gdrst);
|
|
return (gdrst & GRDOM_RESET_ENABLE) == 0;
|
|
}
|
|
|
|
static int g33_do_reset(struct intel_gt *gt,
|
|
intel_engine_mask_t engine_mask,
|
|
unsigned int retry)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
|
|
|
|
pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
|
|
return _wait_for_atomic(g4x_reset_complete(pdev), 50000, 0);
|
|
}
|
|
|
|
static int g4x_do_reset(struct intel_gt *gt,
|
|
intel_engine_mask_t engine_mask,
|
|
unsigned int retry)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(gt->i915->drm.dev);
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
int ret;
|
|
|
|
/* WaVcpClkGateDisableForMediaReset:ctg,elk */
|
|
intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, 0, VCP_UNIT_CLOCK_GATE_DISABLE);
|
|
intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
|
|
|
|
pci_write_config_byte(pdev, I915_GDRST,
|
|
GRDOM_MEDIA | GRDOM_RESET_ENABLE);
|
|
ret = _wait_for_atomic(g4x_reset_complete(pdev), 50000, 0);
|
|
if (ret) {
|
|
GT_TRACE(gt, "Wait for media reset failed\n");
|
|
goto out;
|
|
}
|
|
|
|
pci_write_config_byte(pdev, I915_GDRST,
|
|
GRDOM_RENDER | GRDOM_RESET_ENABLE);
|
|
ret = _wait_for_atomic(g4x_reset_complete(pdev), 50000, 0);
|
|
if (ret) {
|
|
GT_TRACE(gt, "Wait for render reset failed\n");
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
pci_write_config_byte(pdev, I915_GDRST, 0);
|
|
|
|
intel_uncore_rmw_fw(uncore, VDECCLK_GATE_D, VCP_UNIT_CLOCK_GATE_DISABLE, 0);
|
|
intel_uncore_posting_read_fw(uncore, VDECCLK_GATE_D);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int ilk_do_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask,
|
|
unsigned int retry)
|
|
{
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
int ret;
|
|
|
|
intel_uncore_write_fw(uncore, ILK_GDSR,
|
|
ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE);
|
|
ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
|
|
ILK_GRDOM_RESET_ENABLE, 0,
|
|
5000, 0,
|
|
NULL);
|
|
if (ret) {
|
|
GT_TRACE(gt, "Wait for render reset failed\n");
|
|
goto out;
|
|
}
|
|
|
|
intel_uncore_write_fw(uncore, ILK_GDSR,
|
|
ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE);
|
|
ret = __intel_wait_for_register_fw(uncore, ILK_GDSR,
|
|
ILK_GRDOM_RESET_ENABLE, 0,
|
|
5000, 0,
|
|
NULL);
|
|
if (ret) {
|
|
GT_TRACE(gt, "Wait for media reset failed\n");
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
intel_uncore_write_fw(uncore, ILK_GDSR, 0);
|
|
intel_uncore_posting_read_fw(uncore, ILK_GDSR);
|
|
return ret;
|
|
}
|
|
|
|
/* Reset the hardware domains (GENX_GRDOM_*) specified by mask */
|
|
static int gen6_hw_domain_reset(struct intel_gt *gt, u32 hw_domain_mask)
|
|
{
|
|
struct intel_uncore *uncore = gt->uncore;
|
|
int loops;
|
|
int err;
|
|
|
|
/*
|
|
* On some platforms, e.g. Jasperlake, we see that the engine register
|
|
* state is not cleared until shortly after GDRST reports completion,
|
|
* causing a failure as we try to immediately resume while the internal
|
|
* state is still in flux. If we immediately repeat the reset, the
|
|
* second reset appears to serialise with the first, and since it is a
|
|
* no-op, the registers should retain their reset value. However, there
|
|
* is still a concern that upon leaving the second reset, the internal
|
|
* engine state is still in flux and not ready for resuming.
|
|
*
|
|
* Starting on MTL, there are some prep steps that we need to do when
|
|
* resetting some engines that need to be applied every time we write to
|
|
* GEN6_GDRST. As those are time consuming (tens of ms), we don't want
|
|
* to perform that twice, so, since the Jasperlake issue hasn't been
|
|
* observed on MTL, we avoid repeating the reset on newer platforms.
|
|
*/
|
|
loops = GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70) ? 2 : 1;
|
|
|
|
/*
|
|
* GEN6_GDRST is not in the gt power well, no need to check
|
|
* for fifo space for the write or forcewake the chip for
|
|
* the read
|
|
*/
|
|
do {
|
|
intel_uncore_write_fw(uncore, GEN6_GDRST, hw_domain_mask);
|
|
|
|
/* Wait for the device to ack the reset requests. */
|
|
err = __intel_wait_for_register_fw(uncore, GEN6_GDRST,
|
|
hw_domain_mask, 0,
|
|
2000, 0,
|
|
NULL);
|
|
} while (err == 0 && --loops);
|
|
if (err)
|
|
GT_TRACE(gt,
|
|
"Wait for 0x%08x engines reset failed\n",
|
|
hw_domain_mask);
|
|
|
|
/*
|
|
* As we have observed that the engine state is still volatile
|
|
* after GDRST is acked, impose a small delay to let everything settle.
|
|
*/
|
|
udelay(50);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __gen6_reset_engines(struct intel_gt *gt,
|
|
intel_engine_mask_t engine_mask,
|
|
unsigned int retry)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
u32 hw_mask;
|
|
|
|
if (engine_mask == ALL_ENGINES) {
|
|
hw_mask = GEN6_GRDOM_FULL;
|
|
} else {
|
|
intel_engine_mask_t tmp;
|
|
|
|
hw_mask = 0;
|
|
for_each_engine_masked(engine, gt, engine_mask, tmp) {
|
|
hw_mask |= engine->reset_domain;
|
|
}
|
|
}
|
|
|
|
return gen6_hw_domain_reset(gt, hw_mask);
|
|
}
|
|
|
|
static int gen6_reset_engines(struct intel_gt *gt,
|
|
intel_engine_mask_t engine_mask,
|
|
unsigned int retry)
|
|
{
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(>->uncore->lock, flags);
|
|
ret = __gen6_reset_engines(gt, engine_mask, retry);
|
|
spin_unlock_irqrestore(>->uncore->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct intel_engine_cs *find_sfc_paired_vecs_engine(struct intel_engine_cs *engine)
|
|
{
|
|
int vecs_id;
|
|
|
|
GEM_BUG_ON(engine->class != VIDEO_DECODE_CLASS);
|
|
|
|
vecs_id = _VECS((engine->instance) / 2);
|
|
|
|
return engine->gt->engine[vecs_id];
|
|
}
|
|
|
|
struct sfc_lock_data {
|
|
i915_reg_t lock_reg;
|
|
i915_reg_t ack_reg;
|
|
i915_reg_t usage_reg;
|
|
u32 lock_bit;
|
|
u32 ack_bit;
|
|
u32 usage_bit;
|
|
u32 reset_bit;
|
|
};
|
|
|
|
static void get_sfc_forced_lock_data(struct intel_engine_cs *engine,
|
|
struct sfc_lock_data *sfc_lock)
|
|
{
|
|
switch (engine->class) {
|
|
default:
|
|
MISSING_CASE(engine->class);
|
|
fallthrough;
|
|
case VIDEO_DECODE_CLASS:
|
|
sfc_lock->lock_reg = GEN11_VCS_SFC_FORCED_LOCK(engine->mmio_base);
|
|
sfc_lock->lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT;
|
|
|
|
sfc_lock->ack_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base);
|
|
sfc_lock->ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT;
|
|
|
|
sfc_lock->usage_reg = GEN11_VCS_SFC_LOCK_STATUS(engine->mmio_base);
|
|
sfc_lock->usage_bit = GEN11_VCS_SFC_USAGE_BIT;
|
|
sfc_lock->reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance);
|
|
|
|
break;
|
|
case VIDEO_ENHANCEMENT_CLASS:
|
|
sfc_lock->lock_reg = GEN11_VECS_SFC_FORCED_LOCK(engine->mmio_base);
|
|
sfc_lock->lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT;
|
|
|
|
sfc_lock->ack_reg = GEN11_VECS_SFC_LOCK_ACK(engine->mmio_base);
|
|
sfc_lock->ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT;
|
|
|
|
sfc_lock->usage_reg = GEN11_VECS_SFC_USAGE(engine->mmio_base);
|
|
sfc_lock->usage_bit = GEN11_VECS_SFC_USAGE_BIT;
|
|
sfc_lock->reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance);
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int gen11_lock_sfc(struct intel_engine_cs *engine,
|
|
u32 *reset_mask,
|
|
u32 *unlock_mask)
|
|
{
|
|
struct intel_uncore *uncore = engine->uncore;
|
|
u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
|
|
struct sfc_lock_data sfc_lock;
|
|
bool lock_obtained, lock_to_other = false;
|
|
int ret;
|
|
|
|
switch (engine->class) {
|
|
case VIDEO_DECODE_CLASS:
|
|
if ((BIT(engine->instance) & vdbox_sfc_access) == 0)
|
|
return 0;
|
|
|
|
fallthrough;
|
|
case VIDEO_ENHANCEMENT_CLASS:
|
|
get_sfc_forced_lock_data(engine, &sfc_lock);
|
|
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
if (!(intel_uncore_read_fw(uncore, sfc_lock.usage_reg) & sfc_lock.usage_bit)) {
|
|
struct intel_engine_cs *paired_vecs;
|
|
|
|
if (engine->class != VIDEO_DECODE_CLASS ||
|
|
GRAPHICS_VER(engine->i915) != 12)
|
|
return 0;
|
|
|
|
/*
|
|
* Wa_14010733141
|
|
*
|
|
* If the VCS-MFX isn't using the SFC, we also need to check
|
|
* whether VCS-HCP is using it. If so, we need to issue a *VE*
|
|
* forced lock on the VE engine that shares the same SFC.
|
|
*/
|
|
if (!(intel_uncore_read_fw(uncore,
|
|
GEN12_HCP_SFC_LOCK_STATUS(engine->mmio_base)) &
|
|
GEN12_HCP_SFC_USAGE_BIT))
|
|
return 0;
|
|
|
|
paired_vecs = find_sfc_paired_vecs_engine(engine);
|
|
get_sfc_forced_lock_data(paired_vecs, &sfc_lock);
|
|
lock_to_other = true;
|
|
*unlock_mask |= paired_vecs->mask;
|
|
} else {
|
|
*unlock_mask |= engine->mask;
|
|
}
|
|
|
|
/*
|
|
* If the engine is using an SFC, tell the engine that a software reset
|
|
* is going to happen. The engine will then try to force lock the SFC.
|
|
* If SFC ends up being locked to the engine we want to reset, we have
|
|
* to reset it as well (we will unlock it once the reset sequence is
|
|
* completed).
|
|
*/
|
|
intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, 0, sfc_lock.lock_bit);
|
|
|
|
ret = __intel_wait_for_register_fw(uncore,
|
|
sfc_lock.ack_reg,
|
|
sfc_lock.ack_bit,
|
|
sfc_lock.ack_bit,
|
|
1000, 0, NULL);
|
|
|
|
/*
|
|
* Was the SFC released while we were trying to lock it?
|
|
*
|
|
* We should reset both the engine and the SFC if:
|
|
* - We were locking the SFC to this engine and the lock succeeded
|
|
* OR
|
|
* - We were locking the SFC to a different engine (Wa_14010733141)
|
|
* but the SFC was released before the lock was obtained.
|
|
*
|
|
* Otherwise we need only reset the engine by itself and we can
|
|
* leave the SFC alone.
|
|
*/
|
|
lock_obtained = (intel_uncore_read_fw(uncore, sfc_lock.usage_reg) &
|
|
sfc_lock.usage_bit) != 0;
|
|
if (lock_obtained == lock_to_other)
|
|
return 0;
|
|
|
|
if (ret) {
|
|
ENGINE_TRACE(engine, "Wait for SFC forced lock ack failed\n");
|
|
return ret;
|
|
}
|
|
|
|
*reset_mask |= sfc_lock.reset_bit;
|
|
return 0;
|
|
}
|
|
|
|
static void gen11_unlock_sfc(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_uncore *uncore = engine->uncore;
|
|
u8 vdbox_sfc_access = engine->gt->info.vdbox_sfc_access;
|
|
struct sfc_lock_data sfc_lock = {};
|
|
|
|
if (engine->class != VIDEO_DECODE_CLASS &&
|
|
engine->class != VIDEO_ENHANCEMENT_CLASS)
|
|
return;
|
|
|
|
if (engine->class == VIDEO_DECODE_CLASS &&
|
|
(BIT(engine->instance) & vdbox_sfc_access) == 0)
|
|
return;
|
|
|
|
get_sfc_forced_lock_data(engine, &sfc_lock);
|
|
|
|
intel_uncore_rmw_fw(uncore, sfc_lock.lock_reg, sfc_lock.lock_bit, 0);
|
|
}
|
|
|
|
static int __gen11_reset_engines(struct intel_gt *gt,
|
|
intel_engine_mask_t engine_mask,
|
|
unsigned int retry)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
intel_engine_mask_t tmp;
|
|
u32 reset_mask, unlock_mask = 0;
|
|
int ret;
|
|
|
|
if (engine_mask == ALL_ENGINES) {
|
|
reset_mask = GEN11_GRDOM_FULL;
|
|
} else {
|
|
reset_mask = 0;
|
|
for_each_engine_masked(engine, gt, engine_mask, tmp) {
|
|
reset_mask |= engine->reset_domain;
|
|
ret = gen11_lock_sfc(engine, &reset_mask, &unlock_mask);
|
|
if (ret)
|
|
goto sfc_unlock;
|
|
}
|
|
}
|
|
|
|
ret = gen6_hw_domain_reset(gt, reset_mask);
|
|
|
|
sfc_unlock:
|
|
/*
|
|
* We unlock the SFC based on the lock status and not the result of
|
|
* gen11_lock_sfc to make sure that we clean properly if something
|
|
* wrong happened during the lock (e.g. lock acquired after timeout
|
|
* expiration).
|
|
*
|
|
* Due to Wa_14010733141, we may have locked an SFC to an engine that
|
|
* wasn't being reset. So instead of calling gen11_unlock_sfc()
|
|
* on engine_mask, we instead call it on the mask of engines that our
|
|
* gen11_lock_sfc() calls told us actually had locks attempted.
|
|
*/
|
|
for_each_engine_masked(engine, gt, unlock_mask, tmp)
|
|
gen11_unlock_sfc(engine);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int gen8_engine_reset_prepare(struct intel_engine_cs *engine)
|
|
{
|
|
struct intel_uncore *uncore = engine->uncore;
|
|
const i915_reg_t reg = RING_RESET_CTL(engine->mmio_base);
|
|
u32 request, mask, ack;
|
|
int ret;
|
|
|
|
if (I915_SELFTEST_ONLY(should_fail(&engine->reset_timeout, 1)))
|
|
return -ETIMEDOUT;
|
|
|
|
ack = intel_uncore_read_fw(uncore, reg);
|
|
if (ack & RESET_CTL_CAT_ERROR) {
|
|
/*
|
|
* For catastrophic errors, ready-for-reset sequence
|
|
* needs to be bypassed: HAS#396813
|
|
*/
|
|
request = RESET_CTL_CAT_ERROR;
|
|
mask = RESET_CTL_CAT_ERROR;
|
|
|
|
/* Catastrophic errors need to be cleared by HW */
|
|
ack = 0;
|
|
} else if (!(ack & RESET_CTL_READY_TO_RESET)) {
|
|
request = RESET_CTL_REQUEST_RESET;
|
|
mask = RESET_CTL_READY_TO_RESET;
|
|
ack = RESET_CTL_READY_TO_RESET;
|
|
} else {
|
|
return 0;
|
|
}
|
|
|
|
intel_uncore_write_fw(uncore, reg, _MASKED_BIT_ENABLE(request));
|
|
ret = __intel_wait_for_register_fw(uncore, reg, mask, ack,
|
|
700, 0, NULL);
|
|
if (ret)
|
|
gt_err(engine->gt,
|
|
"%s reset request timed out: {request: %08x, RESET_CTL: %08x}\n",
|
|
engine->name, request,
|
|
intel_uncore_read_fw(uncore, reg));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void gen8_engine_reset_cancel(struct intel_engine_cs *engine)
|
|
{
|
|
intel_uncore_write_fw(engine->uncore,
|
|
RING_RESET_CTL(engine->mmio_base),
|
|
_MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET));
|
|
}
|
|
|
|
static int gen8_reset_engines(struct intel_gt *gt,
|
|
intel_engine_mask_t engine_mask,
|
|
unsigned int retry)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
const bool reset_non_ready = retry >= 1;
|
|
intel_engine_mask_t tmp;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
spin_lock_irqsave(>->uncore->lock, flags);
|
|
|
|
for_each_engine_masked(engine, gt, engine_mask, tmp) {
|
|
ret = gen8_engine_reset_prepare(engine);
|
|
if (ret && !reset_non_ready)
|
|
goto skip_reset;
|
|
|
|
/*
|
|
* If this is not the first failed attempt to prepare,
|
|
* we decide to proceed anyway.
|
|
*
|
|
* By doing so we risk context corruption and with
|
|
* some gens (kbl), possible system hang if reset
|
|
* happens during active bb execution.
|
|
*
|
|
* We rather take context corruption instead of
|
|
* failed reset with a wedged driver/gpu. And
|
|
* active bb execution case should be covered by
|
|
* stop_engines() we have before the reset.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Wa_22011100796:dg2, whenever Full soft reset is required,
|
|
* reset all individual engines firstly, and then do a full soft reset.
|
|
*
|
|
* This is best effort, so ignore any error from the initial reset.
|
|
*/
|
|
if (IS_DG2(gt->i915) && engine_mask == ALL_ENGINES)
|
|
__gen11_reset_engines(gt, gt->info.engine_mask, 0);
|
|
|
|
if (GRAPHICS_VER(gt->i915) >= 11)
|
|
ret = __gen11_reset_engines(gt, engine_mask, retry);
|
|
else
|
|
ret = __gen6_reset_engines(gt, engine_mask, retry);
|
|
|
|
skip_reset:
|
|
for_each_engine_masked(engine, gt, engine_mask, tmp)
|
|
gen8_engine_reset_cancel(engine);
|
|
|
|
spin_unlock_irqrestore(>->uncore->lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int mock_reset(struct intel_gt *gt,
|
|
intel_engine_mask_t mask,
|
|
unsigned int retry)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
typedef int (*reset_func)(struct intel_gt *,
|
|
intel_engine_mask_t engine_mask,
|
|
unsigned int retry);
|
|
|
|
static reset_func intel_get_gpu_reset(const struct intel_gt *gt)
|
|
{
|
|
struct drm_i915_private *i915 = gt->i915;
|
|
|
|
if (is_mock_gt(gt))
|
|
return mock_reset;
|
|
else if (GRAPHICS_VER(i915) >= 8)
|
|
return gen8_reset_engines;
|
|
else if (GRAPHICS_VER(i915) >= 6)
|
|
return gen6_reset_engines;
|
|
else if (GRAPHICS_VER(i915) >= 5)
|
|
return ilk_do_reset;
|
|
else if (IS_G4X(i915))
|
|
return g4x_do_reset;
|
|
else if (IS_G33(i915) || IS_PINEVIEW(i915))
|
|
return g33_do_reset;
|
|
else if (GRAPHICS_VER(i915) >= 3)
|
|
return i915_do_reset;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
static int __reset_guc(struct intel_gt *gt)
|
|
{
|
|
u32 guc_domain =
|
|
GRAPHICS_VER(gt->i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC;
|
|
|
|
return gen6_hw_domain_reset(gt, guc_domain);
|
|
}
|
|
|
|
static bool needs_wa_14015076503(struct intel_gt *gt, intel_engine_mask_t engine_mask)
|
|
{
|
|
if (MEDIA_VER_FULL(gt->i915) != IP_VER(13, 0) || !HAS_ENGINE(gt, GSC0))
|
|
return false;
|
|
|
|
if (!__HAS_ENGINE(engine_mask, GSC0))
|
|
return false;
|
|
|
|
return intel_gsc_uc_fw_init_done(>->uc.gsc);
|
|
}
|
|
|
|
static intel_engine_mask_t
|
|
wa_14015076503_start(struct intel_gt *gt, intel_engine_mask_t engine_mask, bool first)
|
|
{
|
|
if (!needs_wa_14015076503(gt, engine_mask))
|
|
return engine_mask;
|
|
|
|
/*
|
|
* wa_14015076503: if the GSC FW is loaded, we need to alert it that
|
|
* we're going to do a GSC engine reset and then wait for 200ms for the
|
|
* FW to get ready for it. However, if this is the first ALL_ENGINES
|
|
* reset attempt and the GSC is not busy, we can try to instead reset
|
|
* the GuC and all the other engines individually to avoid the 200ms
|
|
* wait.
|
|
* Skipping the GSC engine is safe because, differently from other
|
|
* engines, the GSCCS only role is to forward the commands to the GSC
|
|
* FW, so it doesn't have any HW outside of the CS itself and therefore
|
|
* it has no state that we don't explicitly re-init on resume or on
|
|
* context switch LRC or power context). The HW for the GSC uC is
|
|
* managed by the GSC FW so we don't need to care about that.
|
|
*/
|
|
if (engine_mask == ALL_ENGINES && first && intel_engine_is_idle(gt->engine[GSC0])) {
|
|
__reset_guc(gt);
|
|
engine_mask = gt->info.engine_mask & ~BIT(GSC0);
|
|
} else {
|
|
intel_uncore_rmw(gt->uncore,
|
|
HECI_H_GS1(MTL_GSC_HECI2_BASE),
|
|
0, HECI_H_GS1_ER_PREP);
|
|
|
|
/* make sure the reset bit is clear when writing the CSR reg */
|
|
intel_uncore_rmw(gt->uncore,
|
|
HECI_H_CSR(MTL_GSC_HECI2_BASE),
|
|
HECI_H_CSR_RST, HECI_H_CSR_IG);
|
|
msleep(200);
|
|
}
|
|
|
|
return engine_mask;
|
|
}
|
|
|
|
static void
|
|
wa_14015076503_end(struct intel_gt *gt, intel_engine_mask_t engine_mask)
|
|
{
|
|
if (!needs_wa_14015076503(gt, engine_mask))
|
|
return;
|
|
|
|
intel_uncore_rmw(gt->uncore,
|
|
HECI_H_GS1(MTL_GSC_HECI2_BASE),
|
|
HECI_H_GS1_ER_PREP, 0);
|
|
}
|
|
|
|
static int __intel_gt_reset(struct intel_gt *gt, intel_engine_mask_t engine_mask)
|
|
{
|
|
const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1;
|
|
reset_func reset;
|
|
int ret = -ETIMEDOUT;
|
|
int retry;
|
|
|
|
reset = intel_get_gpu_reset(gt);
|
|
if (!reset)
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* If the power well sleeps during the reset, the reset
|
|
* request may be dropped and never completes (causing -EIO).
|
|
*/
|
|
intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
|
|
for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) {
|
|
intel_engine_mask_t reset_mask;
|
|
|
|
reset_mask = wa_14015076503_start(gt, engine_mask, !retry);
|
|
|
|
GT_TRACE(gt, "engine_mask=%x\n", reset_mask);
|
|
ret = reset(gt, reset_mask, retry);
|
|
|
|
wa_14015076503_end(gt, reset_mask);
|
|
}
|
|
intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool intel_has_gpu_reset(const struct intel_gt *gt)
|
|
{
|
|
if (!gt->i915->params.reset)
|
|
return NULL;
|
|
|
|
return intel_get_gpu_reset(gt);
|
|
}
|
|
|
|
bool intel_has_reset_engine(const struct intel_gt *gt)
|
|
{
|
|
if (gt->i915->params.reset < 2)
|
|
return false;
|
|
|
|
return INTEL_INFO(gt->i915)->has_reset_engine;
|
|
}
|
|
|
|
int intel_reset_guc(struct intel_gt *gt)
|
|
{
|
|
int ret;
|
|
|
|
GEM_BUG_ON(!HAS_GT_UC(gt->i915));
|
|
|
|
intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
|
|
ret = __reset_guc(gt);
|
|
intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Ensure irq handler finishes, and not run again.
|
|
* Also return the active request so that we only search for it once.
|
|
*/
|
|
static void reset_prepare_engine(struct intel_engine_cs *engine)
|
|
{
|
|
/*
|
|
* During the reset sequence, we must prevent the engine from
|
|
* entering RC6. As the context state is undefined until we restart
|
|
* the engine, if it does enter RC6 during the reset, the state
|
|
* written to the powercontext is undefined and so we may lose
|
|
* GPU state upon resume, i.e. fail to restart after a reset.
|
|
*/
|
|
intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
|
|
if (engine->reset.prepare)
|
|
engine->reset.prepare(engine);
|
|
}
|
|
|
|
static void revoke_mmaps(struct intel_gt *gt)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < gt->ggtt->num_fences; i++) {
|
|
struct drm_vma_offset_node *node;
|
|
struct i915_vma *vma;
|
|
u64 vma_offset;
|
|
|
|
vma = READ_ONCE(gt->ggtt->fence_regs[i].vma);
|
|
if (!vma)
|
|
continue;
|
|
|
|
if (!i915_vma_has_userfault(vma))
|
|
continue;
|
|
|
|
GEM_BUG_ON(vma->fence != >->ggtt->fence_regs[i]);
|
|
|
|
if (!vma->mmo)
|
|
continue;
|
|
|
|
node = &vma->mmo->vma_node;
|
|
vma_offset = vma->gtt_view.partial.offset << PAGE_SHIFT;
|
|
|
|
unmap_mapping_range(gt->i915->drm.anon_inode->i_mapping,
|
|
drm_vma_node_offset_addr(node) + vma_offset,
|
|
vma->size,
|
|
1);
|
|
}
|
|
}
|
|
|
|
static intel_engine_mask_t reset_prepare(struct intel_gt *gt)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
intel_engine_mask_t awake = 0;
|
|
enum intel_engine_id id;
|
|
|
|
/**
|
|
* For GuC mode with submission enabled, ensure submission
|
|
* is disabled before stopping ring.
|
|
*
|
|
* For GuC mode with submission disabled, ensure that GuC is not
|
|
* sanitized, do that after engine reset. reset_prepare()
|
|
* is followed by engine reset which in this mode requires GuC to
|
|
* process any CSB FIFO entries generated by the resets.
|
|
*/
|
|
if (intel_uc_uses_guc_submission(>->uc))
|
|
intel_uc_reset_prepare(>->uc);
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
if (intel_engine_pm_get_if_awake(engine))
|
|
awake |= engine->mask;
|
|
reset_prepare_engine(engine);
|
|
}
|
|
|
|
return awake;
|
|
}
|
|
|
|
static void gt_revoke(struct intel_gt *gt)
|
|
{
|
|
revoke_mmaps(gt);
|
|
}
|
|
|
|
static int gt_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int err;
|
|
|
|
/*
|
|
* Everything depends on having the GTT running, so we need to start
|
|
* there.
|
|
*/
|
|
err = i915_ggtt_enable_hw(gt->i915);
|
|
if (err)
|
|
return err;
|
|
|
|
local_bh_disable();
|
|
for_each_engine(engine, gt, id)
|
|
__intel_engine_reset(engine, stalled_mask & engine->mask);
|
|
local_bh_enable();
|
|
|
|
intel_uc_reset(>->uc, ALL_ENGINES);
|
|
|
|
intel_ggtt_restore_fences(gt->ggtt);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void reset_finish_engine(struct intel_engine_cs *engine)
|
|
{
|
|
if (engine->reset.finish)
|
|
engine->reset.finish(engine);
|
|
intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
|
|
|
|
intel_engine_signal_breadcrumbs(engine);
|
|
}
|
|
|
|
static void reset_finish(struct intel_gt *gt, intel_engine_mask_t awake)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
reset_finish_engine(engine);
|
|
if (awake & engine->mask)
|
|
intel_engine_pm_put(engine);
|
|
}
|
|
|
|
intel_uc_reset_finish(>->uc);
|
|
}
|
|
|
|
static void nop_submit_request(struct i915_request *request)
|
|
{
|
|
RQ_TRACE(request, "-EIO\n");
|
|
|
|
request = i915_request_mark_eio(request);
|
|
if (request) {
|
|
i915_request_submit(request);
|
|
intel_engine_signal_breadcrumbs(request->engine);
|
|
|
|
i915_request_put(request);
|
|
}
|
|
}
|
|
|
|
static void __intel_gt_set_wedged(struct intel_gt *gt)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
intel_engine_mask_t awake;
|
|
enum intel_engine_id id;
|
|
|
|
if (test_bit(I915_WEDGED, >->reset.flags))
|
|
return;
|
|
|
|
GT_TRACE(gt, "start\n");
|
|
|
|
/*
|
|
* First, stop submission to hw, but do not yet complete requests by
|
|
* rolling the global seqno forward (since this would complete requests
|
|
* for which we haven't set the fence error to EIO yet).
|
|
*/
|
|
awake = reset_prepare(gt);
|
|
|
|
/* Even if the GPU reset fails, it should still stop the engines */
|
|
if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
|
|
intel_gt_reset_all_engines(gt);
|
|
|
|
for_each_engine(engine, gt, id)
|
|
engine->submit_request = nop_submit_request;
|
|
|
|
/*
|
|
* Make sure no request can slip through without getting completed by
|
|
* either this call here to intel_engine_write_global_seqno, or the one
|
|
* in nop_submit_request.
|
|
*/
|
|
synchronize_rcu_expedited();
|
|
set_bit(I915_WEDGED, >->reset.flags);
|
|
|
|
/* Mark all executing requests as skipped */
|
|
local_bh_disable();
|
|
for_each_engine(engine, gt, id)
|
|
if (engine->reset.cancel)
|
|
engine->reset.cancel(engine);
|
|
intel_uc_cancel_requests(>->uc);
|
|
local_bh_enable();
|
|
|
|
reset_finish(gt, awake);
|
|
|
|
GT_TRACE(gt, "end\n");
|
|
}
|
|
|
|
static void set_wedged_work(struct work_struct *w)
|
|
{
|
|
struct intel_gt *gt = container_of(w, struct intel_gt, wedge);
|
|
intel_wakeref_t wf;
|
|
|
|
with_intel_runtime_pm(gt->uncore->rpm, wf)
|
|
__intel_gt_set_wedged(gt);
|
|
}
|
|
|
|
void intel_gt_set_wedged(struct intel_gt *gt)
|
|
{
|
|
intel_wakeref_t wakeref;
|
|
|
|
if (test_bit(I915_WEDGED, >->reset.flags))
|
|
return;
|
|
|
|
wakeref = intel_runtime_pm_get(gt->uncore->rpm);
|
|
mutex_lock(>->reset.mutex);
|
|
|
|
if (GEM_SHOW_DEBUG()) {
|
|
struct drm_printer p = drm_dbg_printer(>->i915->drm,
|
|
DRM_UT_DRIVER, NULL);
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
|
|
drm_printf(&p, "called from %pS\n", (void *)_RET_IP_);
|
|
for_each_engine(engine, gt, id) {
|
|
if (intel_engine_is_idle(engine))
|
|
continue;
|
|
|
|
intel_engine_dump(engine, &p, "%s\n", engine->name);
|
|
}
|
|
}
|
|
|
|
__intel_gt_set_wedged(gt);
|
|
|
|
mutex_unlock(>->reset.mutex);
|
|
intel_runtime_pm_put(gt->uncore->rpm, wakeref);
|
|
}
|
|
|
|
static bool __intel_gt_unset_wedged(struct intel_gt *gt)
|
|
{
|
|
struct intel_gt_timelines *timelines = >->timelines;
|
|
struct intel_timeline *tl;
|
|
bool ok;
|
|
|
|
if (!test_bit(I915_WEDGED, >->reset.flags))
|
|
return true;
|
|
|
|
/* Never fully initialised, recovery impossible */
|
|
if (intel_gt_has_unrecoverable_error(gt))
|
|
return false;
|
|
|
|
GT_TRACE(gt, "start\n");
|
|
|
|
/*
|
|
* Before unwedging, make sure that all pending operations
|
|
* are flushed and errored out - we may have requests waiting upon
|
|
* third party fences. We marked all inflight requests as EIO, and
|
|
* every execbuf since returned EIO, for consistency we want all
|
|
* the currently pending requests to also be marked as EIO, which
|
|
* is done inside our nop_submit_request - and so we must wait.
|
|
*
|
|
* No more can be submitted until we reset the wedged bit.
|
|
*/
|
|
spin_lock(&timelines->lock);
|
|
list_for_each_entry(tl, &timelines->active_list, link) {
|
|
struct dma_fence *fence;
|
|
|
|
fence = i915_active_fence_get(&tl->last_request);
|
|
if (!fence)
|
|
continue;
|
|
|
|
spin_unlock(&timelines->lock);
|
|
|
|
/*
|
|
* All internal dependencies (i915_requests) will have
|
|
* been flushed by the set-wedge, but we may be stuck waiting
|
|
* for external fences. These should all be capped to 10s
|
|
* (I915_FENCE_TIMEOUT) so this wait should not be unbounded
|
|
* in the worst case.
|
|
*/
|
|
dma_fence_default_wait(fence, false, MAX_SCHEDULE_TIMEOUT);
|
|
dma_fence_put(fence);
|
|
|
|
/* Restart iteration after droping lock */
|
|
spin_lock(&timelines->lock);
|
|
tl = list_entry(&timelines->active_list, typeof(*tl), link);
|
|
}
|
|
spin_unlock(&timelines->lock);
|
|
|
|
/* We must reset pending GPU events before restoring our submission */
|
|
ok = !HAS_EXECLISTS(gt->i915); /* XXX better agnosticism desired */
|
|
if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
|
|
ok = intel_gt_reset_all_engines(gt) == 0;
|
|
if (!ok) {
|
|
/*
|
|
* Warn CI about the unrecoverable wedged condition.
|
|
* Time for a reboot.
|
|
*/
|
|
add_taint_for_CI(gt->i915, TAINT_WARN);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Undo nop_submit_request. We prevent all new i915 requests from
|
|
* being queued (by disallowing execbuf whilst wedged) so having
|
|
* waited for all active requests above, we know the system is idle
|
|
* and do not have to worry about a thread being inside
|
|
* engine->submit_request() as we swap over. So unlike installing
|
|
* the nop_submit_request on reset, we can do this from normal
|
|
* context and do not require stop_machine().
|
|
*/
|
|
intel_engines_reset_default_submission(gt);
|
|
|
|
GT_TRACE(gt, "end\n");
|
|
|
|
smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
|
|
clear_bit(I915_WEDGED, >->reset.flags);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool intel_gt_unset_wedged(struct intel_gt *gt)
|
|
{
|
|
bool result;
|
|
|
|
mutex_lock(>->reset.mutex);
|
|
result = __intel_gt_unset_wedged(gt);
|
|
mutex_unlock(>->reset.mutex);
|
|
|
|
return result;
|
|
}
|
|
|
|
static int do_reset(struct intel_gt *gt, intel_engine_mask_t stalled_mask)
|
|
{
|
|
int err, i;
|
|
|
|
err = intel_gt_reset_all_engines(gt);
|
|
for (i = 0; err && i < RESET_MAX_RETRIES; i++) {
|
|
msleep(10 * (i + 1));
|
|
err = intel_gt_reset_all_engines(gt);
|
|
}
|
|
if (err)
|
|
return err;
|
|
|
|
return gt_reset(gt, stalled_mask);
|
|
}
|
|
|
|
static int resume(struct intel_gt *gt)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int ret;
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
ret = intel_engine_resume(engine);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* intel_gt_reset - reset chip after a hang
|
|
* @gt: #intel_gt to reset
|
|
* @stalled_mask: mask of the stalled engines with the guilty requests
|
|
* @reason: user error message for why we are resetting
|
|
*
|
|
* Reset the chip. Useful if a hang is detected. Marks the device as wedged
|
|
* on failure.
|
|
*
|
|
* Procedure is fairly simple:
|
|
* - reset the chip using the reset reg
|
|
* - re-init context state
|
|
* - re-init hardware status page
|
|
* - re-init ring buffer
|
|
* - re-init interrupt state
|
|
* - re-init display
|
|
*/
|
|
void intel_gt_reset(struct intel_gt *gt,
|
|
intel_engine_mask_t stalled_mask,
|
|
const char *reason)
|
|
{
|
|
intel_engine_mask_t awake;
|
|
int ret;
|
|
|
|
GT_TRACE(gt, "flags=%lx\n", gt->reset.flags);
|
|
|
|
might_sleep();
|
|
GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, >->reset.flags));
|
|
|
|
/*
|
|
* FIXME: Revoking cpu mmap ptes cannot be done from a dma_fence
|
|
* critical section like gpu reset.
|
|
*/
|
|
gt_revoke(gt);
|
|
|
|
mutex_lock(>->reset.mutex);
|
|
|
|
/* Clear any previous failed attempts at recovery. Time to try again. */
|
|
if (!__intel_gt_unset_wedged(gt))
|
|
goto unlock;
|
|
|
|
if (reason)
|
|
gt_notice(gt, "Resetting chip for %s\n", reason);
|
|
atomic_inc(>->i915->gpu_error.reset_count);
|
|
|
|
awake = reset_prepare(gt);
|
|
|
|
if (!intel_has_gpu_reset(gt)) {
|
|
if (gt->i915->params.reset)
|
|
gt_err(gt, "GPU reset not supported\n");
|
|
else
|
|
gt_dbg(gt, "GPU reset disabled\n");
|
|
goto error;
|
|
}
|
|
|
|
if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
|
|
intel_runtime_pm_disable_interrupts(gt->i915);
|
|
|
|
if (do_reset(gt, stalled_mask)) {
|
|
gt_err(gt, "Failed to reset chip\n");
|
|
goto taint;
|
|
}
|
|
|
|
if (INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
|
|
intel_runtime_pm_enable_interrupts(gt->i915);
|
|
|
|
intel_overlay_reset(gt->i915);
|
|
|
|
/* sanitize uC after engine reset */
|
|
if (!intel_uc_uses_guc_submission(>->uc))
|
|
intel_uc_reset_prepare(>->uc);
|
|
/*
|
|
* Next we need to restore the context, but we don't use those
|
|
* yet either...
|
|
*
|
|
* Ring buffer needs to be re-initialized in the KMS case, or if X
|
|
* was running at the time of the reset (i.e. we weren't VT
|
|
* switched away).
|
|
*/
|
|
ret = intel_gt_init_hw(gt);
|
|
if (ret) {
|
|
gt_err(gt, "Failed to initialise HW following reset (%d)\n", ret);
|
|
goto taint;
|
|
}
|
|
|
|
ret = resume(gt);
|
|
if (ret)
|
|
goto taint;
|
|
|
|
finish:
|
|
reset_finish(gt, awake);
|
|
unlock:
|
|
mutex_unlock(>->reset.mutex);
|
|
return;
|
|
|
|
taint:
|
|
/*
|
|
* History tells us that if we cannot reset the GPU now, we
|
|
* never will. This then impacts everything that is run
|
|
* subsequently. On failing the reset, we mark the driver
|
|
* as wedged, preventing further execution on the GPU.
|
|
* We also want to go one step further and add a taint to the
|
|
* kernel so that any subsequent faults can be traced back to
|
|
* this failure. This is important for CI, where if the
|
|
* GPU/driver fails we would like to reboot and restart testing
|
|
* rather than continue on into oblivion. For everyone else,
|
|
* the system should still plod along, but they have been warned!
|
|
*/
|
|
add_taint_for_CI(gt->i915, TAINT_WARN);
|
|
error:
|
|
__intel_gt_set_wedged(gt);
|
|
goto finish;
|
|
}
|
|
|
|
/**
|
|
* intel_gt_reset_all_engines() - Reset all engines in the given gt.
|
|
* @gt: the GT to reset all engines for.
|
|
*
|
|
* This function resets all engines within the given gt.
|
|
*
|
|
* Returns:
|
|
* Zero on success, negative error code on failure.
|
|
*/
|
|
int intel_gt_reset_all_engines(struct intel_gt *gt)
|
|
{
|
|
return __intel_gt_reset(gt, ALL_ENGINES);
|
|
}
|
|
|
|
/**
|
|
* intel_gt_reset_engine() - Reset a specific engine within a gt.
|
|
* @engine: engine to be reset.
|
|
*
|
|
* This function resets the specified engine within a gt.
|
|
*
|
|
* Returns:
|
|
* Zero on success, negative error code on failure.
|
|
*/
|
|
int intel_gt_reset_engine(struct intel_engine_cs *engine)
|
|
{
|
|
return __intel_gt_reset(engine->gt, engine->mask);
|
|
}
|
|
|
|
int __intel_engine_reset_bh(struct intel_engine_cs *engine, const char *msg)
|
|
{
|
|
struct intel_gt *gt = engine->gt;
|
|
int ret;
|
|
|
|
ENGINE_TRACE(engine, "flags=%lx\n", gt->reset.flags);
|
|
GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, >->reset.flags));
|
|
|
|
if (intel_engine_uses_guc(engine))
|
|
return -ENODEV;
|
|
|
|
if (!intel_engine_pm_get_if_awake(engine))
|
|
return 0;
|
|
|
|
reset_prepare_engine(engine);
|
|
|
|
if (msg)
|
|
drm_notice(&engine->i915->drm,
|
|
"Resetting %s for %s\n", engine->name, msg);
|
|
i915_increase_reset_engine_count(&engine->i915->gpu_error, engine);
|
|
|
|
ret = intel_gt_reset_engine(engine);
|
|
if (ret) {
|
|
/* If we fail here, we expect to fallback to a global reset */
|
|
ENGINE_TRACE(engine, "Failed to reset %s, err: %d\n", engine->name, ret);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* The request that caused the hang is stuck on elsp, we know the
|
|
* active request and can drop it, adjust head to skip the offending
|
|
* request to resume executing remaining requests in the queue.
|
|
*/
|
|
__intel_engine_reset(engine, true);
|
|
|
|
/*
|
|
* The engine and its registers (and workarounds in case of render)
|
|
* have been reset to their default values. Follow the init_ring
|
|
* process to program RING_MODE, HWSP and re-enable submission.
|
|
*/
|
|
ret = intel_engine_resume(engine);
|
|
|
|
out:
|
|
intel_engine_cancel_stop_cs(engine);
|
|
reset_finish_engine(engine);
|
|
intel_engine_pm_put_async(engine);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* intel_engine_reset - reset GPU engine to recover from a hang
|
|
* @engine: engine to reset
|
|
* @msg: reason for GPU reset; or NULL for no drm_notice()
|
|
*
|
|
* Reset a specific GPU engine. Useful if a hang is detected.
|
|
* Returns zero on successful reset or otherwise an error code.
|
|
*
|
|
* Procedure is:
|
|
* - identifies the request that caused the hang and it is dropped
|
|
* - reset engine (which will force the engine to idle)
|
|
* - re-init/configure engine
|
|
*/
|
|
int intel_engine_reset(struct intel_engine_cs *engine, const char *msg)
|
|
{
|
|
int err;
|
|
|
|
local_bh_disable();
|
|
err = __intel_engine_reset_bh(engine, msg);
|
|
local_bh_enable();
|
|
|
|
return err;
|
|
}
|
|
|
|
static void intel_gt_reset_global(struct intel_gt *gt,
|
|
u32 engine_mask,
|
|
const char *reason)
|
|
{
|
|
struct kobject *kobj = >->i915->drm.primary->kdev->kobj;
|
|
char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
|
|
char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
|
|
char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
|
|
struct intel_wedge_me w;
|
|
|
|
kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
|
|
|
|
GT_TRACE(gt, "resetting chip, engines=%x\n", engine_mask);
|
|
kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
|
|
|
|
/* Use a watchdog to ensure that our reset completes */
|
|
intel_wedge_on_timeout(&w, gt, 60 * HZ) {
|
|
intel_display_reset_prepare(gt->i915);
|
|
|
|
intel_gt_reset(gt, engine_mask, reason);
|
|
|
|
intel_display_reset_finish(gt->i915);
|
|
}
|
|
|
|
if (!test_bit(I915_WEDGED, >->reset.flags))
|
|
kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
|
|
}
|
|
|
|
/**
|
|
* intel_gt_handle_error - handle a gpu error
|
|
* @gt: the intel_gt
|
|
* @engine_mask: mask representing engines that are hung
|
|
* @flags: control flags
|
|
* @fmt: Error message format string
|
|
*
|
|
* Do some basic checking of register state at error time and
|
|
* dump it to the syslog. Also call i915_capture_error_state() to make
|
|
* sure we get a record and make it available in debugfs. Fire a uevent
|
|
* so userspace knows something bad happened (should trigger collection
|
|
* of a ring dump etc.).
|
|
*/
|
|
void intel_gt_handle_error(struct intel_gt *gt,
|
|
intel_engine_mask_t engine_mask,
|
|
unsigned long flags,
|
|
const char *fmt, ...)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
intel_wakeref_t wakeref;
|
|
intel_engine_mask_t tmp;
|
|
char error_msg[80];
|
|
char *msg = NULL;
|
|
|
|
if (fmt) {
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
vscnprintf(error_msg, sizeof(error_msg), fmt, args);
|
|
va_end(args);
|
|
|
|
msg = error_msg;
|
|
}
|
|
|
|
/*
|
|
* In most cases it's guaranteed that we get here with an RPM
|
|
* reference held, for example because there is a pending GPU
|
|
* request that won't finish until the reset is done. This
|
|
* isn't the case at least when we get here by doing a
|
|
* simulated reset via debugfs, so get an RPM reference.
|
|
*/
|
|
wakeref = intel_runtime_pm_get(gt->uncore->rpm);
|
|
|
|
engine_mask &= gt->info.engine_mask;
|
|
|
|
if (flags & I915_ERROR_CAPTURE) {
|
|
i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_NONE);
|
|
intel_gt_clear_error_registers(gt, engine_mask);
|
|
}
|
|
|
|
/*
|
|
* Try engine reset when available. We fall back to full reset if
|
|
* single reset fails.
|
|
*/
|
|
if (!intel_uc_uses_guc_submission(>->uc) &&
|
|
intel_has_reset_engine(gt) && !intel_gt_is_wedged(gt)) {
|
|
local_bh_disable();
|
|
for_each_engine_masked(engine, gt, engine_mask, tmp) {
|
|
BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
|
|
if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
|
|
>->reset.flags))
|
|
continue;
|
|
|
|
if (__intel_engine_reset_bh(engine, msg) == 0)
|
|
engine_mask &= ~engine->mask;
|
|
|
|
clear_and_wake_up_bit(I915_RESET_ENGINE + engine->id,
|
|
>->reset.flags);
|
|
}
|
|
local_bh_enable();
|
|
}
|
|
|
|
if (!engine_mask)
|
|
goto out;
|
|
|
|
/* Full reset needs the mutex, stop any other user trying to do so. */
|
|
if (test_and_set_bit(I915_RESET_BACKOFF, >->reset.flags)) {
|
|
wait_event(gt->reset.queue,
|
|
!test_bit(I915_RESET_BACKOFF, >->reset.flags));
|
|
goto out; /* piggy-back on the other reset */
|
|
}
|
|
|
|
/* Make sure i915_reset_trylock() sees the I915_RESET_BACKOFF */
|
|
synchronize_rcu_expedited();
|
|
|
|
/*
|
|
* Prevent any other reset-engine attempt. We don't do this for GuC
|
|
* submission the GuC owns the per-engine reset, not the i915.
|
|
*/
|
|
if (!intel_uc_uses_guc_submission(>->uc)) {
|
|
for_each_engine(engine, gt, tmp) {
|
|
while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
|
|
>->reset.flags))
|
|
wait_on_bit(>->reset.flags,
|
|
I915_RESET_ENGINE + engine->id,
|
|
TASK_UNINTERRUPTIBLE);
|
|
}
|
|
}
|
|
|
|
/* Flush everyone using a resource about to be clobbered */
|
|
synchronize_srcu_expedited(>->reset.backoff_srcu);
|
|
|
|
intel_gt_reset_global(gt, engine_mask, msg);
|
|
|
|
if (!intel_uc_uses_guc_submission(>->uc)) {
|
|
for_each_engine(engine, gt, tmp)
|
|
clear_bit_unlock(I915_RESET_ENGINE + engine->id,
|
|
>->reset.flags);
|
|
}
|
|
clear_bit_unlock(I915_RESET_BACKOFF, >->reset.flags);
|
|
smp_mb__after_atomic();
|
|
wake_up_all(>->reset.queue);
|
|
|
|
out:
|
|
intel_runtime_pm_put(gt->uncore->rpm, wakeref);
|
|
}
|
|
|
|
static int _intel_gt_reset_lock(struct intel_gt *gt, int *srcu, bool retry)
|
|
{
|
|
might_lock(>->reset.backoff_srcu);
|
|
if (retry)
|
|
might_sleep();
|
|
|
|
rcu_read_lock();
|
|
while (test_bit(I915_RESET_BACKOFF, >->reset.flags)) {
|
|
rcu_read_unlock();
|
|
|
|
if (!retry)
|
|
return -EBUSY;
|
|
|
|
if (wait_event_interruptible(gt->reset.queue,
|
|
!test_bit(I915_RESET_BACKOFF,
|
|
>->reset.flags)))
|
|
return -EINTR;
|
|
|
|
rcu_read_lock();
|
|
}
|
|
*srcu = srcu_read_lock(>->reset.backoff_srcu);
|
|
rcu_read_unlock();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int intel_gt_reset_trylock(struct intel_gt *gt, int *srcu)
|
|
{
|
|
return _intel_gt_reset_lock(gt, srcu, false);
|
|
}
|
|
|
|
int intel_gt_reset_lock_interruptible(struct intel_gt *gt, int *srcu)
|
|
{
|
|
return _intel_gt_reset_lock(gt, srcu, true);
|
|
}
|
|
|
|
void intel_gt_reset_unlock(struct intel_gt *gt, int tag)
|
|
__releases(>->reset.backoff_srcu)
|
|
{
|
|
srcu_read_unlock(>->reset.backoff_srcu, tag);
|
|
}
|
|
|
|
int intel_gt_terminally_wedged(struct intel_gt *gt)
|
|
{
|
|
might_sleep();
|
|
|
|
if (!intel_gt_is_wedged(gt))
|
|
return 0;
|
|
|
|
if (intel_gt_has_unrecoverable_error(gt))
|
|
return -EIO;
|
|
|
|
/* Reset still in progress? Maybe we will recover? */
|
|
if (wait_event_interruptible(gt->reset.queue,
|
|
!test_bit(I915_RESET_BACKOFF,
|
|
>->reset.flags)))
|
|
return -EINTR;
|
|
|
|
return intel_gt_is_wedged(gt) ? -EIO : 0;
|
|
}
|
|
|
|
void intel_gt_set_wedged_on_init(struct intel_gt *gt)
|
|
{
|
|
BUILD_BUG_ON(I915_RESET_ENGINE + I915_NUM_ENGINES >
|
|
I915_WEDGED_ON_INIT);
|
|
intel_gt_set_wedged(gt);
|
|
i915_disable_error_state(gt->i915, -ENODEV);
|
|
set_bit(I915_WEDGED_ON_INIT, >->reset.flags);
|
|
|
|
/* Wedged on init is non-recoverable */
|
|
add_taint_for_CI(gt->i915, TAINT_WARN);
|
|
}
|
|
|
|
void intel_gt_set_wedged_on_fini(struct intel_gt *gt)
|
|
{
|
|
intel_gt_set_wedged(gt);
|
|
i915_disable_error_state(gt->i915, -ENODEV);
|
|
set_bit(I915_WEDGED_ON_FINI, >->reset.flags);
|
|
intel_gt_retire_requests(gt); /* cleanup any wedged requests */
|
|
}
|
|
|
|
void intel_gt_init_reset(struct intel_gt *gt)
|
|
{
|
|
init_waitqueue_head(>->reset.queue);
|
|
mutex_init(>->reset.mutex);
|
|
init_srcu_struct(>->reset.backoff_srcu);
|
|
INIT_WORK(>->wedge, set_wedged_work);
|
|
|
|
/*
|
|
* While undesirable to wait inside the shrinker, complain anyway.
|
|
*
|
|
* If we have to wait during shrinking, we guarantee forward progress
|
|
* by forcing the reset. Therefore during the reset we must not
|
|
* re-enter the shrinker. By declaring that we take the reset mutex
|
|
* within the shrinker, we forbid ourselves from performing any
|
|
* fs-reclaim or taking related locks during reset.
|
|
*/
|
|
i915_gem_shrinker_taints_mutex(gt->i915, >->reset.mutex);
|
|
|
|
/* no GPU until we are ready! */
|
|
__set_bit(I915_WEDGED, >->reset.flags);
|
|
}
|
|
|
|
void intel_gt_fini_reset(struct intel_gt *gt)
|
|
{
|
|
cleanup_srcu_struct(>->reset.backoff_srcu);
|
|
}
|
|
|
|
static void intel_wedge_me(struct work_struct *work)
|
|
{
|
|
struct intel_wedge_me *w = container_of(work, typeof(*w), work.work);
|
|
|
|
gt_err(w->gt, "%s timed out, cancelling all in-flight rendering.\n", w->name);
|
|
set_wedged_work(&w->gt->wedge);
|
|
}
|
|
|
|
void __intel_init_wedge(struct intel_wedge_me *w,
|
|
struct intel_gt *gt,
|
|
long timeout,
|
|
const char *name)
|
|
{
|
|
w->gt = gt;
|
|
w->name = name;
|
|
|
|
INIT_DELAYED_WORK_ONSTACK(&w->work, intel_wedge_me);
|
|
queue_delayed_work(gt->i915->unordered_wq, &w->work, timeout);
|
|
}
|
|
|
|
void __intel_fini_wedge(struct intel_wedge_me *w)
|
|
{
|
|
cancel_delayed_work_sync(&w->work);
|
|
destroy_delayed_work_on_stack(&w->work);
|
|
w->gt = NULL;
|
|
}
|
|
|
|
/*
|
|
* Wa_22011802037 requires that we (or the GuC) ensure that no command
|
|
* streamers are executing MI_FORCE_WAKE while an engine reset is initiated.
|
|
*/
|
|
bool intel_engine_reset_needs_wa_22011802037(struct intel_gt *gt)
|
|
{
|
|
if (GRAPHICS_VER(gt->i915) < 11)
|
|
return false;
|
|
|
|
if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0))
|
|
return true;
|
|
|
|
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
|
|
#include "selftest_reset.c"
|
|
#include "selftest_hangcheck.c"
|
|
#endif
|