1
linux/drivers/gpu/drm/bridge/ti-sn65dsi83.c
Luca Ceresoli ad81feb5b6 Revert "drm/bridge: ti-sn65dsi83: Fix enable error path"
This reverts commit 8a91b29f1f.

The regulator_disable() added by the original commit solves one kind of
regulator imbalance but adds another one as it allows the regulator to be
disabled one more time than it is enabled in the following scenario:

 1. Start video pipeline -> sn65dsi83_atomic_pre_enable -> regulator_enable
 2. PLL lock fails -> regulator_disable
 3. Stop video pipeline -> sn65dsi83_atomic_disable -> regulator_disable

The reason is clear from the code flow, which looks like this (after
removing unrelated code):

  static void sn65dsi83_atomic_pre_enable()
  {
      regulator_enable(ctx->vcc);

      if (PLL failed locking) {
          regulator_disable(ctx->vcc);  <---- added by patch being reverted
          return;
      }
  }

  static void sn65dsi83_atomic_disable()
  {
      regulator_disable(ctx->vcc);
  }

The use case for introducing the additional regulator_disable() was
removing the module for debugging (see link below for the discussion). If
the module is removed after a .atomic_pre_enable, i.e. with an active
pipeline from the DRM point of view, .atomic_disable is not called and thus
the regulator would not be disabled.

According to the discussion however there is no actual use case for
removing the module with an active pipeline, except for
debugging/development.

On the other hand, the occurrence of a PLL lock failure is possible due to
any physical reason (e.g. a temporary hardware failure for electrical
reasons) so handling it gracefully should be supported. As there is no way
for .atomic[_pre]_enable to report an error to the core, the only clean way
to support it is calling regulator_disabled() only in .atomic_disable,
unconditionally, as it was before.

Link: https://lore.kernel.org/all/15244220.uLZWGnKmhe@steina-w/
Fixes: 8a91b29f1f ("drm/bridge: ti-sn65dsi83: Fix enable error path")
Reviewed-by: Alexander Stein <alexander.stein@ew.tq-group.com>
Signed-off-by: Luca Ceresoli <luca.ceresoli@bootlin.com>
Signed-off-by: Robert Foss <rfoss@kernel.org>
Link: https://patchwork.freedesktop.org/patch/msgid/20240426122259.46808-1-luca.ceresoli@bootlin.com
(cherry picked from commit 2940ee03b2)
Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com>
2024-05-02 23:40:13 +02:00

763 lines
24 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* TI SN65DSI83,84,85 driver
*
* Currently supported:
* - SN65DSI83
* = 1x Single-link DSI ~ 1x Single-link LVDS
* - Supported
* - Single-link LVDS mode tested
* - SN65DSI84
* = 1x Single-link DSI ~ 2x Single-link or 1x Dual-link LVDS
* - Supported
* - Dual-link LVDS mode tested
* - 2x Single-link LVDS mode unsupported
* (should be easy to add by someone who has the HW)
* - SN65DSI85
* = 2x Single-link or 1x Dual-link DSI ~ 2x Single-link or 1x Dual-link LVDS
* - Unsupported
* (should be easy to add by someone who has the HW)
*
* Copyright (C) 2021 Marek Vasut <marex@denx.de>
*
* Based on previous work of:
* Valentin Raevsky <valentin@compulab.co.il>
* Philippe Schenker <philippe.schenker@toradex.com>
*/
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/media-bus-format.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_graph.h>
#include <linux/regmap.h>
#include <linux/regulator/consumer.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
/* ID registers */
#define REG_ID(n) (0x00 + (n))
/* Reset and clock registers */
#define REG_RC_RESET 0x09
#define REG_RC_RESET_SOFT_RESET BIT(0)
#define REG_RC_LVDS_PLL 0x0a
#define REG_RC_LVDS_PLL_PLL_EN_STAT BIT(7)
#define REG_RC_LVDS_PLL_LVDS_CLK_RANGE(n) (((n) & 0x7) << 1)
#define REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY BIT(0)
#define REG_RC_DSI_CLK 0x0b
#define REG_RC_DSI_CLK_DSI_CLK_DIVIDER(n) (((n) & 0x1f) << 3)
#define REG_RC_DSI_CLK_REFCLK_MULTIPLIER(n) ((n) & 0x3)
#define REG_RC_PLL_EN 0x0d
#define REG_RC_PLL_EN_PLL_EN BIT(0)
/* DSI registers */
#define REG_DSI_LANE 0x10
#define REG_DSI_LANE_LEFT_RIGHT_PIXELS BIT(7) /* DSI85-only */
#define REG_DSI_LANE_DSI_CHANNEL_MODE_DUAL 0 /* DSI85-only */
#define REG_DSI_LANE_DSI_CHANNEL_MODE_2SINGLE BIT(6) /* DSI85-only */
#define REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE BIT(5)
#define REG_DSI_LANE_CHA_DSI_LANES(n) (((n) & 0x3) << 3)
#define REG_DSI_LANE_CHB_DSI_LANES(n) (((n) & 0x3) << 1)
#define REG_DSI_LANE_SOT_ERR_TOL_DIS BIT(0)
#define REG_DSI_EQ 0x11
#define REG_DSI_EQ_CHA_DSI_DATA_EQ(n) (((n) & 0x3) << 6)
#define REG_DSI_EQ_CHA_DSI_CLK_EQ(n) (((n) & 0x3) << 2)
#define REG_DSI_CLK 0x12
#define REG_DSI_CLK_CHA_DSI_CLK_RANGE(n) ((n) & 0xff)
/* LVDS registers */
#define REG_LVDS_FMT 0x18
#define REG_LVDS_FMT_DE_NEG_POLARITY BIT(7)
#define REG_LVDS_FMT_HS_NEG_POLARITY BIT(6)
#define REG_LVDS_FMT_VS_NEG_POLARITY BIT(5)
#define REG_LVDS_FMT_LVDS_LINK_CFG BIT(4) /* 0:AB 1:A-only */
#define REG_LVDS_FMT_CHA_24BPP_MODE BIT(3)
#define REG_LVDS_FMT_CHB_24BPP_MODE BIT(2)
#define REG_LVDS_FMT_CHA_24BPP_FORMAT1 BIT(1)
#define REG_LVDS_FMT_CHB_24BPP_FORMAT1 BIT(0)
#define REG_LVDS_VCOM 0x19
#define REG_LVDS_VCOM_CHA_LVDS_VOCM BIT(6)
#define REG_LVDS_VCOM_CHB_LVDS_VOCM BIT(4)
#define REG_LVDS_VCOM_CHA_LVDS_VOD_SWING(n) (((n) & 0x3) << 2)
#define REG_LVDS_VCOM_CHB_LVDS_VOD_SWING(n) ((n) & 0x3)
#define REG_LVDS_LANE 0x1a
#define REG_LVDS_LANE_EVEN_ODD_SWAP BIT(6)
#define REG_LVDS_LANE_CHA_REVERSE_LVDS BIT(5)
#define REG_LVDS_LANE_CHB_REVERSE_LVDS BIT(4)
#define REG_LVDS_LANE_CHA_LVDS_TERM BIT(1)
#define REG_LVDS_LANE_CHB_LVDS_TERM BIT(0)
#define REG_LVDS_CM 0x1b
#define REG_LVDS_CM_CHA_LVDS_CM_ADJUST(n) (((n) & 0x3) << 4)
#define REG_LVDS_CM_CHB_LVDS_CM_ADJUST(n) ((n) & 0x3)
/* Video registers */
#define REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW 0x20
#define REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH 0x21
#define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW 0x24
#define REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH 0x25
#define REG_VID_CHA_SYNC_DELAY_LOW 0x28
#define REG_VID_CHA_SYNC_DELAY_HIGH 0x29
#define REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW 0x2c
#define REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH 0x2d
#define REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW 0x30
#define REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH 0x31
#define REG_VID_CHA_HORIZONTAL_BACK_PORCH 0x34
#define REG_VID_CHA_VERTICAL_BACK_PORCH 0x36
#define REG_VID_CHA_HORIZONTAL_FRONT_PORCH 0x38
#define REG_VID_CHA_VERTICAL_FRONT_PORCH 0x3a
#define REG_VID_CHA_TEST_PATTERN 0x3c
/* IRQ registers */
#define REG_IRQ_GLOBAL 0xe0
#define REG_IRQ_GLOBAL_IRQ_EN BIT(0)
#define REG_IRQ_EN 0xe1
#define REG_IRQ_EN_CHA_SYNCH_ERR_EN BIT(7)
#define REG_IRQ_EN_CHA_CRC_ERR_EN BIT(6)
#define REG_IRQ_EN_CHA_UNC_ECC_ERR_EN BIT(5)
#define REG_IRQ_EN_CHA_COR_ECC_ERR_EN BIT(4)
#define REG_IRQ_EN_CHA_LLP_ERR_EN BIT(3)
#define REG_IRQ_EN_CHA_SOT_BIT_ERR_EN BIT(2)
#define REG_IRQ_EN_CHA_PLL_UNLOCK_EN BIT(0)
#define REG_IRQ_STAT 0xe5
#define REG_IRQ_STAT_CHA_SYNCH_ERR BIT(7)
#define REG_IRQ_STAT_CHA_CRC_ERR BIT(6)
#define REG_IRQ_STAT_CHA_UNC_ECC_ERR BIT(5)
#define REG_IRQ_STAT_CHA_COR_ECC_ERR BIT(4)
#define REG_IRQ_STAT_CHA_LLP_ERR BIT(3)
#define REG_IRQ_STAT_CHA_SOT_BIT_ERR BIT(2)
#define REG_IRQ_STAT_CHA_PLL_UNLOCK BIT(0)
enum sn65dsi83_model {
MODEL_SN65DSI83,
MODEL_SN65DSI84,
};
struct sn65dsi83 {
struct drm_bridge bridge;
struct device *dev;
struct regmap *regmap;
struct mipi_dsi_device *dsi;
struct drm_bridge *panel_bridge;
struct gpio_desc *enable_gpio;
struct regulator *vcc;
bool lvds_dual_link;
bool lvds_dual_link_even_odd_swap;
};
static const struct regmap_range sn65dsi83_readable_ranges[] = {
regmap_reg_range(REG_ID(0), REG_ID(8)),
regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_DSI_CLK),
regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
REG_VID_CHA_SYNC_DELAY_HIGH),
regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
REG_VID_CHA_HORIZONTAL_BACK_PORCH),
regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
REG_VID_CHA_VERTICAL_BACK_PORCH),
regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
REG_VID_CHA_VERTICAL_FRONT_PORCH),
regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
};
static const struct regmap_access_table sn65dsi83_readable_table = {
.yes_ranges = sn65dsi83_readable_ranges,
.n_yes_ranges = ARRAY_SIZE(sn65dsi83_readable_ranges),
};
static const struct regmap_range sn65dsi83_writeable_ranges[] = {
regmap_reg_range(REG_RC_RESET, REG_RC_DSI_CLK),
regmap_reg_range(REG_RC_PLL_EN, REG_RC_PLL_EN),
regmap_reg_range(REG_DSI_LANE, REG_DSI_CLK),
regmap_reg_range(REG_LVDS_FMT, REG_LVDS_CM),
regmap_reg_range(REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
REG_VID_CHA_ACTIVE_LINE_LENGTH_HIGH),
regmap_reg_range(REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
REG_VID_CHA_VERTICAL_DISPLAY_SIZE_HIGH),
regmap_reg_range(REG_VID_CHA_SYNC_DELAY_LOW,
REG_VID_CHA_SYNC_DELAY_HIGH),
regmap_reg_range(REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
REG_VID_CHA_HSYNC_PULSE_WIDTH_HIGH),
regmap_reg_range(REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
REG_VID_CHA_VSYNC_PULSE_WIDTH_HIGH),
regmap_reg_range(REG_VID_CHA_HORIZONTAL_BACK_PORCH,
REG_VID_CHA_HORIZONTAL_BACK_PORCH),
regmap_reg_range(REG_VID_CHA_VERTICAL_BACK_PORCH,
REG_VID_CHA_VERTICAL_BACK_PORCH),
regmap_reg_range(REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
REG_VID_CHA_HORIZONTAL_FRONT_PORCH),
regmap_reg_range(REG_VID_CHA_VERTICAL_FRONT_PORCH,
REG_VID_CHA_VERTICAL_FRONT_PORCH),
regmap_reg_range(REG_VID_CHA_TEST_PATTERN, REG_VID_CHA_TEST_PATTERN),
regmap_reg_range(REG_IRQ_GLOBAL, REG_IRQ_EN),
regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
};
static const struct regmap_access_table sn65dsi83_writeable_table = {
.yes_ranges = sn65dsi83_writeable_ranges,
.n_yes_ranges = ARRAY_SIZE(sn65dsi83_writeable_ranges),
};
static const struct regmap_range sn65dsi83_volatile_ranges[] = {
regmap_reg_range(REG_RC_RESET, REG_RC_RESET),
regmap_reg_range(REG_RC_LVDS_PLL, REG_RC_LVDS_PLL),
regmap_reg_range(REG_IRQ_STAT, REG_IRQ_STAT),
};
static const struct regmap_access_table sn65dsi83_volatile_table = {
.yes_ranges = sn65dsi83_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(sn65dsi83_volatile_ranges),
};
static const struct regmap_config sn65dsi83_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.rd_table = &sn65dsi83_readable_table,
.wr_table = &sn65dsi83_writeable_table,
.volatile_table = &sn65dsi83_volatile_table,
.cache_type = REGCACHE_MAPLE,
.max_register = REG_IRQ_STAT,
};
static struct sn65dsi83 *bridge_to_sn65dsi83(struct drm_bridge *bridge)
{
return container_of(bridge, struct sn65dsi83, bridge);
}
static int sn65dsi83_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
return drm_bridge_attach(bridge->encoder, ctx->panel_bridge,
&ctx->bridge, flags);
}
static void sn65dsi83_detach(struct drm_bridge *bridge)
{
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
if (!ctx->dsi)
return;
ctx->dsi = NULL;
}
static u8 sn65dsi83_get_lvds_range(struct sn65dsi83 *ctx,
const struct drm_display_mode *mode)
{
/*
* The encoding of the LVDS_CLK_RANGE is as follows:
* 000 - 25 MHz <= LVDS_CLK < 37.5 MHz
* 001 - 37.5 MHz <= LVDS_CLK < 62.5 MHz
* 010 - 62.5 MHz <= LVDS_CLK < 87.5 MHz
* 011 - 87.5 MHz <= LVDS_CLK < 112.5 MHz
* 100 - 112.5 MHz <= LVDS_CLK < 137.5 MHz
* 101 - 137.5 MHz <= LVDS_CLK <= 154 MHz
* which is a range of 12.5MHz..162.5MHz in 50MHz steps, except that
* the ends of the ranges are clamped to the supported range. Since
* sn65dsi83_mode_valid() already filters the valid modes and limits
* the clock to 25..154 MHz, the range calculation can be simplified
* as follows:
*/
int mode_clock = mode->clock;
if (ctx->lvds_dual_link)
mode_clock /= 2;
return (mode_clock - 12500) / 25000;
}
static u8 sn65dsi83_get_dsi_range(struct sn65dsi83 *ctx,
const struct drm_display_mode *mode)
{
/*
* The encoding of the CHA_DSI_CLK_RANGE is as follows:
* 0x00 through 0x07 - Reserved
* 0x08 - 40 <= DSI_CLK < 45 MHz
* 0x09 - 45 <= DSI_CLK < 50 MHz
* ...
* 0x63 - 495 <= DSI_CLK < 500 MHz
* 0x64 - 500 MHz
* 0x65 through 0xFF - Reserved
* which is DSI clock in 5 MHz steps, clamped to 40..500 MHz.
* The DSI clock are calculated as:
* DSI_CLK = mode clock * bpp / dsi_data_lanes / 2
* the 2 is there because the bus is DDR.
*/
return DIV_ROUND_UP(clamp((unsigned int)mode->clock *
mipi_dsi_pixel_format_to_bpp(ctx->dsi->format) /
ctx->dsi->lanes / 2, 40000U, 500000U), 5000U);
}
static u8 sn65dsi83_get_dsi_div(struct sn65dsi83 *ctx)
{
/* The divider is (DSI_CLK / LVDS_CLK) - 1, which really is: */
unsigned int dsi_div = mipi_dsi_pixel_format_to_bpp(ctx->dsi->format);
dsi_div /= ctx->dsi->lanes;
if (!ctx->lvds_dual_link)
dsi_div /= 2;
return dsi_div - 1;
}
static void sn65dsi83_atomic_pre_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
struct drm_atomic_state *state = old_bridge_state->base.state;
const struct drm_bridge_state *bridge_state;
const struct drm_crtc_state *crtc_state;
const struct drm_display_mode *mode;
struct drm_connector *connector;
struct drm_crtc *crtc;
bool lvds_format_24bpp;
bool lvds_format_jeida;
unsigned int pval;
__le16 le16val;
u16 val;
int ret;
ret = regulator_enable(ctx->vcc);
if (ret) {
dev_err(ctx->dev, "Failed to enable vcc: %d\n", ret);
return;
}
/* Deassert reset */
gpiod_set_value_cansleep(ctx->enable_gpio, 1);
usleep_range(10000, 11000);
/* Get the LVDS format from the bridge state. */
bridge_state = drm_atomic_get_new_bridge_state(state, bridge);
switch (bridge_state->output_bus_cfg.format) {
case MEDIA_BUS_FMT_RGB666_1X7X3_SPWG:
lvds_format_24bpp = false;
lvds_format_jeida = true;
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_JEIDA:
lvds_format_24bpp = true;
lvds_format_jeida = true;
break;
case MEDIA_BUS_FMT_RGB888_1X7X4_SPWG:
lvds_format_24bpp = true;
lvds_format_jeida = false;
break;
default:
/*
* Some bridges still don't set the correct
* LVDS bus pixel format, use SPWG24 default
* format until those are fixed.
*/
lvds_format_24bpp = true;
lvds_format_jeida = false;
dev_warn(ctx->dev,
"Unsupported LVDS bus format 0x%04x, please check output bridge driver. Falling back to SPWG24.\n",
bridge_state->output_bus_cfg.format);
break;
}
/*
* Retrieve the CRTC adjusted mode. This requires a little dance to go
* from the bridge to the encoder, to the connector and to the CRTC.
*/
connector = drm_atomic_get_new_connector_for_encoder(state,
bridge->encoder);
crtc = drm_atomic_get_new_connector_state(state, connector)->crtc;
crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
mode = &crtc_state->adjusted_mode;
/* Clear reset, disable PLL */
regmap_write(ctx->regmap, REG_RC_RESET, 0x00);
regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
/* Reference clock derived from DSI link clock. */
regmap_write(ctx->regmap, REG_RC_LVDS_PLL,
REG_RC_LVDS_PLL_LVDS_CLK_RANGE(sn65dsi83_get_lvds_range(ctx, mode)) |
REG_RC_LVDS_PLL_HS_CLK_SRC_DPHY);
regmap_write(ctx->regmap, REG_DSI_CLK,
REG_DSI_CLK_CHA_DSI_CLK_RANGE(sn65dsi83_get_dsi_range(ctx, mode)));
regmap_write(ctx->regmap, REG_RC_DSI_CLK,
REG_RC_DSI_CLK_DSI_CLK_DIVIDER(sn65dsi83_get_dsi_div(ctx)));
/* Set number of DSI lanes and LVDS link config. */
regmap_write(ctx->regmap, REG_DSI_LANE,
REG_DSI_LANE_DSI_CHANNEL_MODE_SINGLE |
REG_DSI_LANE_CHA_DSI_LANES(~(ctx->dsi->lanes - 1)) |
/* CHB is DSI85-only, set to default on DSI83/DSI84 */
REG_DSI_LANE_CHB_DSI_LANES(3));
/* No equalization. */
regmap_write(ctx->regmap, REG_DSI_EQ, 0x00);
/* Set up sync signal polarity. */
val = (mode->flags & DRM_MODE_FLAG_NHSYNC ?
REG_LVDS_FMT_HS_NEG_POLARITY : 0) |
(mode->flags & DRM_MODE_FLAG_NVSYNC ?
REG_LVDS_FMT_VS_NEG_POLARITY : 0);
/* Set up bits-per-pixel, 18bpp or 24bpp. */
if (lvds_format_24bpp) {
val |= REG_LVDS_FMT_CHA_24BPP_MODE;
if (ctx->lvds_dual_link)
val |= REG_LVDS_FMT_CHB_24BPP_MODE;
}
/* Set up LVDS format, JEIDA/Format 1 or SPWG/Format 2 */
if (lvds_format_jeida) {
val |= REG_LVDS_FMT_CHA_24BPP_FORMAT1;
if (ctx->lvds_dual_link)
val |= REG_LVDS_FMT_CHB_24BPP_FORMAT1;
}
/* Set up LVDS output config (DSI84,DSI85) */
if (!ctx->lvds_dual_link)
val |= REG_LVDS_FMT_LVDS_LINK_CFG;
regmap_write(ctx->regmap, REG_LVDS_FMT, val);
regmap_write(ctx->regmap, REG_LVDS_VCOM, 0x05);
regmap_write(ctx->regmap, REG_LVDS_LANE,
(ctx->lvds_dual_link_even_odd_swap ?
REG_LVDS_LANE_EVEN_ODD_SWAP : 0) |
REG_LVDS_LANE_CHA_LVDS_TERM |
REG_LVDS_LANE_CHB_LVDS_TERM);
regmap_write(ctx->regmap, REG_LVDS_CM, 0x00);
le16val = cpu_to_le16(mode->hdisplay);
regmap_bulk_write(ctx->regmap, REG_VID_CHA_ACTIVE_LINE_LENGTH_LOW,
&le16val, 2);
le16val = cpu_to_le16(mode->vdisplay);
regmap_bulk_write(ctx->regmap, REG_VID_CHA_VERTICAL_DISPLAY_SIZE_LOW,
&le16val, 2);
/* 32 + 1 pixel clock to ensure proper operation */
le16val = cpu_to_le16(32 + 1);
regmap_bulk_write(ctx->regmap, REG_VID_CHA_SYNC_DELAY_LOW, &le16val, 2);
le16val = cpu_to_le16(mode->hsync_end - mode->hsync_start);
regmap_bulk_write(ctx->regmap, REG_VID_CHA_HSYNC_PULSE_WIDTH_LOW,
&le16val, 2);
le16val = cpu_to_le16(mode->vsync_end - mode->vsync_start);
regmap_bulk_write(ctx->regmap, REG_VID_CHA_VSYNC_PULSE_WIDTH_LOW,
&le16val, 2);
regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_BACK_PORCH,
mode->htotal - mode->hsync_end);
regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_BACK_PORCH,
mode->vtotal - mode->vsync_end);
regmap_write(ctx->regmap, REG_VID_CHA_HORIZONTAL_FRONT_PORCH,
mode->hsync_start - mode->hdisplay);
regmap_write(ctx->regmap, REG_VID_CHA_VERTICAL_FRONT_PORCH,
mode->vsync_start - mode->vdisplay);
regmap_write(ctx->regmap, REG_VID_CHA_TEST_PATTERN, 0x00);
/* Enable PLL */
regmap_write(ctx->regmap, REG_RC_PLL_EN, REG_RC_PLL_EN_PLL_EN);
usleep_range(3000, 4000);
ret = regmap_read_poll_timeout(ctx->regmap, REG_RC_LVDS_PLL, pval,
pval & REG_RC_LVDS_PLL_PLL_EN_STAT,
1000, 100000);
if (ret) {
dev_err(ctx->dev, "failed to lock PLL, ret=%i\n", ret);
/* On failure, disable PLL again and exit. */
regmap_write(ctx->regmap, REG_RC_PLL_EN, 0x00);
return;
}
/* Trigger reset after CSR register update. */
regmap_write(ctx->regmap, REG_RC_RESET, REG_RC_RESET_SOFT_RESET);
/* Wait for 10ms after soft reset as specified in datasheet */
usleep_range(10000, 12000);
}
static void sn65dsi83_atomic_enable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
unsigned int pval;
/* Clear all errors that got asserted during initialization. */
regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
regmap_write(ctx->regmap, REG_IRQ_STAT, pval);
/* Wait for 1ms and check for errors in status register */
usleep_range(1000, 1100);
regmap_read(ctx->regmap, REG_IRQ_STAT, &pval);
if (pval)
dev_err(ctx->dev, "Unexpected link status 0x%02x\n", pval);
}
static void sn65dsi83_atomic_disable(struct drm_bridge *bridge,
struct drm_bridge_state *old_bridge_state)
{
struct sn65dsi83 *ctx = bridge_to_sn65dsi83(bridge);
int ret;
/* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
gpiod_set_value_cansleep(ctx->enable_gpio, 0);
usleep_range(10000, 11000);
ret = regulator_disable(ctx->vcc);
if (ret)
dev_err(ctx->dev, "Failed to disable vcc: %d\n", ret);
regcache_mark_dirty(ctx->regmap);
}
static enum drm_mode_status
sn65dsi83_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
/* LVDS output clock range 25..154 MHz */
if (mode->clock < 25000)
return MODE_CLOCK_LOW;
if (mode->clock > 154000)
return MODE_CLOCK_HIGH;
return MODE_OK;
}
#define MAX_INPUT_SEL_FORMATS 1
static u32 *
sn65dsi83_atomic_get_input_bus_fmts(struct drm_bridge *bridge,
struct drm_bridge_state *bridge_state,
struct drm_crtc_state *crtc_state,
struct drm_connector_state *conn_state,
u32 output_fmt,
unsigned int *num_input_fmts)
{
u32 *input_fmts;
*num_input_fmts = 0;
input_fmts = kcalloc(MAX_INPUT_SEL_FORMATS, sizeof(*input_fmts),
GFP_KERNEL);
if (!input_fmts)
return NULL;
/* This is the DSI-end bus format */
input_fmts[0] = MEDIA_BUS_FMT_RGB888_1X24;
*num_input_fmts = 1;
return input_fmts;
}
static const struct drm_bridge_funcs sn65dsi83_funcs = {
.attach = sn65dsi83_attach,
.detach = sn65dsi83_detach,
.atomic_enable = sn65dsi83_atomic_enable,
.atomic_pre_enable = sn65dsi83_atomic_pre_enable,
.atomic_disable = sn65dsi83_atomic_disable,
.mode_valid = sn65dsi83_mode_valid,
.atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
.atomic_reset = drm_atomic_helper_bridge_reset,
.atomic_get_input_bus_fmts = sn65dsi83_atomic_get_input_bus_fmts,
};
static int sn65dsi83_parse_dt(struct sn65dsi83 *ctx, enum sn65dsi83_model model)
{
struct drm_bridge *panel_bridge;
struct device *dev = ctx->dev;
ctx->lvds_dual_link = false;
ctx->lvds_dual_link_even_odd_swap = false;
if (model != MODEL_SN65DSI83) {
struct device_node *port2, *port3;
int dual_link;
port2 = of_graph_get_port_by_id(dev->of_node, 2);
port3 = of_graph_get_port_by_id(dev->of_node, 3);
dual_link = drm_of_lvds_get_dual_link_pixel_order(port2, port3);
of_node_put(port2);
of_node_put(port3);
if (dual_link == DRM_LVDS_DUAL_LINK_ODD_EVEN_PIXELS) {
ctx->lvds_dual_link = true;
/* Odd pixels to LVDS Channel A, even pixels to B */
ctx->lvds_dual_link_even_odd_swap = false;
} else if (dual_link == DRM_LVDS_DUAL_LINK_EVEN_ODD_PIXELS) {
ctx->lvds_dual_link = true;
/* Even pixels to LVDS Channel A, odd pixels to B */
ctx->lvds_dual_link_even_odd_swap = true;
}
}
panel_bridge = devm_drm_of_get_bridge(dev, dev->of_node, 2, 0);
if (IS_ERR(panel_bridge))
return PTR_ERR(panel_bridge);
ctx->panel_bridge = panel_bridge;
ctx->vcc = devm_regulator_get(dev, "vcc");
if (IS_ERR(ctx->vcc))
return dev_err_probe(dev, PTR_ERR(ctx->vcc),
"Failed to get supply 'vcc'\n");
return 0;
}
static int sn65dsi83_host_attach(struct sn65dsi83 *ctx)
{
struct device *dev = ctx->dev;
struct device_node *host_node;
struct device_node *endpoint;
struct mipi_dsi_device *dsi;
struct mipi_dsi_host *host;
const struct mipi_dsi_device_info info = {
.type = "sn65dsi83",
.channel = 0,
.node = NULL,
};
int dsi_lanes, ret;
endpoint = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1);
dsi_lanes = drm_of_get_data_lanes_count(endpoint, 1, 4);
host_node = of_graph_get_remote_port_parent(endpoint);
host = of_find_mipi_dsi_host_by_node(host_node);
of_node_put(host_node);
of_node_put(endpoint);
if (!host)
return -EPROBE_DEFER;
if (dsi_lanes < 0)
return dsi_lanes;
dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
if (IS_ERR(dsi))
return dev_err_probe(dev, PTR_ERR(dsi),
"failed to create dsi device\n");
ctx->dsi = dsi;
dsi->lanes = dsi_lanes;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->mode_flags = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST |
MIPI_DSI_MODE_VIDEO_NO_HFP | MIPI_DSI_MODE_VIDEO_NO_HBP |
MIPI_DSI_MODE_VIDEO_NO_HSA | MIPI_DSI_MODE_NO_EOT_PACKET;
ret = devm_mipi_dsi_attach(dev, dsi);
if (ret < 0) {
dev_err(dev, "failed to attach dsi to host: %d\n", ret);
return ret;
}
return 0;
}
static int sn65dsi83_probe(struct i2c_client *client)
{
const struct i2c_device_id *id = i2c_client_get_device_id(client);
struct device *dev = &client->dev;
enum sn65dsi83_model model;
struct sn65dsi83 *ctx;
int ret;
ctx = devm_kzalloc(dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->dev = dev;
if (dev->of_node) {
model = (enum sn65dsi83_model)(uintptr_t)
of_device_get_match_data(dev);
} else {
model = id->driver_data;
}
/* Put the chip in reset, pull EN line low, and assure 10ms reset low timing. */
ctx->enable_gpio = devm_gpiod_get_optional(ctx->dev, "enable",
GPIOD_OUT_LOW);
if (IS_ERR(ctx->enable_gpio))
return dev_err_probe(dev, PTR_ERR(ctx->enable_gpio), "failed to get enable GPIO\n");
usleep_range(10000, 11000);
ret = sn65dsi83_parse_dt(ctx, model);
if (ret)
return ret;
ctx->regmap = devm_regmap_init_i2c(client, &sn65dsi83_regmap_config);
if (IS_ERR(ctx->regmap))
return dev_err_probe(dev, PTR_ERR(ctx->regmap), "failed to get regmap\n");
dev_set_drvdata(dev, ctx);
i2c_set_clientdata(client, ctx);
ctx->bridge.funcs = &sn65dsi83_funcs;
ctx->bridge.of_node = dev->of_node;
ctx->bridge.pre_enable_prev_first = true;
drm_bridge_add(&ctx->bridge);
ret = sn65dsi83_host_attach(ctx);
if (ret) {
dev_err_probe(dev, ret, "failed to attach DSI host\n");
goto err_remove_bridge;
}
return 0;
err_remove_bridge:
drm_bridge_remove(&ctx->bridge);
return ret;
}
static void sn65dsi83_remove(struct i2c_client *client)
{
struct sn65dsi83 *ctx = i2c_get_clientdata(client);
drm_bridge_remove(&ctx->bridge);
}
static struct i2c_device_id sn65dsi83_id[] = {
{ "ti,sn65dsi83", MODEL_SN65DSI83 },
{ "ti,sn65dsi84", MODEL_SN65DSI84 },
{},
};
MODULE_DEVICE_TABLE(i2c, sn65dsi83_id);
static const struct of_device_id sn65dsi83_match_table[] = {
{ .compatible = "ti,sn65dsi83", .data = (void *)MODEL_SN65DSI83 },
{ .compatible = "ti,sn65dsi84", .data = (void *)MODEL_SN65DSI84 },
{},
};
MODULE_DEVICE_TABLE(of, sn65dsi83_match_table);
static struct i2c_driver sn65dsi83_driver = {
.probe = sn65dsi83_probe,
.remove = sn65dsi83_remove,
.id_table = sn65dsi83_id,
.driver = {
.name = "sn65dsi83",
.of_match_table = sn65dsi83_match_table,
},
};
module_i2c_driver(sn65dsi83_driver);
MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
MODULE_DESCRIPTION("TI SN65DSI83 DSI to LVDS bridge driver");
MODULE_LICENSE("GPL v2");