1
linux/arch/powerpc/kvm/book3s_64_mmu_host.c
Alexander Graf 5156f274bb KVM: PPC: Fix Book3S_64 Host MMU debug output
We have some debug output in Book3S_64. Some of that was invalid though,
partially not even compiling because it accessed incorrect variables.

So let's fix that up, making debugging more fun again.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Avi Kivity <avi@redhat.com>
2010-05-17 12:19:05 +03:00

441 lines
11 KiB
C

/*
* Copyright (C) 2009 SUSE Linux Products GmbH. All rights reserved.
*
* Authors:
* Alexander Graf <agraf@suse.de>
* Kevin Wolf <mail@kevin-wolf.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/kvm_host.h>
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#include <asm/mmu-hash64.h>
#include <asm/machdep.h>
#include <asm/mmu_context.h>
#include <asm/hw_irq.h>
#define PTE_SIZE 12
#define VSID_ALL 0
/* #define DEBUG_MMU */
/* #define DEBUG_SLB */
#ifdef DEBUG_MMU
#define dprintk_mmu(a, ...) printk(KERN_INFO a, __VA_ARGS__)
#else
#define dprintk_mmu(a, ...) do { } while(0)
#endif
#ifdef DEBUG_SLB
#define dprintk_slb(a, ...) printk(KERN_INFO a, __VA_ARGS__)
#else
#define dprintk_slb(a, ...) do { } while(0)
#endif
static void invalidate_pte(struct hpte_cache *pte)
{
dprintk_mmu("KVM: Flushing SPT: 0x%lx (0x%llx) -> 0x%llx\n",
pte->pte.eaddr, pte->pte.vpage, pte->host_va);
ppc_md.hpte_invalidate(pte->slot, pte->host_va,
MMU_PAGE_4K, MMU_SEGSIZE_256M,
false);
pte->host_va = 0;
if (pte->pte.may_write)
kvm_release_pfn_dirty(pte->pfn);
else
kvm_release_pfn_clean(pte->pfn);
}
void kvmppc_mmu_pte_flush(struct kvm_vcpu *vcpu, ulong guest_ea, ulong ea_mask)
{
int i;
dprintk_mmu("KVM: Flushing %d Shadow PTEs: 0x%lx & 0x%lx\n",
vcpu->arch.hpte_cache_offset, guest_ea, ea_mask);
BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM);
guest_ea &= ea_mask;
for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) {
struct hpte_cache *pte;
pte = &vcpu->arch.hpte_cache[i];
if (!pte->host_va)
continue;
if ((pte->pte.eaddr & ea_mask) == guest_ea) {
invalidate_pte(pte);
}
}
/* Doing a complete flush -> start from scratch */
if (!ea_mask)
vcpu->arch.hpte_cache_offset = 0;
}
void kvmppc_mmu_pte_vflush(struct kvm_vcpu *vcpu, u64 guest_vp, u64 vp_mask)
{
int i;
dprintk_mmu("KVM: Flushing %d Shadow vPTEs: 0x%llx & 0x%llx\n",
vcpu->arch.hpte_cache_offset, guest_vp, vp_mask);
BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM);
guest_vp &= vp_mask;
for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) {
struct hpte_cache *pte;
pte = &vcpu->arch.hpte_cache[i];
if (!pte->host_va)
continue;
if ((pte->pte.vpage & vp_mask) == guest_vp) {
invalidate_pte(pte);
}
}
}
void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
{
int i;
dprintk_mmu("KVM: Flushing %d Shadow pPTEs: 0x%lx & 0x%lx\n",
vcpu->arch.hpte_cache_offset, pa_start, pa_end);
BUG_ON(vcpu->arch.hpte_cache_offset > HPTEG_CACHE_NUM);
for (i = 0; i < vcpu->arch.hpte_cache_offset; i++) {
struct hpte_cache *pte;
pte = &vcpu->arch.hpte_cache[i];
if (!pte->host_va)
continue;
if ((pte->pte.raddr >= pa_start) &&
(pte->pte.raddr < pa_end)) {
invalidate_pte(pte);
}
}
}
struct kvmppc_pte *kvmppc_mmu_find_pte(struct kvm_vcpu *vcpu, u64 ea, bool data)
{
int i;
u64 guest_vp;
guest_vp = vcpu->arch.mmu.ea_to_vp(vcpu, ea, false);
for (i=0; i<vcpu->arch.hpte_cache_offset; i++) {
struct hpte_cache *pte;
pte = &vcpu->arch.hpte_cache[i];
if (!pte->host_va)
continue;
if (pte->pte.vpage == guest_vp)
return &pte->pte;
}
return NULL;
}
static int kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu)
{
if (vcpu->arch.hpte_cache_offset == HPTEG_CACHE_NUM)
kvmppc_mmu_pte_flush(vcpu, 0, 0);
return vcpu->arch.hpte_cache_offset++;
}
/* We keep 512 gvsid->hvsid entries, mapping the guest ones to the array using
* a hash, so we don't waste cycles on looping */
static u16 kvmppc_sid_hash(struct kvm_vcpu *vcpu, u64 gvsid)
{
return (u16)(((gvsid >> (SID_MAP_BITS * 7)) & SID_MAP_MASK) ^
((gvsid >> (SID_MAP_BITS * 6)) & SID_MAP_MASK) ^
((gvsid >> (SID_MAP_BITS * 5)) & SID_MAP_MASK) ^
((gvsid >> (SID_MAP_BITS * 4)) & SID_MAP_MASK) ^
((gvsid >> (SID_MAP_BITS * 3)) & SID_MAP_MASK) ^
((gvsid >> (SID_MAP_BITS * 2)) & SID_MAP_MASK) ^
((gvsid >> (SID_MAP_BITS * 1)) & SID_MAP_MASK) ^
((gvsid >> (SID_MAP_BITS * 0)) & SID_MAP_MASK));
}
static struct kvmppc_sid_map *find_sid_vsid(struct kvm_vcpu *vcpu, u64 gvsid)
{
struct kvmppc_sid_map *map;
u16 sid_map_mask;
if (vcpu->arch.msr & MSR_PR)
gvsid |= VSID_PR;
sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
map = &to_book3s(vcpu)->sid_map[sid_map_mask];
if (map->guest_vsid == gvsid) {
dprintk_slb("SLB: Searching: 0x%llx -> 0x%llx\n",
gvsid, map->host_vsid);
return map;
}
map = &to_book3s(vcpu)->sid_map[SID_MAP_MASK - sid_map_mask];
if (map->guest_vsid == gvsid) {
dprintk_slb("SLB: Searching 0x%llx -> 0x%llx\n",
gvsid, map->host_vsid);
return map;
}
dprintk_slb("SLB: Searching %d/%d: 0x%llx -> not found\n",
sid_map_mask, SID_MAP_MASK - sid_map_mask, gvsid);
return NULL;
}
int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
{
pfn_t hpaddr;
ulong hash, hpteg, va;
u64 vsid;
int ret;
int rflags = 0x192;
int vflags = 0;
int attempt = 0;
struct kvmppc_sid_map *map;
/* Get host physical address for gpa */
hpaddr = gfn_to_pfn(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
if (kvm_is_error_hva(hpaddr)) {
printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", orig_pte->eaddr);
return -EINVAL;
}
hpaddr <<= PAGE_SHIFT;
#if PAGE_SHIFT == 12
#elif PAGE_SHIFT == 16
hpaddr |= orig_pte->raddr & 0xf000;
#else
#error Unknown page size
#endif
/* and write the mapping ea -> hpa into the pt */
vcpu->arch.mmu.esid_to_vsid(vcpu, orig_pte->eaddr >> SID_SHIFT, &vsid);
map = find_sid_vsid(vcpu, vsid);
if (!map) {
ret = kvmppc_mmu_map_segment(vcpu, orig_pte->eaddr);
WARN_ON(ret < 0);
map = find_sid_vsid(vcpu, vsid);
}
if (!map) {
printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n",
vsid, orig_pte->eaddr);
WARN_ON(true);
return -EINVAL;
}
vsid = map->host_vsid;
va = hpt_va(orig_pte->eaddr, vsid, MMU_SEGSIZE_256M);
if (!orig_pte->may_write)
rflags |= HPTE_R_PP;
else
mark_page_dirty(vcpu->kvm, orig_pte->raddr >> PAGE_SHIFT);
if (!orig_pte->may_execute)
rflags |= HPTE_R_N;
hash = hpt_hash(va, PTE_SIZE, MMU_SEGSIZE_256M);
map_again:
hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
/* In case we tried normal mapping already, let's nuke old entries */
if (attempt > 1)
if (ppc_md.hpte_remove(hpteg) < 0)
return -1;
ret = ppc_md.hpte_insert(hpteg, va, hpaddr, rflags, vflags, MMU_PAGE_4K, MMU_SEGSIZE_256M);
if (ret < 0) {
/* If we couldn't map a primary PTE, try a secondary */
hash = ~hash;
vflags ^= HPTE_V_SECONDARY;
attempt++;
goto map_again;
} else {
int hpte_id = kvmppc_mmu_hpte_cache_next(vcpu);
struct hpte_cache *pte = &vcpu->arch.hpte_cache[hpte_id];
dprintk_mmu("KVM: %c%c Map 0x%lx: [%lx] 0x%lx (0x%llx) -> %lx\n",
((rflags & HPTE_R_PP) == 3) ? '-' : 'w',
(rflags & HPTE_R_N) ? '-' : 'x',
orig_pte->eaddr, hpteg, va, orig_pte->vpage, hpaddr);
/* The ppc_md code may give us a secondary entry even though we
asked for a primary. Fix up. */
if ((ret & _PTEIDX_SECONDARY) && !(vflags & HPTE_V_SECONDARY)) {
hash = ~hash;
hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
}
pte->slot = hpteg + (ret & 7);
pte->host_va = va;
pte->pte = *orig_pte;
pte->pfn = hpaddr >> PAGE_SHIFT;
}
return 0;
}
static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
{
struct kvmppc_sid_map *map;
struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
u16 sid_map_mask;
static int backwards_map = 0;
if (vcpu->arch.msr & MSR_PR)
gvsid |= VSID_PR;
/* We might get collisions that trap in preceding order, so let's
map them differently */
sid_map_mask = kvmppc_sid_hash(vcpu, gvsid);
if (backwards_map)
sid_map_mask = SID_MAP_MASK - sid_map_mask;
map = &to_book3s(vcpu)->sid_map[sid_map_mask];
/* Make sure we're taking the other map next time */
backwards_map = !backwards_map;
/* Uh-oh ... out of mappings. Let's flush! */
if (vcpu_book3s->vsid_next == vcpu_book3s->vsid_max) {
vcpu_book3s->vsid_next = vcpu_book3s->vsid_first;
memset(vcpu_book3s->sid_map, 0,
sizeof(struct kvmppc_sid_map) * SID_MAP_NUM);
kvmppc_mmu_pte_flush(vcpu, 0, 0);
kvmppc_mmu_flush_segments(vcpu);
}
map->host_vsid = vcpu_book3s->vsid_next++;
map->guest_vsid = gvsid;
map->valid = true;
dprintk_slb("SLB: New mapping at %d: 0x%llx -> 0x%llx\n",
sid_map_mask, gvsid, map->host_vsid);
return map;
}
static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid)
{
int i;
int max_slb_size = 64;
int found_inval = -1;
int r;
if (!to_svcpu(vcpu)->slb_max)
to_svcpu(vcpu)->slb_max = 1;
/* Are we overwriting? */
for (i = 1; i < to_svcpu(vcpu)->slb_max; i++) {
if (!(to_svcpu(vcpu)->slb[i].esid & SLB_ESID_V))
found_inval = i;
else if ((to_svcpu(vcpu)->slb[i].esid & ESID_MASK) == esid)
return i;
}
/* Found a spare entry that was invalidated before */
if (found_inval > 0)
return found_inval;
/* No spare invalid entry, so create one */
if (mmu_slb_size < 64)
max_slb_size = mmu_slb_size;
/* Overflowing -> purge */
if ((to_svcpu(vcpu)->slb_max) == max_slb_size)
kvmppc_mmu_flush_segments(vcpu);
r = to_svcpu(vcpu)->slb_max;
to_svcpu(vcpu)->slb_max++;
return r;
}
int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
{
u64 esid = eaddr >> SID_SHIFT;
u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V;
u64 slb_vsid = SLB_VSID_USER;
u64 gvsid;
int slb_index;
struct kvmppc_sid_map *map;
slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK);
if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
/* Invalidate an entry */
to_svcpu(vcpu)->slb[slb_index].esid = 0;
return -ENOENT;
}
map = find_sid_vsid(vcpu, gvsid);
if (!map)
map = create_sid_map(vcpu, gvsid);
map->guest_esid = esid;
slb_vsid |= (map->host_vsid << 12);
slb_vsid &= ~SLB_VSID_KP;
slb_esid |= slb_index;
to_svcpu(vcpu)->slb[slb_index].esid = slb_esid;
to_svcpu(vcpu)->slb[slb_index].vsid = slb_vsid;
dprintk_slb("slbmte %#llx, %#llx\n", slb_vsid, slb_esid);
return 0;
}
void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
{
to_svcpu(vcpu)->slb_max = 1;
to_svcpu(vcpu)->slb[0].esid = 0;
}
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
{
kvmppc_mmu_pte_flush(vcpu, 0, 0);
__destroy_context(to_book3s(vcpu)->context_id);
}
int kvmppc_mmu_init(struct kvm_vcpu *vcpu)
{
struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
int err;
err = __init_new_context();
if (err < 0)
return -1;
vcpu3s->context_id = err;
vcpu3s->vsid_max = ((vcpu3s->context_id + 1) << USER_ESID_BITS) - 1;
vcpu3s->vsid_first = vcpu3s->context_id << USER_ESID_BITS;
vcpu3s->vsid_next = vcpu3s->vsid_first;
return 0;
}