5ae6d3f5c8
Return negative -ENOMEM, instead of positive ENOMEM.
Fixes: 0880bb3b00
("crypto: tegra - Add Tegra Security Engine driver")
Signed-off-by: Dan Carpenter <dan.carpenter@linaro.org>
Reviewed-by: Jon Hunter <jonathanh@nvidia.com>
Acked-by: Akhil R <akhilrajeev@nvidia.com>
Acked-by: Thierry Reding <treding@nvidia.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1934 lines
49 KiB
C
1934 lines
49 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
// SPDX-FileCopyrightText: Copyright (c) 2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
/*
|
|
* Crypto driver to handle block cipher algorithms using NVIDIA Security Engine.
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <crypto/aead.h>
|
|
#include <crypto/aes.h>
|
|
#include <crypto/engine.h>
|
|
#include <crypto/gcm.h>
|
|
#include <crypto/scatterwalk.h>
|
|
#include <crypto/xts.h>
|
|
#include <crypto/internal/aead.h>
|
|
#include <crypto/internal/hash.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
|
|
#include "tegra-se.h"
|
|
|
|
struct tegra_aes_ctx {
|
|
struct tegra_se *se;
|
|
u32 alg;
|
|
u32 ivsize;
|
|
u32 key1_id;
|
|
u32 key2_id;
|
|
};
|
|
|
|
struct tegra_aes_reqctx {
|
|
struct tegra_se_datbuf datbuf;
|
|
bool encrypt;
|
|
u32 config;
|
|
u32 crypto_config;
|
|
u32 len;
|
|
u32 *iv;
|
|
};
|
|
|
|
struct tegra_aead_ctx {
|
|
struct tegra_se *se;
|
|
unsigned int authsize;
|
|
u32 alg;
|
|
u32 keylen;
|
|
u32 key_id;
|
|
};
|
|
|
|
struct tegra_aead_reqctx {
|
|
struct tegra_se_datbuf inbuf;
|
|
struct tegra_se_datbuf outbuf;
|
|
struct scatterlist *src_sg;
|
|
struct scatterlist *dst_sg;
|
|
unsigned int assoclen;
|
|
unsigned int cryptlen;
|
|
unsigned int authsize;
|
|
bool encrypt;
|
|
u32 config;
|
|
u32 crypto_config;
|
|
u32 key_id;
|
|
u32 iv[4];
|
|
u8 authdata[16];
|
|
};
|
|
|
|
struct tegra_cmac_ctx {
|
|
struct tegra_se *se;
|
|
unsigned int alg;
|
|
u32 key_id;
|
|
struct crypto_shash *fallback_tfm;
|
|
};
|
|
|
|
struct tegra_cmac_reqctx {
|
|
struct scatterlist *src_sg;
|
|
struct tegra_se_datbuf datbuf;
|
|
struct tegra_se_datbuf residue;
|
|
unsigned int total_len;
|
|
unsigned int blk_size;
|
|
unsigned int task;
|
|
u32 crypto_config;
|
|
u32 config;
|
|
u32 key_id;
|
|
u32 *iv;
|
|
u32 result[CMAC_RESULT_REG_COUNT];
|
|
};
|
|
|
|
/* increment counter (128-bit int) */
|
|
static void ctr_iv_inc(__u8 *counter, __u8 bits, __u32 nums)
|
|
{
|
|
do {
|
|
--bits;
|
|
nums += counter[bits];
|
|
counter[bits] = nums & 0xff;
|
|
nums >>= 8;
|
|
} while (bits && nums);
|
|
}
|
|
|
|
static void tegra_cbc_iv_copyback(struct skcipher_request *req, struct tegra_aes_ctx *ctx)
|
|
{
|
|
struct tegra_aes_reqctx *rctx = skcipher_request_ctx(req);
|
|
unsigned int offset;
|
|
|
|
offset = req->cryptlen - ctx->ivsize;
|
|
|
|
if (rctx->encrypt)
|
|
memcpy(req->iv, rctx->datbuf.buf + offset, ctx->ivsize);
|
|
else
|
|
scatterwalk_map_and_copy(req->iv, req->src, offset, ctx->ivsize, 0);
|
|
}
|
|
|
|
static void tegra_aes_update_iv(struct skcipher_request *req, struct tegra_aes_ctx *ctx)
|
|
{
|
|
int num;
|
|
|
|
if (ctx->alg == SE_ALG_CBC) {
|
|
tegra_cbc_iv_copyback(req, ctx);
|
|
} else if (ctx->alg == SE_ALG_CTR) {
|
|
num = req->cryptlen / ctx->ivsize;
|
|
if (req->cryptlen % ctx->ivsize)
|
|
num++;
|
|
|
|
ctr_iv_inc(req->iv, ctx->ivsize, num);
|
|
}
|
|
}
|
|
|
|
static int tegra234_aes_crypto_cfg(u32 alg, bool encrypt)
|
|
{
|
|
switch (alg) {
|
|
case SE_ALG_CMAC:
|
|
case SE_ALG_GMAC:
|
|
case SE_ALG_GCM:
|
|
case SE_ALG_GCM_FINAL:
|
|
return 0;
|
|
case SE_ALG_CBC:
|
|
if (encrypt)
|
|
return SE_CRYPTO_CFG_CBC_ENCRYPT;
|
|
else
|
|
return SE_CRYPTO_CFG_CBC_DECRYPT;
|
|
case SE_ALG_ECB:
|
|
if (encrypt)
|
|
return SE_CRYPTO_CFG_ECB_ENCRYPT;
|
|
else
|
|
return SE_CRYPTO_CFG_ECB_DECRYPT;
|
|
case SE_ALG_XTS:
|
|
if (encrypt)
|
|
return SE_CRYPTO_CFG_XTS_ENCRYPT;
|
|
else
|
|
return SE_CRYPTO_CFG_XTS_DECRYPT;
|
|
|
|
case SE_ALG_CTR:
|
|
return SE_CRYPTO_CFG_CTR;
|
|
case SE_ALG_CBC_MAC:
|
|
return SE_CRYPTO_CFG_CBC_MAC;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int tegra234_aes_cfg(u32 alg, bool encrypt)
|
|
{
|
|
switch (alg) {
|
|
case SE_ALG_CBC:
|
|
case SE_ALG_ECB:
|
|
case SE_ALG_XTS:
|
|
case SE_ALG_CTR:
|
|
if (encrypt)
|
|
return SE_CFG_AES_ENCRYPT;
|
|
else
|
|
return SE_CFG_AES_DECRYPT;
|
|
|
|
case SE_ALG_GMAC:
|
|
if (encrypt)
|
|
return SE_CFG_GMAC_ENCRYPT;
|
|
else
|
|
return SE_CFG_GMAC_DECRYPT;
|
|
|
|
case SE_ALG_GCM:
|
|
if (encrypt)
|
|
return SE_CFG_GCM_ENCRYPT;
|
|
else
|
|
return SE_CFG_GCM_DECRYPT;
|
|
|
|
case SE_ALG_GCM_FINAL:
|
|
if (encrypt)
|
|
return SE_CFG_GCM_FINAL_ENCRYPT;
|
|
else
|
|
return SE_CFG_GCM_FINAL_DECRYPT;
|
|
|
|
case SE_ALG_CMAC:
|
|
return SE_CFG_CMAC;
|
|
|
|
case SE_ALG_CBC_MAC:
|
|
return SE_AES_ENC_ALG_AES_ENC |
|
|
SE_AES_DST_HASH_REG;
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static unsigned int tegra_aes_prep_cmd(struct tegra_aes_ctx *ctx,
|
|
struct tegra_aes_reqctx *rctx)
|
|
{
|
|
unsigned int data_count, res_bits, i = 0, j;
|
|
struct tegra_se *se = ctx->se;
|
|
u32 *cpuvaddr = se->cmdbuf->addr;
|
|
dma_addr_t addr = rctx->datbuf.addr;
|
|
|
|
data_count = rctx->len / AES_BLOCK_SIZE;
|
|
res_bits = (rctx->len % AES_BLOCK_SIZE) * 8;
|
|
|
|
/*
|
|
* Hardware processes data_count + 1 blocks.
|
|
* Reduce 1 block if there is no residue
|
|
*/
|
|
if (!res_bits)
|
|
data_count--;
|
|
|
|
if (rctx->iv) {
|
|
cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
|
|
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
|
|
for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
|
|
cpuvaddr[i++] = rctx->iv[j];
|
|
}
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
|
|
cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
|
|
SE_LAST_BLOCK_RES_BITS(res_bits);
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
|
|
cpuvaddr[i++] = rctx->config;
|
|
cpuvaddr[i++] = rctx->crypto_config;
|
|
|
|
/* Source address setting */
|
|
cpuvaddr[i++] = lower_32_bits(addr);
|
|
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(addr)) | SE_ADDR_HI_SZ(rctx->len);
|
|
|
|
/* Destination address setting */
|
|
cpuvaddr[i++] = lower_32_bits(addr);
|
|
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(addr)) |
|
|
SE_ADDR_HI_SZ(rctx->len);
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
|
|
cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_LASTBUF |
|
|
SE_AES_OP_START;
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
|
|
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
|
|
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
|
|
|
|
dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config);
|
|
|
|
return i;
|
|
}
|
|
|
|
static int tegra_aes_do_one_req(struct crypto_engine *engine, void *areq)
|
|
{
|
|
struct skcipher_request *req = container_of(areq, struct skcipher_request, base);
|
|
struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
|
|
struct tegra_aes_reqctx *rctx = skcipher_request_ctx(req);
|
|
struct tegra_se *se = ctx->se;
|
|
unsigned int cmdlen;
|
|
int ret;
|
|
|
|
rctx->datbuf.buf = dma_alloc_coherent(se->dev, SE_AES_BUFLEN,
|
|
&rctx->datbuf.addr, GFP_KERNEL);
|
|
if (!rctx->datbuf.buf)
|
|
return -ENOMEM;
|
|
|
|
rctx->datbuf.size = SE_AES_BUFLEN;
|
|
rctx->iv = (u32 *)req->iv;
|
|
rctx->len = req->cryptlen;
|
|
|
|
/* Pad input to AES Block size */
|
|
if (ctx->alg != SE_ALG_XTS) {
|
|
if (rctx->len % AES_BLOCK_SIZE)
|
|
rctx->len += AES_BLOCK_SIZE - (rctx->len % AES_BLOCK_SIZE);
|
|
}
|
|
|
|
scatterwalk_map_and_copy(rctx->datbuf.buf, req->src, 0, req->cryptlen, 0);
|
|
|
|
/* Prepare the command and submit for execution */
|
|
cmdlen = tegra_aes_prep_cmd(ctx, rctx);
|
|
ret = tegra_se_host1x_submit(se, cmdlen);
|
|
|
|
/* Copy the result */
|
|
tegra_aes_update_iv(req, ctx);
|
|
scatterwalk_map_and_copy(rctx->datbuf.buf, req->dst, 0, req->cryptlen, 1);
|
|
|
|
/* Free the buffer */
|
|
dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
|
|
rctx->datbuf.buf, rctx->datbuf.addr);
|
|
|
|
crypto_finalize_skcipher_request(se->engine, req, ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_aes_cra_init(struct crypto_skcipher *tfm)
|
|
{
|
|
struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
|
|
struct tegra_se_alg *se_alg;
|
|
const char *algname;
|
|
int ret;
|
|
|
|
se_alg = container_of(alg, struct tegra_se_alg, alg.skcipher.base);
|
|
|
|
crypto_skcipher_set_reqsize(tfm, sizeof(struct tegra_aes_reqctx));
|
|
|
|
ctx->ivsize = crypto_skcipher_ivsize(tfm);
|
|
ctx->se = se_alg->se_dev;
|
|
ctx->key1_id = 0;
|
|
ctx->key2_id = 0;
|
|
|
|
algname = crypto_tfm_alg_name(&tfm->base);
|
|
ret = se_algname_to_algid(algname);
|
|
if (ret < 0) {
|
|
dev_err(ctx->se->dev, "invalid algorithm\n");
|
|
return ret;
|
|
}
|
|
|
|
ctx->alg = ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tegra_aes_cra_exit(struct crypto_skcipher *tfm)
|
|
{
|
|
struct tegra_aes_ctx *ctx = crypto_tfm_ctx(&tfm->base);
|
|
|
|
if (ctx->key1_id)
|
|
tegra_key_invalidate(ctx->se, ctx->key1_id, ctx->alg);
|
|
|
|
if (ctx->key2_id)
|
|
tegra_key_invalidate(ctx->se, ctx->key2_id, ctx->alg);
|
|
}
|
|
|
|
static int tegra_aes_setkey(struct crypto_skcipher *tfm,
|
|
const u8 *key, u32 keylen)
|
|
{
|
|
struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
if (aes_check_keylen(keylen)) {
|
|
dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key1_id);
|
|
}
|
|
|
|
static int tegra_xts_setkey(struct crypto_skcipher *tfm,
|
|
const u8 *key, u32 keylen)
|
|
{
|
|
struct tegra_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
u32 len = keylen / 2;
|
|
int ret;
|
|
|
|
ret = xts_verify_key(tfm, key, keylen);
|
|
if (ret || aes_check_keylen(len)) {
|
|
dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ret = tegra_key_submit(ctx->se, key, len,
|
|
ctx->alg, &ctx->key1_id);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return tegra_key_submit(ctx->se, key + len, len,
|
|
ctx->alg, &ctx->key2_id);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_aes_kac_manifest(u32 user, u32 alg, u32 keylen)
|
|
{
|
|
int manifest;
|
|
|
|
manifest = SE_KAC_USER_NS;
|
|
|
|
switch (alg) {
|
|
case SE_ALG_CBC:
|
|
case SE_ALG_ECB:
|
|
case SE_ALG_CTR:
|
|
manifest |= SE_KAC_ENC;
|
|
break;
|
|
case SE_ALG_XTS:
|
|
manifest |= SE_KAC_XTS;
|
|
break;
|
|
case SE_ALG_GCM:
|
|
manifest |= SE_KAC_GCM;
|
|
break;
|
|
case SE_ALG_CMAC:
|
|
manifest |= SE_KAC_CMAC;
|
|
break;
|
|
case SE_ALG_CBC_MAC:
|
|
manifest |= SE_KAC_ENC;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
switch (keylen) {
|
|
case AES_KEYSIZE_128:
|
|
manifest |= SE_KAC_SIZE_128;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
manifest |= SE_KAC_SIZE_192;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
manifest |= SE_KAC_SIZE_256;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return manifest;
|
|
}
|
|
|
|
static int tegra_aes_crypt(struct skcipher_request *req, bool encrypt)
|
|
|
|
{
|
|
struct crypto_skcipher *tfm;
|
|
struct tegra_aes_ctx *ctx;
|
|
struct tegra_aes_reqctx *rctx;
|
|
|
|
tfm = crypto_skcipher_reqtfm(req);
|
|
ctx = crypto_skcipher_ctx(tfm);
|
|
rctx = skcipher_request_ctx(req);
|
|
|
|
if (ctx->alg != SE_ALG_XTS) {
|
|
if (!IS_ALIGNED(req->cryptlen, crypto_skcipher_blocksize(tfm))) {
|
|
dev_dbg(ctx->se->dev, "invalid length (%d)", req->cryptlen);
|
|
return -EINVAL;
|
|
}
|
|
} else if (req->cryptlen < XTS_BLOCK_SIZE) {
|
|
dev_dbg(ctx->se->dev, "invalid length (%d)", req->cryptlen);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!req->cryptlen)
|
|
return 0;
|
|
|
|
rctx->encrypt = encrypt;
|
|
rctx->config = tegra234_aes_cfg(ctx->alg, encrypt);
|
|
rctx->crypto_config = tegra234_aes_crypto_cfg(ctx->alg, encrypt);
|
|
rctx->crypto_config |= SE_AES_KEY_INDEX(ctx->key1_id);
|
|
|
|
if (ctx->key2_id)
|
|
rctx->crypto_config |= SE_AES_KEY2_INDEX(ctx->key2_id);
|
|
|
|
return crypto_transfer_skcipher_request_to_engine(ctx->se->engine, req);
|
|
}
|
|
|
|
static int tegra_aes_encrypt(struct skcipher_request *req)
|
|
{
|
|
return tegra_aes_crypt(req, true);
|
|
}
|
|
|
|
static int tegra_aes_decrypt(struct skcipher_request *req)
|
|
{
|
|
return tegra_aes_crypt(req, false);
|
|
}
|
|
|
|
static struct tegra_se_alg tegra_aes_algs[] = {
|
|
{
|
|
.alg.skcipher.op.do_one_request = tegra_aes_do_one_req,
|
|
.alg.skcipher.base = {
|
|
.init = tegra_aes_cra_init,
|
|
.exit = tegra_aes_cra_exit,
|
|
.setkey = tegra_aes_setkey,
|
|
.encrypt = tegra_aes_encrypt,
|
|
.decrypt = tegra_aes_decrypt,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.base = {
|
|
.cra_name = "cbc(aes)",
|
|
.cra_driver_name = "cbc-aes-tegra",
|
|
.cra_priority = 500,
|
|
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct tegra_aes_ctx),
|
|
.cra_alignmask = 0xf,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
}
|
|
}, {
|
|
.alg.skcipher.op.do_one_request = tegra_aes_do_one_req,
|
|
.alg.skcipher.base = {
|
|
.init = tegra_aes_cra_init,
|
|
.exit = tegra_aes_cra_exit,
|
|
.setkey = tegra_aes_setkey,
|
|
.encrypt = tegra_aes_encrypt,
|
|
.decrypt = tegra_aes_decrypt,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.base = {
|
|
.cra_name = "ecb(aes)",
|
|
.cra_driver_name = "ecb-aes-tegra",
|
|
.cra_priority = 500,
|
|
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct tegra_aes_ctx),
|
|
.cra_alignmask = 0xf,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
}
|
|
}, {
|
|
.alg.skcipher.op.do_one_request = tegra_aes_do_one_req,
|
|
.alg.skcipher.base = {
|
|
.init = tegra_aes_cra_init,
|
|
.exit = tegra_aes_cra_exit,
|
|
.setkey = tegra_aes_setkey,
|
|
.encrypt = tegra_aes_encrypt,
|
|
.decrypt = tegra_aes_decrypt,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.base = {
|
|
.cra_name = "ctr(aes)",
|
|
.cra_driver_name = "ctr-aes-tegra",
|
|
.cra_priority = 500,
|
|
.cra_flags = CRYPTO_ALG_TYPE_SKCIPHER | CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = 1,
|
|
.cra_ctxsize = sizeof(struct tegra_aes_ctx),
|
|
.cra_alignmask = 0xf,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
}
|
|
}, {
|
|
.alg.skcipher.op.do_one_request = tegra_aes_do_one_req,
|
|
.alg.skcipher.base = {
|
|
.init = tegra_aes_cra_init,
|
|
.exit = tegra_aes_cra_exit,
|
|
.setkey = tegra_xts_setkey,
|
|
.encrypt = tegra_aes_encrypt,
|
|
.decrypt = tegra_aes_decrypt,
|
|
.min_keysize = 2 * AES_MIN_KEY_SIZE,
|
|
.max_keysize = 2 * AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.base = {
|
|
.cra_name = "xts(aes)",
|
|
.cra_driver_name = "xts-aes-tegra",
|
|
.cra_priority = 500,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct tegra_aes_ctx),
|
|
.cra_alignmask = (__alignof__(u64) - 1),
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
}
|
|
},
|
|
};
|
|
|
|
static unsigned int tegra_gmac_prep_cmd(struct tegra_aead_ctx *ctx,
|
|
struct tegra_aead_reqctx *rctx)
|
|
{
|
|
unsigned int data_count, res_bits, i = 0;
|
|
struct tegra_se *se = ctx->se;
|
|
u32 *cpuvaddr = se->cmdbuf->addr;
|
|
|
|
data_count = (rctx->assoclen / AES_BLOCK_SIZE);
|
|
res_bits = (rctx->assoclen % AES_BLOCK_SIZE) * 8;
|
|
|
|
/*
|
|
* Hardware processes data_count + 1 blocks.
|
|
* Reduce 1 block if there is no residue
|
|
*/
|
|
if (!res_bits)
|
|
data_count--;
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
|
|
cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
|
|
SE_LAST_BLOCK_RES_BITS(res_bits);
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 4);
|
|
cpuvaddr[i++] = rctx->config;
|
|
cpuvaddr[i++] = rctx->crypto_config;
|
|
cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
|
|
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
|
|
SE_ADDR_HI_SZ(rctx->assoclen);
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
|
|
cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL |
|
|
SE_AES_OP_INIT | SE_AES_OP_LASTBUF |
|
|
SE_AES_OP_START;
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
|
|
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
|
|
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
|
|
|
|
return i;
|
|
}
|
|
|
|
static unsigned int tegra_gcm_crypt_prep_cmd(struct tegra_aead_ctx *ctx,
|
|
struct tegra_aead_reqctx *rctx)
|
|
{
|
|
unsigned int data_count, res_bits, i = 0, j;
|
|
struct tegra_se *se = ctx->se;
|
|
u32 *cpuvaddr = se->cmdbuf->addr, op;
|
|
|
|
data_count = (rctx->cryptlen / AES_BLOCK_SIZE);
|
|
res_bits = (rctx->cryptlen % AES_BLOCK_SIZE) * 8;
|
|
op = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL |
|
|
SE_AES_OP_LASTBUF | SE_AES_OP_START;
|
|
|
|
/*
|
|
* If there is no assoc data,
|
|
* this will be the init command
|
|
*/
|
|
if (!rctx->assoclen)
|
|
op |= SE_AES_OP_INIT;
|
|
|
|
/*
|
|
* Hardware processes data_count + 1 blocks.
|
|
* Reduce 1 block if there is no residue
|
|
*/
|
|
if (!res_bits)
|
|
data_count--;
|
|
|
|
cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
|
|
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
|
|
for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
|
|
cpuvaddr[i++] = rctx->iv[j];
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
|
|
cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
|
|
SE_LAST_BLOCK_RES_BITS(res_bits);
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
|
|
cpuvaddr[i++] = rctx->config;
|
|
cpuvaddr[i++] = rctx->crypto_config;
|
|
|
|
/* Source Address */
|
|
cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
|
|
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
|
|
SE_ADDR_HI_SZ(rctx->cryptlen);
|
|
|
|
/* Destination Address */
|
|
cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
|
|
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
|
|
SE_ADDR_HI_SZ(rctx->cryptlen);
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
|
|
cpuvaddr[i++] = op;
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
|
|
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
|
|
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
|
|
|
|
dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config);
|
|
return i;
|
|
}
|
|
|
|
static int tegra_gcm_prep_final_cmd(struct tegra_se *se, u32 *cpuvaddr,
|
|
struct tegra_aead_reqctx *rctx)
|
|
{
|
|
unsigned int i = 0, j;
|
|
u32 op;
|
|
|
|
op = SE_AES_OP_WRSTALL | SE_AES_OP_FINAL |
|
|
SE_AES_OP_LASTBUF | SE_AES_OP_START;
|
|
|
|
/*
|
|
* Set init for zero sized vector
|
|
*/
|
|
if (!rctx->assoclen && !rctx->cryptlen)
|
|
op |= SE_AES_OP_INIT;
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->aad_len, 2);
|
|
cpuvaddr[i++] = rctx->assoclen * 8;
|
|
cpuvaddr[i++] = 0;
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->cryp_msg_len, 2);
|
|
cpuvaddr[i++] = rctx->cryptlen * 8;
|
|
cpuvaddr[i++] = 0;
|
|
|
|
cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
|
|
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
|
|
for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
|
|
cpuvaddr[i++] = rctx->iv[j];
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
|
|
cpuvaddr[i++] = rctx->config;
|
|
cpuvaddr[i++] = rctx->crypto_config;
|
|
cpuvaddr[i++] = 0;
|
|
cpuvaddr[i++] = 0;
|
|
|
|
/* Destination Address */
|
|
cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
|
|
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
|
|
SE_ADDR_HI_SZ(0x10); /* HW always generates 128-bit tag */
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
|
|
cpuvaddr[i++] = op;
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
|
|
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
|
|
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
|
|
|
|
dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n", rctx->config, rctx->crypto_config);
|
|
|
|
return i;
|
|
}
|
|
|
|
static int tegra_gcm_do_gmac(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
|
|
{
|
|
struct tegra_se *se = ctx->se;
|
|
unsigned int cmdlen;
|
|
|
|
scatterwalk_map_and_copy(rctx->inbuf.buf,
|
|
rctx->src_sg, 0, rctx->assoclen, 0);
|
|
|
|
rctx->config = tegra234_aes_cfg(SE_ALG_GMAC, rctx->encrypt);
|
|
rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_GMAC, rctx->encrypt) |
|
|
SE_AES_KEY_INDEX(ctx->key_id);
|
|
|
|
cmdlen = tegra_gmac_prep_cmd(ctx, rctx);
|
|
|
|
return tegra_se_host1x_submit(se, cmdlen);
|
|
}
|
|
|
|
static int tegra_gcm_do_crypt(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
|
|
{
|
|
struct tegra_se *se = ctx->se;
|
|
int cmdlen, ret;
|
|
|
|
scatterwalk_map_and_copy(rctx->inbuf.buf, rctx->src_sg,
|
|
rctx->assoclen, rctx->cryptlen, 0);
|
|
|
|
rctx->config = tegra234_aes_cfg(SE_ALG_GCM, rctx->encrypt);
|
|
rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_GCM, rctx->encrypt) |
|
|
SE_AES_KEY_INDEX(ctx->key_id);
|
|
|
|
/* Prepare command and submit */
|
|
cmdlen = tegra_gcm_crypt_prep_cmd(ctx, rctx);
|
|
ret = tegra_se_host1x_submit(se, cmdlen);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Copy the result */
|
|
scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg,
|
|
rctx->assoclen, rctx->cryptlen, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_gcm_do_final(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
|
|
{
|
|
struct tegra_se *se = ctx->se;
|
|
u32 *cpuvaddr = se->cmdbuf->addr;
|
|
int cmdlen, ret, offset;
|
|
|
|
rctx->config = tegra234_aes_cfg(SE_ALG_GCM_FINAL, rctx->encrypt);
|
|
rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_GCM_FINAL, rctx->encrypt) |
|
|
SE_AES_KEY_INDEX(ctx->key_id);
|
|
|
|
/* Prepare command and submit */
|
|
cmdlen = tegra_gcm_prep_final_cmd(se, cpuvaddr, rctx);
|
|
ret = tegra_se_host1x_submit(se, cmdlen);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (rctx->encrypt) {
|
|
/* Copy the result */
|
|
offset = rctx->assoclen + rctx->cryptlen;
|
|
scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg,
|
|
offset, rctx->authsize, 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_gcm_do_verify(struct tegra_se *se, struct tegra_aead_reqctx *rctx)
|
|
{
|
|
unsigned int offset;
|
|
u8 mac[16];
|
|
|
|
offset = rctx->assoclen + rctx->cryptlen;
|
|
scatterwalk_map_and_copy(mac, rctx->src_sg, offset, rctx->authsize, 0);
|
|
|
|
if (crypto_memneq(rctx->outbuf.buf, mac, rctx->authsize))
|
|
return -EBADMSG;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline int tegra_ccm_check_iv(const u8 *iv)
|
|
{
|
|
/* iv[0] gives value of q-1
|
|
* 2 <= q <= 8 as per NIST 800-38C notation
|
|
* 2 <= L <= 8, so 1 <= L' <= 7. as per rfc 3610 notation
|
|
*/
|
|
if (iv[0] < 1 || iv[0] > 7) {
|
|
pr_debug("ccm_check_iv failed %d\n", iv[0]);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int tegra_cbcmac_prep_cmd(struct tegra_aead_ctx *ctx,
|
|
struct tegra_aead_reqctx *rctx)
|
|
{
|
|
unsigned int data_count, i = 0;
|
|
struct tegra_se *se = ctx->se;
|
|
u32 *cpuvaddr = se->cmdbuf->addr;
|
|
|
|
data_count = (rctx->inbuf.size / AES_BLOCK_SIZE) - 1;
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
|
|
cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count);
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
|
|
cpuvaddr[i++] = rctx->config;
|
|
cpuvaddr[i++] = rctx->crypto_config;
|
|
|
|
cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
|
|
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
|
|
SE_ADDR_HI_SZ(rctx->inbuf.size);
|
|
|
|
cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
|
|
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
|
|
SE_ADDR_HI_SZ(0x10); /* HW always generates 128 bit tag */
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
|
|
cpuvaddr[i++] = SE_AES_OP_WRSTALL |
|
|
SE_AES_OP_LASTBUF | SE_AES_OP_START;
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
|
|
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
|
|
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
|
|
|
|
return i;
|
|
}
|
|
|
|
static unsigned int tegra_ctr_prep_cmd(struct tegra_aead_ctx *ctx,
|
|
struct tegra_aead_reqctx *rctx)
|
|
{
|
|
unsigned int i = 0, j;
|
|
struct tegra_se *se = ctx->se;
|
|
u32 *cpuvaddr = se->cmdbuf->addr;
|
|
|
|
cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
|
|
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
|
|
for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
|
|
cpuvaddr[i++] = rctx->iv[j];
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
|
|
cpuvaddr[i++] = (rctx->inbuf.size / AES_BLOCK_SIZE) - 1;
|
|
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
|
|
cpuvaddr[i++] = rctx->config;
|
|
cpuvaddr[i++] = rctx->crypto_config;
|
|
|
|
/* Source address setting */
|
|
cpuvaddr[i++] = lower_32_bits(rctx->inbuf.addr);
|
|
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->inbuf.addr)) |
|
|
SE_ADDR_HI_SZ(rctx->inbuf.size);
|
|
|
|
/* Destination address setting */
|
|
cpuvaddr[i++] = lower_32_bits(rctx->outbuf.addr);
|
|
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->outbuf.addr)) |
|
|
SE_ADDR_HI_SZ(rctx->inbuf.size);
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
|
|
cpuvaddr[i++] = SE_AES_OP_WRSTALL | SE_AES_OP_LASTBUF |
|
|
SE_AES_OP_START;
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
|
|
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
|
|
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
|
|
|
|
dev_dbg(se->dev, "cfg %#x crypto cfg %#x\n",
|
|
rctx->config, rctx->crypto_config);
|
|
|
|
return i;
|
|
}
|
|
|
|
static int tegra_ccm_do_cbcmac(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
|
|
{
|
|
struct tegra_se *se = ctx->se;
|
|
int cmdlen;
|
|
|
|
rctx->config = tegra234_aes_cfg(SE_ALG_CBC_MAC, rctx->encrypt);
|
|
rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_CBC_MAC,
|
|
rctx->encrypt) |
|
|
SE_AES_KEY_INDEX(ctx->key_id);
|
|
|
|
/* Prepare command and submit */
|
|
cmdlen = tegra_cbcmac_prep_cmd(ctx, rctx);
|
|
|
|
return tegra_se_host1x_submit(se, cmdlen);
|
|
}
|
|
|
|
static int tegra_ccm_set_msg_len(u8 *block, unsigned int msglen, int csize)
|
|
{
|
|
__be32 data;
|
|
|
|
memset(block, 0, csize);
|
|
block += csize;
|
|
|
|
if (csize >= 4)
|
|
csize = 4;
|
|
else if (msglen > (1 << (8 * csize)))
|
|
return -EOVERFLOW;
|
|
|
|
data = cpu_to_be32(msglen);
|
|
memcpy(block - csize, (u8 *)&data + 4 - csize, csize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_ccm_format_nonce(struct tegra_aead_reqctx *rctx, u8 *nonce)
|
|
{
|
|
unsigned int q, t;
|
|
u8 *q_ptr, *iv = (u8 *)rctx->iv;
|
|
|
|
memcpy(nonce, rctx->iv, 16);
|
|
|
|
/*** 1. Prepare Flags Octet ***/
|
|
|
|
/* Encode t (mac length) */
|
|
t = rctx->authsize;
|
|
nonce[0] |= (((t - 2) / 2) << 3);
|
|
|
|
/* Adata */
|
|
if (rctx->assoclen)
|
|
nonce[0] |= (1 << 6);
|
|
|
|
/*** Encode Q - message length ***/
|
|
q = iv[0] + 1;
|
|
q_ptr = nonce + 16 - q;
|
|
|
|
return tegra_ccm_set_msg_len(q_ptr, rctx->cryptlen, q);
|
|
}
|
|
|
|
static int tegra_ccm_format_adata(u8 *adata, unsigned int a)
|
|
{
|
|
int len = 0;
|
|
|
|
/* add control info for associated data
|
|
* RFC 3610 and NIST Special Publication 800-38C
|
|
*/
|
|
if (a < 65280) {
|
|
*(__be16 *)adata = cpu_to_be16(a);
|
|
len = 2;
|
|
} else {
|
|
*(__be16 *)adata = cpu_to_be16(0xfffe);
|
|
*(__be32 *)&adata[2] = cpu_to_be32(a);
|
|
len = 6;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
static int tegra_ccm_add_padding(u8 *buf, unsigned int len)
|
|
{
|
|
unsigned int padlen = 16 - (len % 16);
|
|
u8 padding[16] = {0};
|
|
|
|
if (padlen == 16)
|
|
return 0;
|
|
|
|
memcpy(buf, padding, padlen);
|
|
|
|
return padlen;
|
|
}
|
|
|
|
static int tegra_ccm_format_blocks(struct tegra_aead_reqctx *rctx)
|
|
{
|
|
unsigned int alen = 0, offset = 0;
|
|
u8 nonce[16], adata[16];
|
|
int ret;
|
|
|
|
ret = tegra_ccm_format_nonce(rctx, nonce);
|
|
if (ret)
|
|
return ret;
|
|
|
|
memcpy(rctx->inbuf.buf, nonce, 16);
|
|
offset = 16;
|
|
|
|
if (rctx->assoclen) {
|
|
alen = tegra_ccm_format_adata(adata, rctx->assoclen);
|
|
memcpy(rctx->inbuf.buf + offset, adata, alen);
|
|
offset += alen;
|
|
|
|
scatterwalk_map_and_copy(rctx->inbuf.buf + offset,
|
|
rctx->src_sg, 0, rctx->assoclen, 0);
|
|
|
|
offset += rctx->assoclen;
|
|
offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset,
|
|
rctx->assoclen + alen);
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
static int tegra_ccm_mac_result(struct tegra_se *se, struct tegra_aead_reqctx *rctx)
|
|
{
|
|
u32 result[16];
|
|
int i, ret;
|
|
|
|
/* Read and clear Result */
|
|
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
|
|
result[i] = readl(se->base + se->hw->regs->result + (i * 4));
|
|
|
|
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
|
|
writel(0, se->base + se->hw->regs->result + (i * 4));
|
|
|
|
if (rctx->encrypt) {
|
|
memcpy(rctx->authdata, result, rctx->authsize);
|
|
} else {
|
|
ret = crypto_memneq(rctx->authdata, result, rctx->authsize);
|
|
if (ret)
|
|
return -EBADMSG;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_ccm_ctr_result(struct tegra_se *se, struct tegra_aead_reqctx *rctx)
|
|
{
|
|
/* Copy result */
|
|
scatterwalk_map_and_copy(rctx->outbuf.buf + 16, rctx->dst_sg,
|
|
rctx->assoclen, rctx->cryptlen, 1);
|
|
|
|
if (rctx->encrypt)
|
|
scatterwalk_map_and_copy(rctx->outbuf.buf, rctx->dst_sg,
|
|
rctx->assoclen + rctx->cryptlen,
|
|
rctx->authsize, 1);
|
|
else
|
|
memcpy(rctx->authdata, rctx->outbuf.buf, rctx->authsize);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_ccm_compute_auth(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
|
|
{
|
|
struct tegra_se *se = ctx->se;
|
|
struct scatterlist *sg;
|
|
int offset, ret;
|
|
|
|
offset = tegra_ccm_format_blocks(rctx);
|
|
if (offset < 0)
|
|
return -EINVAL;
|
|
|
|
/* Copy plain text to the buffer */
|
|
sg = rctx->encrypt ? rctx->src_sg : rctx->dst_sg;
|
|
|
|
scatterwalk_map_and_copy(rctx->inbuf.buf + offset,
|
|
sg, rctx->assoclen,
|
|
rctx->cryptlen, 0);
|
|
offset += rctx->cryptlen;
|
|
offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->cryptlen);
|
|
|
|
rctx->inbuf.size = offset;
|
|
|
|
ret = tegra_ccm_do_cbcmac(ctx, rctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return tegra_ccm_mac_result(se, rctx);
|
|
}
|
|
|
|
static int tegra_ccm_do_ctr(struct tegra_aead_ctx *ctx, struct tegra_aead_reqctx *rctx)
|
|
{
|
|
struct tegra_se *se = ctx->se;
|
|
unsigned int cmdlen, offset = 0;
|
|
struct scatterlist *sg = rctx->src_sg;
|
|
int ret;
|
|
|
|
rctx->config = tegra234_aes_cfg(SE_ALG_CTR, rctx->encrypt);
|
|
rctx->crypto_config = tegra234_aes_crypto_cfg(SE_ALG_CTR, rctx->encrypt) |
|
|
SE_AES_KEY_INDEX(ctx->key_id);
|
|
|
|
/* Copy authdata in the top of buffer for encryption/decryption */
|
|
if (rctx->encrypt)
|
|
memcpy(rctx->inbuf.buf, rctx->authdata, rctx->authsize);
|
|
else
|
|
scatterwalk_map_and_copy(rctx->inbuf.buf, sg,
|
|
rctx->assoclen + rctx->cryptlen,
|
|
rctx->authsize, 0);
|
|
|
|
offset += rctx->authsize;
|
|
offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->authsize);
|
|
|
|
/* If there is no cryptlen, proceed to submit the task */
|
|
if (rctx->cryptlen) {
|
|
scatterwalk_map_and_copy(rctx->inbuf.buf + offset, sg,
|
|
rctx->assoclen, rctx->cryptlen, 0);
|
|
offset += rctx->cryptlen;
|
|
offset += tegra_ccm_add_padding(rctx->inbuf.buf + offset, rctx->cryptlen);
|
|
}
|
|
|
|
rctx->inbuf.size = offset;
|
|
|
|
/* Prepare command and submit */
|
|
cmdlen = tegra_ctr_prep_cmd(ctx, rctx);
|
|
ret = tegra_se_host1x_submit(se, cmdlen);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return tegra_ccm_ctr_result(se, rctx);
|
|
}
|
|
|
|
static int tegra_ccm_crypt_init(struct aead_request *req, struct tegra_se *se,
|
|
struct tegra_aead_reqctx *rctx)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
u8 *iv = (u8 *)rctx->iv;
|
|
int ret, i;
|
|
|
|
rctx->src_sg = req->src;
|
|
rctx->dst_sg = req->dst;
|
|
rctx->assoclen = req->assoclen;
|
|
rctx->authsize = crypto_aead_authsize(tfm);
|
|
|
|
memcpy(iv, req->iv, 16);
|
|
|
|
ret = tegra_ccm_check_iv(iv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Note: rfc 3610 and NIST 800-38C require counter (ctr_0) of
|
|
* zero to encrypt auth tag.
|
|
* req->iv has the formatted ctr_0 (i.e. Flags || N || 0).
|
|
*/
|
|
memset(iv + 15 - iv[0], 0, iv[0] + 1);
|
|
|
|
/* Clear any previous result */
|
|
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
|
|
writel(0, se->base + se->hw->regs->result + (i * 4));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_ccm_do_one_req(struct crypto_engine *engine, void *areq)
|
|
{
|
|
struct aead_request *req = container_of(areq, struct aead_request, base);
|
|
struct tegra_aead_reqctx *rctx = aead_request_ctx(req);
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct tegra_se *se = ctx->se;
|
|
int ret;
|
|
|
|
/* Allocate buffers required */
|
|
rctx->inbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
|
|
&rctx->inbuf.addr, GFP_KERNEL);
|
|
if (!rctx->inbuf.buf)
|
|
return -ENOMEM;
|
|
|
|
rctx->inbuf.size = SE_AES_BUFLEN;
|
|
|
|
rctx->outbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
|
|
&rctx->outbuf.addr, GFP_KERNEL);
|
|
if (!rctx->outbuf.buf) {
|
|
ret = -ENOMEM;
|
|
goto outbuf_err;
|
|
}
|
|
|
|
rctx->outbuf.size = SE_AES_BUFLEN;
|
|
|
|
ret = tegra_ccm_crypt_init(req, se, rctx);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (rctx->encrypt) {
|
|
rctx->cryptlen = req->cryptlen;
|
|
|
|
/* CBC MAC Operation */
|
|
ret = tegra_ccm_compute_auth(ctx, rctx);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* CTR operation */
|
|
ret = tegra_ccm_do_ctr(ctx, rctx);
|
|
if (ret)
|
|
goto out;
|
|
} else {
|
|
rctx->cryptlen = req->cryptlen - ctx->authsize;
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* CTR operation */
|
|
ret = tegra_ccm_do_ctr(ctx, rctx);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* CBC MAC Operation */
|
|
ret = tegra_ccm_compute_auth(ctx, rctx);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
|
|
rctx->outbuf.buf, rctx->outbuf.addr);
|
|
|
|
outbuf_err:
|
|
dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
|
|
rctx->inbuf.buf, rctx->inbuf.addr);
|
|
|
|
crypto_finalize_aead_request(ctx->se->engine, req, ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_gcm_do_one_req(struct crypto_engine *engine, void *areq)
|
|
{
|
|
struct aead_request *req = container_of(areq, struct aead_request, base);
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct tegra_aead_reqctx *rctx = aead_request_ctx(req);
|
|
int ret;
|
|
|
|
/* Allocate buffers required */
|
|
rctx->inbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
|
|
&rctx->inbuf.addr, GFP_KERNEL);
|
|
if (!rctx->inbuf.buf)
|
|
return -ENOMEM;
|
|
|
|
rctx->inbuf.size = SE_AES_BUFLEN;
|
|
|
|
rctx->outbuf.buf = dma_alloc_coherent(ctx->se->dev, SE_AES_BUFLEN,
|
|
&rctx->outbuf.addr, GFP_KERNEL);
|
|
if (!rctx->outbuf.buf) {
|
|
ret = -ENOMEM;
|
|
goto outbuf_err;
|
|
}
|
|
|
|
rctx->outbuf.size = SE_AES_BUFLEN;
|
|
|
|
rctx->src_sg = req->src;
|
|
rctx->dst_sg = req->dst;
|
|
rctx->assoclen = req->assoclen;
|
|
rctx->authsize = crypto_aead_authsize(tfm);
|
|
|
|
if (rctx->encrypt)
|
|
rctx->cryptlen = req->cryptlen;
|
|
else
|
|
rctx->cryptlen = req->cryptlen - ctx->authsize;
|
|
|
|
memcpy(rctx->iv, req->iv, GCM_AES_IV_SIZE);
|
|
rctx->iv[3] = (1 << 24);
|
|
|
|
/* If there is associated data perform GMAC operation */
|
|
if (rctx->assoclen) {
|
|
ret = tegra_gcm_do_gmac(ctx, rctx);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
/* GCM Encryption/Decryption operation */
|
|
if (rctx->cryptlen) {
|
|
ret = tegra_gcm_do_crypt(ctx, rctx);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
/* GCM_FINAL operation */
|
|
ret = tegra_gcm_do_final(ctx, rctx);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (!rctx->encrypt)
|
|
ret = tegra_gcm_do_verify(ctx->se, rctx);
|
|
|
|
out:
|
|
dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
|
|
rctx->outbuf.buf, rctx->outbuf.addr);
|
|
|
|
outbuf_err:
|
|
dma_free_coherent(ctx->se->dev, SE_AES_BUFLEN,
|
|
rctx->inbuf.buf, rctx->inbuf.addr);
|
|
|
|
/* Finalize the request if there are no errors */
|
|
crypto_finalize_aead_request(ctx->se->engine, req, ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_aead_cra_init(struct crypto_aead *tfm)
|
|
{
|
|
struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct aead_alg *alg = crypto_aead_alg(tfm);
|
|
struct tegra_se_alg *se_alg;
|
|
const char *algname;
|
|
int ret;
|
|
|
|
algname = crypto_tfm_alg_name(&tfm->base);
|
|
|
|
se_alg = container_of(alg, struct tegra_se_alg, alg.aead.base);
|
|
|
|
crypto_aead_set_reqsize(tfm, sizeof(struct tegra_aead_reqctx));
|
|
|
|
ctx->se = se_alg->se_dev;
|
|
ctx->key_id = 0;
|
|
|
|
ret = se_algname_to_algid(algname);
|
|
if (ret < 0) {
|
|
dev_err(ctx->se->dev, "invalid algorithm\n");
|
|
return ret;
|
|
}
|
|
|
|
ctx->alg = ret;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_ccm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
|
|
{
|
|
struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
|
|
|
|
switch (authsize) {
|
|
case 4:
|
|
case 6:
|
|
case 8:
|
|
case 10:
|
|
case 12:
|
|
case 14:
|
|
case 16:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
ctx->authsize = authsize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
|
|
{
|
|
struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
|
|
int ret;
|
|
|
|
ret = crypto_gcm_check_authsize(authsize);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ctx->authsize = authsize;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tegra_aead_cra_exit(struct crypto_aead *tfm)
|
|
{
|
|
struct tegra_aead_ctx *ctx = crypto_tfm_ctx(&tfm->base);
|
|
|
|
if (ctx->key_id)
|
|
tegra_key_invalidate(ctx->se, ctx->key_id, ctx->alg);
|
|
}
|
|
|
|
static int tegra_aead_crypt(struct aead_request *req, bool encrypt)
|
|
{
|
|
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
|
|
struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
|
|
struct tegra_aead_reqctx *rctx = aead_request_ctx(req);
|
|
|
|
rctx->encrypt = encrypt;
|
|
|
|
return crypto_transfer_aead_request_to_engine(ctx->se->engine, req);
|
|
}
|
|
|
|
static int tegra_aead_encrypt(struct aead_request *req)
|
|
{
|
|
return tegra_aead_crypt(req, true);
|
|
}
|
|
|
|
static int tegra_aead_decrypt(struct aead_request *req)
|
|
{
|
|
return tegra_aead_crypt(req, false);
|
|
}
|
|
|
|
static int tegra_aead_setkey(struct crypto_aead *tfm,
|
|
const u8 *key, u32 keylen)
|
|
{
|
|
struct tegra_aead_ctx *ctx = crypto_aead_ctx(tfm);
|
|
|
|
if (aes_check_keylen(keylen)) {
|
|
dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key_id);
|
|
}
|
|
|
|
static unsigned int tegra_cmac_prep_cmd(struct tegra_cmac_ctx *ctx,
|
|
struct tegra_cmac_reqctx *rctx)
|
|
{
|
|
unsigned int data_count, res_bits = 0, i = 0, j;
|
|
struct tegra_se *se = ctx->se;
|
|
u32 *cpuvaddr = se->cmdbuf->addr, op;
|
|
|
|
data_count = (rctx->datbuf.size / AES_BLOCK_SIZE);
|
|
|
|
op = SE_AES_OP_WRSTALL | SE_AES_OP_START | SE_AES_OP_LASTBUF;
|
|
|
|
if (!(rctx->task & SHA_UPDATE)) {
|
|
op |= SE_AES_OP_FINAL;
|
|
res_bits = (rctx->datbuf.size % AES_BLOCK_SIZE) * 8;
|
|
}
|
|
|
|
if (!res_bits && data_count)
|
|
data_count--;
|
|
|
|
if (rctx->task & SHA_FIRST) {
|
|
rctx->task &= ~SHA_FIRST;
|
|
|
|
cpuvaddr[i++] = host1x_opcode_setpayload(SE_CRYPTO_CTR_REG_COUNT);
|
|
cpuvaddr[i++] = se_host1x_opcode_incr_w(se->hw->regs->linear_ctr);
|
|
/* Load 0 IV */
|
|
for (j = 0; j < SE_CRYPTO_CTR_REG_COUNT; j++)
|
|
cpuvaddr[i++] = 0;
|
|
}
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->last_blk, 1);
|
|
cpuvaddr[i++] = SE_LAST_BLOCK_VAL(data_count) |
|
|
SE_LAST_BLOCK_RES_BITS(res_bits);
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_incr(se->hw->regs->config, 6);
|
|
cpuvaddr[i++] = rctx->config;
|
|
cpuvaddr[i++] = rctx->crypto_config;
|
|
|
|
/* Source Address */
|
|
cpuvaddr[i++] = lower_32_bits(rctx->datbuf.addr);
|
|
cpuvaddr[i++] = SE_ADDR_HI_MSB(upper_32_bits(rctx->datbuf.addr)) |
|
|
SE_ADDR_HI_SZ(rctx->datbuf.size);
|
|
cpuvaddr[i++] = 0;
|
|
cpuvaddr[i++] = SE_ADDR_HI_SZ(AES_BLOCK_SIZE);
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(se->hw->regs->op, 1);
|
|
cpuvaddr[i++] = op;
|
|
|
|
cpuvaddr[i++] = se_host1x_opcode_nonincr(host1x_uclass_incr_syncpt_r(), 1);
|
|
cpuvaddr[i++] = host1x_uclass_incr_syncpt_cond_f(1) |
|
|
host1x_uclass_incr_syncpt_indx_f(se->syncpt_id);
|
|
|
|
return i;
|
|
}
|
|
|
|
static void tegra_cmac_copy_result(struct tegra_se *se, struct tegra_cmac_reqctx *rctx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
|
|
rctx->result[i] = readl(se->base + se->hw->regs->result + (i * 4));
|
|
}
|
|
|
|
static void tegra_cmac_paste_result(struct tegra_se *se, struct tegra_cmac_reqctx *rctx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
|
|
writel(rctx->result[i],
|
|
se->base + se->hw->regs->result + (i * 4));
|
|
}
|
|
|
|
static int tegra_cmac_do_update(struct ahash_request *req)
|
|
{
|
|
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct tegra_se *se = ctx->se;
|
|
unsigned int nblks, nresidue, cmdlen;
|
|
int ret;
|
|
|
|
if (!req->nbytes)
|
|
return 0;
|
|
|
|
nresidue = (req->nbytes + rctx->residue.size) % rctx->blk_size;
|
|
nblks = (req->nbytes + rctx->residue.size) / rctx->blk_size;
|
|
|
|
/*
|
|
* Reserve the last block as residue during final() to process.
|
|
*/
|
|
if (!nresidue && nblks) {
|
|
nresidue += rctx->blk_size;
|
|
nblks--;
|
|
}
|
|
|
|
rctx->src_sg = req->src;
|
|
rctx->datbuf.size = (req->nbytes + rctx->residue.size) - nresidue;
|
|
rctx->total_len += rctx->datbuf.size;
|
|
rctx->config = tegra234_aes_cfg(SE_ALG_CMAC, 0);
|
|
rctx->crypto_config = SE_AES_KEY_INDEX(ctx->key_id);
|
|
|
|
/*
|
|
* Keep one block and residue bytes in residue and
|
|
* return. The bytes will be processed in final()
|
|
*/
|
|
if (nblks < 1) {
|
|
scatterwalk_map_and_copy(rctx->residue.buf + rctx->residue.size,
|
|
rctx->src_sg, 0, req->nbytes, 0);
|
|
|
|
rctx->residue.size += req->nbytes;
|
|
return 0;
|
|
}
|
|
|
|
/* Copy the previous residue first */
|
|
if (rctx->residue.size)
|
|
memcpy(rctx->datbuf.buf, rctx->residue.buf, rctx->residue.size);
|
|
|
|
scatterwalk_map_and_copy(rctx->datbuf.buf + rctx->residue.size,
|
|
rctx->src_sg, 0, req->nbytes - nresidue, 0);
|
|
|
|
scatterwalk_map_and_copy(rctx->residue.buf, rctx->src_sg,
|
|
req->nbytes - nresidue, nresidue, 0);
|
|
|
|
/* Update residue value with the residue after current block */
|
|
rctx->residue.size = nresidue;
|
|
|
|
/*
|
|
* If this is not the first 'update' call, paste the previous copied
|
|
* intermediate results to the registers so that it gets picked up.
|
|
* This is to support the import/export functionality.
|
|
*/
|
|
if (!(rctx->task & SHA_FIRST))
|
|
tegra_cmac_paste_result(ctx->se, rctx);
|
|
|
|
cmdlen = tegra_cmac_prep_cmd(ctx, rctx);
|
|
|
|
ret = tegra_se_host1x_submit(se, cmdlen);
|
|
/*
|
|
* If this is not the final update, copy the intermediate results
|
|
* from the registers so that it can be used in the next 'update'
|
|
* call. This is to support the import/export functionality.
|
|
*/
|
|
if (!(rctx->task & SHA_FINAL))
|
|
tegra_cmac_copy_result(ctx->se, rctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int tegra_cmac_do_final(struct ahash_request *req)
|
|
{
|
|
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct tegra_se *se = ctx->se;
|
|
u32 *result = (u32 *)req->result;
|
|
int ret = 0, i, cmdlen;
|
|
|
|
if (!req->nbytes && !rctx->total_len && ctx->fallback_tfm) {
|
|
return crypto_shash_tfm_digest(ctx->fallback_tfm,
|
|
rctx->datbuf.buf, 0, req->result);
|
|
}
|
|
|
|
memcpy(rctx->datbuf.buf, rctx->residue.buf, rctx->residue.size);
|
|
rctx->datbuf.size = rctx->residue.size;
|
|
rctx->total_len += rctx->residue.size;
|
|
rctx->config = tegra234_aes_cfg(SE_ALG_CMAC, 0);
|
|
|
|
/* Prepare command and submit */
|
|
cmdlen = tegra_cmac_prep_cmd(ctx, rctx);
|
|
ret = tegra_se_host1x_submit(se, cmdlen);
|
|
if (ret)
|
|
goto out;
|
|
|
|
/* Read and clear Result register */
|
|
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
|
|
result[i] = readl(se->base + se->hw->regs->result + (i * 4));
|
|
|
|
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
|
|
writel(0, se->base + se->hw->regs->result + (i * 4));
|
|
|
|
out:
|
|
dma_free_coherent(se->dev, SE_SHA_BUFLEN,
|
|
rctx->datbuf.buf, rctx->datbuf.addr);
|
|
dma_free_coherent(se->dev, crypto_ahash_blocksize(tfm) * 2,
|
|
rctx->residue.buf, rctx->residue.addr);
|
|
return ret;
|
|
}
|
|
|
|
static int tegra_cmac_do_one_req(struct crypto_engine *engine, void *areq)
|
|
{
|
|
struct ahash_request *req = ahash_request_cast(areq);
|
|
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct tegra_se *se = ctx->se;
|
|
int ret;
|
|
|
|
if (rctx->task & SHA_UPDATE) {
|
|
ret = tegra_cmac_do_update(req);
|
|
rctx->task &= ~SHA_UPDATE;
|
|
}
|
|
|
|
if (rctx->task & SHA_FINAL) {
|
|
ret = tegra_cmac_do_final(req);
|
|
rctx->task &= ~SHA_FINAL;
|
|
}
|
|
|
|
crypto_finalize_hash_request(se->engine, req, ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tegra_cmac_init_fallback(struct crypto_ahash *tfm, struct tegra_cmac_ctx *ctx,
|
|
const char *algname)
|
|
{
|
|
unsigned int statesize;
|
|
|
|
ctx->fallback_tfm = crypto_alloc_shash(algname, 0, CRYPTO_ALG_NEED_FALLBACK);
|
|
|
|
if (IS_ERR(ctx->fallback_tfm)) {
|
|
dev_warn(ctx->se->dev, "failed to allocate fallback for %s\n", algname);
|
|
ctx->fallback_tfm = NULL;
|
|
return;
|
|
}
|
|
|
|
statesize = crypto_shash_statesize(ctx->fallback_tfm);
|
|
|
|
if (statesize > sizeof(struct tegra_cmac_reqctx))
|
|
crypto_ahash_set_statesize(tfm, statesize);
|
|
}
|
|
|
|
static int tegra_cmac_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
struct tegra_cmac_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct crypto_ahash *ahash_tfm = __crypto_ahash_cast(tfm);
|
|
struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
|
|
struct tegra_se_alg *se_alg;
|
|
const char *algname;
|
|
int ret;
|
|
|
|
algname = crypto_tfm_alg_name(tfm);
|
|
se_alg = container_of(alg, struct tegra_se_alg, alg.ahash.base);
|
|
|
|
crypto_ahash_set_reqsize(ahash_tfm, sizeof(struct tegra_cmac_reqctx));
|
|
|
|
ctx->se = se_alg->se_dev;
|
|
ctx->key_id = 0;
|
|
|
|
ret = se_algname_to_algid(algname);
|
|
if (ret < 0) {
|
|
dev_err(ctx->se->dev, "invalid algorithm\n");
|
|
return ret;
|
|
}
|
|
|
|
ctx->alg = ret;
|
|
|
|
tegra_cmac_init_fallback(ahash_tfm, ctx, algname);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tegra_cmac_cra_exit(struct crypto_tfm *tfm)
|
|
{
|
|
struct tegra_cmac_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
if (ctx->fallback_tfm)
|
|
crypto_free_shash(ctx->fallback_tfm);
|
|
|
|
tegra_key_invalidate(ctx->se, ctx->key_id, ctx->alg);
|
|
}
|
|
|
|
static int tegra_cmac_init(struct ahash_request *req)
|
|
{
|
|
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct tegra_se *se = ctx->se;
|
|
int i;
|
|
|
|
rctx->total_len = 0;
|
|
rctx->datbuf.size = 0;
|
|
rctx->residue.size = 0;
|
|
rctx->task = SHA_FIRST;
|
|
rctx->blk_size = crypto_ahash_blocksize(tfm);
|
|
|
|
rctx->residue.buf = dma_alloc_coherent(se->dev, rctx->blk_size * 2,
|
|
&rctx->residue.addr, GFP_KERNEL);
|
|
if (!rctx->residue.buf)
|
|
goto resbuf_fail;
|
|
|
|
rctx->residue.size = 0;
|
|
|
|
rctx->datbuf.buf = dma_alloc_coherent(se->dev, SE_SHA_BUFLEN,
|
|
&rctx->datbuf.addr, GFP_KERNEL);
|
|
if (!rctx->datbuf.buf)
|
|
goto datbuf_fail;
|
|
|
|
rctx->datbuf.size = 0;
|
|
|
|
/* Clear any previous result */
|
|
for (i = 0; i < CMAC_RESULT_REG_COUNT; i++)
|
|
writel(0, se->base + se->hw->regs->result + (i * 4));
|
|
|
|
return 0;
|
|
|
|
datbuf_fail:
|
|
dma_free_coherent(se->dev, rctx->blk_size, rctx->residue.buf,
|
|
rctx->residue.addr);
|
|
resbuf_fail:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int tegra_cmac_setkey(struct crypto_ahash *tfm, const u8 *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
|
|
if (aes_check_keylen(keylen)) {
|
|
dev_dbg(ctx->se->dev, "invalid key length (%d)\n", keylen);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ctx->fallback_tfm)
|
|
crypto_shash_setkey(ctx->fallback_tfm, key, keylen);
|
|
|
|
return tegra_key_submit(ctx->se, key, keylen, ctx->alg, &ctx->key_id);
|
|
}
|
|
|
|
static int tegra_cmac_update(struct ahash_request *req)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
|
|
|
|
rctx->task |= SHA_UPDATE;
|
|
|
|
return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
|
|
}
|
|
|
|
static int tegra_cmac_final(struct ahash_request *req)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
|
|
|
|
rctx->task |= SHA_FINAL;
|
|
|
|
return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
|
|
}
|
|
|
|
static int tegra_cmac_finup(struct ahash_request *req)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
|
|
|
|
rctx->task |= SHA_UPDATE | SHA_FINAL;
|
|
|
|
return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
|
|
}
|
|
|
|
static int tegra_cmac_digest(struct ahash_request *req)
|
|
{
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
|
|
struct tegra_cmac_ctx *ctx = crypto_ahash_ctx(tfm);
|
|
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
|
|
|
|
tegra_cmac_init(req);
|
|
rctx->task |= SHA_UPDATE | SHA_FINAL;
|
|
|
|
return crypto_transfer_hash_request_to_engine(ctx->se->engine, req);
|
|
}
|
|
|
|
static int tegra_cmac_export(struct ahash_request *req, void *out)
|
|
{
|
|
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
|
|
|
|
memcpy(out, rctx, sizeof(*rctx));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tegra_cmac_import(struct ahash_request *req, const void *in)
|
|
{
|
|
struct tegra_cmac_reqctx *rctx = ahash_request_ctx(req);
|
|
|
|
memcpy(rctx, in, sizeof(*rctx));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct tegra_se_alg tegra_aead_algs[] = {
|
|
{
|
|
.alg.aead.op.do_one_request = tegra_gcm_do_one_req,
|
|
.alg.aead.base = {
|
|
.init = tegra_aead_cra_init,
|
|
.exit = tegra_aead_cra_exit,
|
|
.setkey = tegra_aead_setkey,
|
|
.setauthsize = tegra_gcm_setauthsize,
|
|
.encrypt = tegra_aead_encrypt,
|
|
.decrypt = tegra_aead_decrypt,
|
|
.maxauthsize = AES_BLOCK_SIZE,
|
|
.ivsize = GCM_AES_IV_SIZE,
|
|
.base = {
|
|
.cra_name = "gcm(aes)",
|
|
.cra_driver_name = "gcm-aes-tegra",
|
|
.cra_priority = 500,
|
|
.cra_blocksize = 1,
|
|
.cra_ctxsize = sizeof(struct tegra_aead_ctx),
|
|
.cra_alignmask = 0xf,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
}
|
|
}, {
|
|
.alg.aead.op.do_one_request = tegra_ccm_do_one_req,
|
|
.alg.aead.base = {
|
|
.init = tegra_aead_cra_init,
|
|
.exit = tegra_aead_cra_exit,
|
|
.setkey = tegra_aead_setkey,
|
|
.setauthsize = tegra_ccm_setauthsize,
|
|
.encrypt = tegra_aead_encrypt,
|
|
.decrypt = tegra_aead_decrypt,
|
|
.maxauthsize = AES_BLOCK_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
.chunksize = AES_BLOCK_SIZE,
|
|
.base = {
|
|
.cra_name = "ccm(aes)",
|
|
.cra_driver_name = "ccm-aes-tegra",
|
|
.cra_priority = 500,
|
|
.cra_blocksize = 1,
|
|
.cra_ctxsize = sizeof(struct tegra_aead_ctx),
|
|
.cra_alignmask = 0xf,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
}
|
|
}
|
|
};
|
|
|
|
static struct tegra_se_alg tegra_cmac_algs[] = {
|
|
{
|
|
.alg.ahash.op.do_one_request = tegra_cmac_do_one_req,
|
|
.alg.ahash.base = {
|
|
.init = tegra_cmac_init,
|
|
.setkey = tegra_cmac_setkey,
|
|
.update = tegra_cmac_update,
|
|
.final = tegra_cmac_final,
|
|
.finup = tegra_cmac_finup,
|
|
.digest = tegra_cmac_digest,
|
|
.export = tegra_cmac_export,
|
|
.import = tegra_cmac_import,
|
|
.halg.digestsize = AES_BLOCK_SIZE,
|
|
.halg.statesize = sizeof(struct tegra_cmac_reqctx),
|
|
.halg.base = {
|
|
.cra_name = "cmac(aes)",
|
|
.cra_driver_name = "tegra-se-cmac",
|
|
.cra_priority = 300,
|
|
.cra_flags = CRYPTO_ALG_TYPE_AHASH,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct tegra_cmac_ctx),
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_init = tegra_cmac_cra_init,
|
|
.cra_exit = tegra_cmac_cra_exit,
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
int tegra_init_aes(struct tegra_se *se)
|
|
{
|
|
struct aead_engine_alg *aead_alg;
|
|
struct ahash_engine_alg *ahash_alg;
|
|
struct skcipher_engine_alg *sk_alg;
|
|
int i, ret;
|
|
|
|
se->manifest = tegra_aes_kac_manifest;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tegra_aes_algs); i++) {
|
|
sk_alg = &tegra_aes_algs[i].alg.skcipher;
|
|
tegra_aes_algs[i].se_dev = se;
|
|
|
|
ret = crypto_engine_register_skcipher(sk_alg);
|
|
if (ret) {
|
|
dev_err(se->dev, "failed to register %s\n",
|
|
sk_alg->base.base.cra_name);
|
|
goto err_aes;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tegra_aead_algs); i++) {
|
|
aead_alg = &tegra_aead_algs[i].alg.aead;
|
|
tegra_aead_algs[i].se_dev = se;
|
|
|
|
ret = crypto_engine_register_aead(aead_alg);
|
|
if (ret) {
|
|
dev_err(se->dev, "failed to register %s\n",
|
|
aead_alg->base.base.cra_name);
|
|
goto err_aead;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tegra_cmac_algs); i++) {
|
|
ahash_alg = &tegra_cmac_algs[i].alg.ahash;
|
|
tegra_cmac_algs[i].se_dev = se;
|
|
|
|
ret = crypto_engine_register_ahash(ahash_alg);
|
|
if (ret) {
|
|
dev_err(se->dev, "failed to register %s\n",
|
|
ahash_alg->base.halg.base.cra_name);
|
|
goto err_cmac;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_cmac:
|
|
while (i--)
|
|
crypto_engine_unregister_ahash(&tegra_cmac_algs[i].alg.ahash);
|
|
|
|
i = ARRAY_SIZE(tegra_aead_algs);
|
|
err_aead:
|
|
while (i--)
|
|
crypto_engine_unregister_aead(&tegra_aead_algs[i].alg.aead);
|
|
|
|
i = ARRAY_SIZE(tegra_aes_algs);
|
|
err_aes:
|
|
while (i--)
|
|
crypto_engine_unregister_skcipher(&tegra_aes_algs[i].alg.skcipher);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void tegra_deinit_aes(struct tegra_se *se)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tegra_aes_algs); i++)
|
|
crypto_engine_unregister_skcipher(&tegra_aes_algs[i].alg.skcipher);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tegra_aead_algs); i++)
|
|
crypto_engine_unregister_aead(&tegra_aead_algs[i].alg.aead);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(tegra_cmac_algs); i++)
|
|
crypto_engine_unregister_ahash(&tegra_cmac_algs[i].alg.ahash);
|
|
}
|