1
linux/drivers/net/cxgb3/cxgb3_offload.c
Steve Wise fa0d4c11c4 RDMA/cxgb3: Handle port events properly
Massage the err_handler upcall into an event handler upcall, pass
netdev port events to the cxgb3 ULPs and generate RDMA port events
based on LLD port events.

Signed-off-by: Steve Wise <swise@opengridcomputing.com>
Signed-off-by: Roland Dreier <rolandd@cisco.com>
2009-09-05 20:22:38 -07:00

1421 lines
37 KiB
C

/*
* Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/list.h>
#include <net/neighbour.h>
#include <linux/notifier.h>
#include <asm/atomic.h>
#include <linux/proc_fs.h>
#include <linux/if_vlan.h>
#include <net/netevent.h>
#include <linux/highmem.h>
#include <linux/vmalloc.h>
#include "common.h"
#include "regs.h"
#include "cxgb3_ioctl.h"
#include "cxgb3_ctl_defs.h"
#include "cxgb3_defs.h"
#include "l2t.h"
#include "firmware_exports.h"
#include "cxgb3_offload.h"
static LIST_HEAD(client_list);
static LIST_HEAD(ofld_dev_list);
static DEFINE_MUTEX(cxgb3_db_lock);
static DEFINE_RWLOCK(adapter_list_lock);
static LIST_HEAD(adapter_list);
static const unsigned int MAX_ATIDS = 64 * 1024;
static const unsigned int ATID_BASE = 0x10000;
static inline int offload_activated(struct t3cdev *tdev)
{
const struct adapter *adapter = tdev2adap(tdev);
return (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map));
}
/**
* cxgb3_register_client - register an offload client
* @client: the client
*
* Add the client to the client list,
* and call backs the client for each activated offload device
*/
void cxgb3_register_client(struct cxgb3_client *client)
{
struct t3cdev *tdev;
mutex_lock(&cxgb3_db_lock);
list_add_tail(&client->client_list, &client_list);
if (client->add) {
list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
if (offload_activated(tdev))
client->add(tdev);
}
}
mutex_unlock(&cxgb3_db_lock);
}
EXPORT_SYMBOL(cxgb3_register_client);
/**
* cxgb3_unregister_client - unregister an offload client
* @client: the client
*
* Remove the client to the client list,
* and call backs the client for each activated offload device.
*/
void cxgb3_unregister_client(struct cxgb3_client *client)
{
struct t3cdev *tdev;
mutex_lock(&cxgb3_db_lock);
list_del(&client->client_list);
if (client->remove) {
list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
if (offload_activated(tdev))
client->remove(tdev);
}
}
mutex_unlock(&cxgb3_db_lock);
}
EXPORT_SYMBOL(cxgb3_unregister_client);
/**
* cxgb3_add_clients - activate registered clients for an offload device
* @tdev: the offload device
*
* Call backs all registered clients once a offload device is activated
*/
void cxgb3_add_clients(struct t3cdev *tdev)
{
struct cxgb3_client *client;
mutex_lock(&cxgb3_db_lock);
list_for_each_entry(client, &client_list, client_list) {
if (client->add)
client->add(tdev);
}
mutex_unlock(&cxgb3_db_lock);
}
/**
* cxgb3_remove_clients - deactivates registered clients
* for an offload device
* @tdev: the offload device
*
* Call backs all registered clients once a offload device is deactivated
*/
void cxgb3_remove_clients(struct t3cdev *tdev)
{
struct cxgb3_client *client;
mutex_lock(&cxgb3_db_lock);
list_for_each_entry(client, &client_list, client_list) {
if (client->remove)
client->remove(tdev);
}
mutex_unlock(&cxgb3_db_lock);
}
void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port)
{
struct cxgb3_client *client;
mutex_lock(&cxgb3_db_lock);
list_for_each_entry(client, &client_list, client_list) {
if (client->event_handler)
client->event_handler(tdev, event, port);
}
mutex_unlock(&cxgb3_db_lock);
}
static struct net_device *get_iff_from_mac(struct adapter *adapter,
const unsigned char *mac,
unsigned int vlan)
{
int i;
for_each_port(adapter, i) {
struct vlan_group *grp;
struct net_device *dev = adapter->port[i];
const struct port_info *p = netdev_priv(dev);
if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
if (vlan && vlan != VLAN_VID_MASK) {
grp = p->vlan_grp;
dev = NULL;
if (grp)
dev = vlan_group_get_device(grp, vlan);
} else
while (dev->master)
dev = dev->master;
return dev;
}
}
return NULL;
}
static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
void *data)
{
int i;
int ret = 0;
unsigned int val = 0;
struct ulp_iscsi_info *uiip = data;
switch (req) {
case ULP_ISCSI_GET_PARAMS:
uiip->pdev = adapter->pdev;
uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
for (i = 0; i < 4; i++, val >>= 8)
uiip->pgsz_factor[i] = val & 0xFF;
val = t3_read_reg(adapter, A_TP_PARA_REG7);
uiip->max_txsz =
uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
(val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
/*
* On tx, the iscsi pdu has to be <= tx page size and has to
* fit into the Tx PM FIFO.
*/
val = min(adapter->params.tp.tx_pg_size,
t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
uiip->max_txsz = min(val, uiip->max_txsz);
/* set MaxRxData to 16224 */
val = t3_read_reg(adapter, A_TP_PARA_REG2);
if ((val >> S_MAXRXDATA) != 0x3f60) {
val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
val |= V_MAXRXDATA(0x3f60);
printk(KERN_INFO
"%s, iscsi set MaxRxData to 16224 (0x%x).\n",
adapter->name, val);
t3_write_reg(adapter, A_TP_PARA_REG2, val);
}
/*
* on rx, the iscsi pdu has to be < rx page size and the
* the max rx data length programmed in TP
*/
val = min(adapter->params.tp.rx_pg_size,
((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
S_MAXRXDATA) & M_MAXRXDATA);
uiip->max_rxsz = min(val, uiip->max_rxsz);
break;
case ULP_ISCSI_SET_PARAMS:
t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
/* program the ddp page sizes */
for (i = 0; i < 4; i++)
val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
printk(KERN_INFO
"%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u.\n",
adapter->name, val, uiip->pgsz_factor[0],
uiip->pgsz_factor[1], uiip->pgsz_factor[2],
uiip->pgsz_factor[3]);
t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
}
break;
default:
ret = -EOPNOTSUPP;
}
return ret;
}
/* Response queue used for RDMA events. */
#define ASYNC_NOTIF_RSPQ 0
static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
{
int ret = 0;
switch (req) {
case RDMA_GET_PARAMS: {
struct rdma_info *rdma = data;
struct pci_dev *pdev = adapter->pdev;
rdma->udbell_physbase = pci_resource_start(pdev, 2);
rdma->udbell_len = pci_resource_len(pdev, 2);
rdma->tpt_base =
t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
rdma->pbl_base =
t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
rdma->pdev = pdev;
break;
}
case RDMA_CQ_OP:{
unsigned long flags;
struct rdma_cq_op *rdma = data;
/* may be called in any context */
spin_lock_irqsave(&adapter->sge.reg_lock, flags);
ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
rdma->credits);
spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
break;
}
case RDMA_GET_MEM:{
struct ch_mem_range *t = data;
struct mc7 *mem;
if ((t->addr & 7) || (t->len & 7))
return -EINVAL;
if (t->mem_id == MEM_CM)
mem = &adapter->cm;
else if (t->mem_id == MEM_PMRX)
mem = &adapter->pmrx;
else if (t->mem_id == MEM_PMTX)
mem = &adapter->pmtx;
else
return -EINVAL;
ret =
t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
(u64 *) t->buf);
if (ret)
return ret;
break;
}
case RDMA_CQ_SETUP:{
struct rdma_cq_setup *rdma = data;
spin_lock_irq(&adapter->sge.reg_lock);
ret =
t3_sge_init_cqcntxt(adapter, rdma->id,
rdma->base_addr, rdma->size,
ASYNC_NOTIF_RSPQ,
rdma->ovfl_mode, rdma->credits,
rdma->credit_thres);
spin_unlock_irq(&adapter->sge.reg_lock);
break;
}
case RDMA_CQ_DISABLE:
spin_lock_irq(&adapter->sge.reg_lock);
ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
spin_unlock_irq(&adapter->sge.reg_lock);
break;
case RDMA_CTRL_QP_SETUP:{
struct rdma_ctrlqp_setup *rdma = data;
spin_lock_irq(&adapter->sge.reg_lock);
ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
SGE_CNTXT_RDMA,
ASYNC_NOTIF_RSPQ,
rdma->base_addr, rdma->size,
FW_RI_TID_START, 1, 0);
spin_unlock_irq(&adapter->sge.reg_lock);
break;
}
case RDMA_GET_MIB: {
spin_lock(&adapter->stats_lock);
t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
spin_unlock(&adapter->stats_lock);
break;
}
default:
ret = -EOPNOTSUPP;
}
return ret;
}
static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
{
struct adapter *adapter = tdev2adap(tdev);
struct tid_range *tid;
struct mtutab *mtup;
struct iff_mac *iffmacp;
struct ddp_params *ddpp;
struct adap_ports *ports;
struct ofld_page_info *rx_page_info;
struct tp_params *tp = &adapter->params.tp;
int i;
switch (req) {
case GET_MAX_OUTSTANDING_WR:
*(unsigned int *)data = FW_WR_NUM;
break;
case GET_WR_LEN:
*(unsigned int *)data = WR_FLITS;
break;
case GET_TX_MAX_CHUNK:
*(unsigned int *)data = 1 << 20; /* 1MB */
break;
case GET_TID_RANGE:
tid = data;
tid->num = t3_mc5_size(&adapter->mc5) -
adapter->params.mc5.nroutes -
adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
tid->base = 0;
break;
case GET_STID_RANGE:
tid = data;
tid->num = adapter->params.mc5.nservers;
tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
break;
case GET_L2T_CAPACITY:
*(unsigned int *)data = 2048;
break;
case GET_MTUS:
mtup = data;
mtup->size = NMTUS;
mtup->mtus = adapter->params.mtus;
break;
case GET_IFF_FROM_MAC:
iffmacp = data;
iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
iffmacp->vlan_tag &
VLAN_VID_MASK);
break;
case GET_DDP_PARAMS:
ddpp = data;
ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
break;
case GET_PORTS:
ports = data;
ports->nports = adapter->params.nports;
for_each_port(adapter, i)
ports->lldevs[i] = adapter->port[i];
break;
case ULP_ISCSI_GET_PARAMS:
case ULP_ISCSI_SET_PARAMS:
if (!offload_running(adapter))
return -EAGAIN;
return cxgb_ulp_iscsi_ctl(adapter, req, data);
case RDMA_GET_PARAMS:
case RDMA_CQ_OP:
case RDMA_CQ_SETUP:
case RDMA_CQ_DISABLE:
case RDMA_CTRL_QP_SETUP:
case RDMA_GET_MEM:
case RDMA_GET_MIB:
if (!offload_running(adapter))
return -EAGAIN;
return cxgb_rdma_ctl(adapter, req, data);
case GET_RX_PAGE_INFO:
rx_page_info = data;
rx_page_info->page_size = tp->rx_pg_size;
rx_page_info->num = tp->rx_num_pgs;
break;
case GET_ISCSI_IPV4ADDR: {
struct iscsi_ipv4addr *p = data;
struct port_info *pi = netdev_priv(p->dev);
p->ipv4addr = pi->iscsi_ipv4addr;
break;
}
case GET_EMBEDDED_INFO: {
struct ch_embedded_info *e = data;
spin_lock(&adapter->stats_lock);
t3_get_fw_version(adapter, &e->fw_vers);
t3_get_tp_version(adapter, &e->tp_vers);
spin_unlock(&adapter->stats_lock);
break;
}
default:
return -EOPNOTSUPP;
}
return 0;
}
/*
* Dummy handler for Rx offload packets in case we get an offload packet before
* proper processing is setup. This complains and drops the packet as it isn't
* normal to get offload packets at this stage.
*/
static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
int n)
{
while (n--)
dev_kfree_skb_any(skbs[n]);
return 0;
}
static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
{
}
void cxgb3_set_dummy_ops(struct t3cdev *dev)
{
dev->recv = rx_offload_blackhole;
dev->neigh_update = dummy_neigh_update;
}
/*
* Free an active-open TID.
*/
void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
{
struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
union active_open_entry *p = atid2entry(t, atid);
void *ctx = p->t3c_tid.ctx;
spin_lock_bh(&t->atid_lock);
p->next = t->afree;
t->afree = p;
t->atids_in_use--;
spin_unlock_bh(&t->atid_lock);
return ctx;
}
EXPORT_SYMBOL(cxgb3_free_atid);
/*
* Free a server TID and return it to the free pool.
*/
void cxgb3_free_stid(struct t3cdev *tdev, int stid)
{
struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
union listen_entry *p = stid2entry(t, stid);
spin_lock_bh(&t->stid_lock);
p->next = t->sfree;
t->sfree = p;
t->stids_in_use--;
spin_unlock_bh(&t->stid_lock);
}
EXPORT_SYMBOL(cxgb3_free_stid);
void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
void *ctx, unsigned int tid)
{
struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
t->tid_tab[tid].client = client;
t->tid_tab[tid].ctx = ctx;
atomic_inc(&t->tids_in_use);
}
EXPORT_SYMBOL(cxgb3_insert_tid);
/*
* Populate a TID_RELEASE WR. The skb must be already propely sized.
*/
static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
{
struct cpl_tid_release *req;
skb->priority = CPL_PRIORITY_SETUP;
req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
}
static void t3_process_tid_release_list(struct work_struct *work)
{
struct t3c_data *td = container_of(work, struct t3c_data,
tid_release_task);
struct sk_buff *skb;
struct t3cdev *tdev = td->dev;
spin_lock_bh(&td->tid_release_lock);
while (td->tid_release_list) {
struct t3c_tid_entry *p = td->tid_release_list;
td->tid_release_list = (struct t3c_tid_entry *)p->ctx;
spin_unlock_bh(&td->tid_release_lock);
skb = alloc_skb(sizeof(struct cpl_tid_release),
GFP_KERNEL);
if (!skb)
skb = td->nofail_skb;
if (!skb) {
spin_lock_bh(&td->tid_release_lock);
p->ctx = (void *)td->tid_release_list;
td->tid_release_list = (struct t3c_tid_entry *)p;
break;
}
mk_tid_release(skb, p - td->tid_maps.tid_tab);
cxgb3_ofld_send(tdev, skb);
p->ctx = NULL;
if (skb == td->nofail_skb)
td->nofail_skb =
alloc_skb(sizeof(struct cpl_tid_release),
GFP_KERNEL);
spin_lock_bh(&td->tid_release_lock);
}
td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1;
spin_unlock_bh(&td->tid_release_lock);
if (!td->nofail_skb)
td->nofail_skb =
alloc_skb(sizeof(struct cpl_tid_release),
GFP_KERNEL);
}
/* use ctx as a next pointer in the tid release list */
void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
{
struct t3c_data *td = T3C_DATA(tdev);
struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
spin_lock_bh(&td->tid_release_lock);
p->ctx = (void *)td->tid_release_list;
p->client = NULL;
td->tid_release_list = p;
if (!p->ctx || td->release_list_incomplete)
schedule_work(&td->tid_release_task);
spin_unlock_bh(&td->tid_release_lock);
}
EXPORT_SYMBOL(cxgb3_queue_tid_release);
/*
* Remove a tid from the TID table. A client may defer processing its last
* CPL message if it is locked at the time it arrives, and while the message
* sits in the client's backlog the TID may be reused for another connection.
* To handle this we atomically switch the TID association if it still points
* to the original client context.
*/
void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
{
struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
BUG_ON(tid >= t->ntids);
if (tdev->type == T3A)
(void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
else {
struct sk_buff *skb;
skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
if (likely(skb)) {
mk_tid_release(skb, tid);
cxgb3_ofld_send(tdev, skb);
t->tid_tab[tid].ctx = NULL;
} else
cxgb3_queue_tid_release(tdev, tid);
}
atomic_dec(&t->tids_in_use);
}
EXPORT_SYMBOL(cxgb3_remove_tid);
int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
void *ctx)
{
int atid = -1;
struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
spin_lock_bh(&t->atid_lock);
if (t->afree &&
t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
t->ntids) {
union active_open_entry *p = t->afree;
atid = (p - t->atid_tab) + t->atid_base;
t->afree = p->next;
p->t3c_tid.ctx = ctx;
p->t3c_tid.client = client;
t->atids_in_use++;
}
spin_unlock_bh(&t->atid_lock);
return atid;
}
EXPORT_SYMBOL(cxgb3_alloc_atid);
int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
void *ctx)
{
int stid = -1;
struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
spin_lock_bh(&t->stid_lock);
if (t->sfree) {
union listen_entry *p = t->sfree;
stid = (p - t->stid_tab) + t->stid_base;
t->sfree = p->next;
p->t3c_tid.ctx = ctx;
p->t3c_tid.client = client;
t->stids_in_use++;
}
spin_unlock_bh(&t->stid_lock);
return stid;
}
EXPORT_SYMBOL(cxgb3_alloc_stid);
/* Get the t3cdev associated with a net_device */
struct t3cdev *dev2t3cdev(struct net_device *dev)
{
const struct port_info *pi = netdev_priv(dev);
return (struct t3cdev *)pi->adapter;
}
EXPORT_SYMBOL(dev2t3cdev);
static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
{
struct cpl_smt_write_rpl *rpl = cplhdr(skb);
if (rpl->status != CPL_ERR_NONE)
printk(KERN_ERR
"Unexpected SMT_WRITE_RPL status %u for entry %u\n",
rpl->status, GET_TID(rpl));
return CPL_RET_BUF_DONE;
}
static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
{
struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
if (rpl->status != CPL_ERR_NONE)
printk(KERN_ERR
"Unexpected L2T_WRITE_RPL status %u for entry %u\n",
rpl->status, GET_TID(rpl));
return CPL_RET_BUF_DONE;
}
static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
{
struct cpl_rte_write_rpl *rpl = cplhdr(skb);
if (rpl->status != CPL_ERR_NONE)
printk(KERN_ERR
"Unexpected RTE_WRITE_RPL status %u for entry %u\n",
rpl->status, GET_TID(rpl));
return CPL_RET_BUF_DONE;
}
static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
{
struct cpl_act_open_rpl *rpl = cplhdr(skb);
unsigned int atid = G_TID(ntohl(rpl->atid));
struct t3c_tid_entry *t3c_tid;
t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
t3c_tid->client->handlers &&
t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
t3c_tid->
ctx);
} else {
printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
dev->name, CPL_ACT_OPEN_RPL);
return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
}
}
static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
{
union opcode_tid *p = cplhdr(skb);
unsigned int stid = G_TID(ntohl(p->opcode_tid));
struct t3c_tid_entry *t3c_tid;
t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
t3c_tid->client->handlers[p->opcode]) {
return t3c_tid->client->handlers[p->opcode] (dev, skb,
t3c_tid->ctx);
} else {
printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
dev->name, p->opcode);
return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
}
}
static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
{
union opcode_tid *p = cplhdr(skb);
unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
struct t3c_tid_entry *t3c_tid;
t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
t3c_tid->client->handlers[p->opcode]) {
return t3c_tid->client->handlers[p->opcode]
(dev, skb, t3c_tid->ctx);
} else {
printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
dev->name, p->opcode);
return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
}
}
static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
{
struct cpl_pass_accept_req *req = cplhdr(skb);
unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
struct t3c_tid_entry *t3c_tid;
unsigned int tid = GET_TID(req);
if (unlikely(tid >= t->ntids)) {
printk("%s: passive open TID %u too large\n",
dev->name, tid);
t3_fatal_err(tdev2adap(dev));
return CPL_RET_BUF_DONE;
}
t3c_tid = lookup_stid(t, stid);
if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
(dev, skb, t3c_tid->ctx);
} else {
printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
dev->name, CPL_PASS_ACCEPT_REQ);
return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
}
}
/*
* Returns an sk_buff for a reply CPL message of size len. If the input
* sk_buff has no other users it is trimmed and reused, otherwise a new buffer
* is allocated. The input skb must be of size at least len. Note that this
* operation does not destroy the original skb data even if it decides to reuse
* the buffer.
*/
static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
gfp_t gfp)
{
if (likely(!skb_cloned(skb))) {
BUG_ON(skb->len < len);
__skb_trim(skb, len);
skb_get(skb);
} else {
skb = alloc_skb(len, gfp);
if (skb)
__skb_put(skb, len);
}
return skb;
}
static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
{
union opcode_tid *p = cplhdr(skb);
unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
struct t3c_tid_entry *t3c_tid;
t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
t3c_tid->client->handlers[p->opcode]) {
return t3c_tid->client->handlers[p->opcode]
(dev, skb, t3c_tid->ctx);
} else {
struct cpl_abort_req_rss *req = cplhdr(skb);
struct cpl_abort_rpl *rpl;
struct sk_buff *reply_skb;
unsigned int tid = GET_TID(req);
u8 cmd = req->status;
if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
req->status == CPL_ERR_PERSIST_NEG_ADVICE)
goto out;
reply_skb = cxgb3_get_cpl_reply_skb(skb,
sizeof(struct
cpl_abort_rpl),
GFP_ATOMIC);
if (!reply_skb) {
printk("do_abort_req_rss: couldn't get skb!\n");
goto out;
}
reply_skb->priority = CPL_PRIORITY_DATA;
__skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
rpl = cplhdr(reply_skb);
rpl->wr.wr_hi =
htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
rpl->wr.wr_lo = htonl(V_WR_TID(tid));
OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
rpl->cmd = cmd;
cxgb3_ofld_send(dev, reply_skb);
out:
return CPL_RET_BUF_DONE;
}
}
static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
{
struct cpl_act_establish *req = cplhdr(skb);
unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
struct t3c_tid_entry *t3c_tid;
unsigned int tid = GET_TID(req);
if (unlikely(tid >= t->ntids)) {
printk("%s: active establish TID %u too large\n",
dev->name, tid);
t3_fatal_err(tdev2adap(dev));
return CPL_RET_BUF_DONE;
}
t3c_tid = lookup_atid(t, atid);
if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
(dev, skb, t3c_tid->ctx);
} else {
printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
dev->name, CPL_ACT_ESTABLISH);
return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
}
}
static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
{
struct cpl_trace_pkt *p = cplhdr(skb);
skb->protocol = htons(0xffff);
skb->dev = dev->lldev;
skb_pull(skb, sizeof(*p));
skb_reset_mac_header(skb);
netif_receive_skb(skb);
return 0;
}
/*
* That skb would better have come from process_responses() where we abuse
* ->priority and ->csum to carry our data. NB: if we get to per-arch
* ->csum, the things might get really interesting here.
*/
static inline u32 get_hwtid(struct sk_buff *skb)
{
return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
}
static inline u32 get_opcode(struct sk_buff *skb)
{
return G_OPCODE(ntohl((__force __be32)skb->csum));
}
static int do_term(struct t3cdev *dev, struct sk_buff *skb)
{
unsigned int hwtid = get_hwtid(skb);
unsigned int opcode = get_opcode(skb);
struct t3c_tid_entry *t3c_tid;
t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
t3c_tid->client->handlers[opcode]) {
return t3c_tid->client->handlers[opcode] (dev, skb,
t3c_tid->ctx);
} else {
printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
dev->name, opcode);
return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
}
}
static int nb_callback(struct notifier_block *self, unsigned long event,
void *ctx)
{
switch (event) {
case (NETEVENT_NEIGH_UPDATE):{
cxgb_neigh_update((struct neighbour *)ctx);
break;
}
case (NETEVENT_PMTU_UPDATE):
break;
case (NETEVENT_REDIRECT):{
struct netevent_redirect *nr = ctx;
cxgb_redirect(nr->old, nr->new);
cxgb_neigh_update(nr->new->neighbour);
break;
}
default:
break;
}
return 0;
}
static struct notifier_block nb = {
.notifier_call = nb_callback
};
/*
* Process a received packet with an unknown/unexpected CPL opcode.
*/
static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
{
printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
*skb->data);
return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
}
/*
* Handlers for each CPL opcode
*/
static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
/*
* Add a new handler to the CPL dispatch table. A NULL handler may be supplied
* to unregister an existing handler.
*/
void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
{
if (opcode < NUM_CPL_CMDS)
cpl_handlers[opcode] = h ? h : do_bad_cpl;
else
printk(KERN_ERR "T3C: handler registration for "
"opcode %x failed\n", opcode);
}
EXPORT_SYMBOL(t3_register_cpl_handler);
/*
* T3CDEV's receive method.
*/
int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
{
while (n--) {
struct sk_buff *skb = *skbs++;
unsigned int opcode = get_opcode(skb);
int ret = cpl_handlers[opcode] (dev, skb);
#if VALIDATE_TID
if (ret & CPL_RET_UNKNOWN_TID) {
union opcode_tid *p = cplhdr(skb);
printk(KERN_ERR "%s: CPL message (opcode %u) had "
"unknown TID %u\n", dev->name, opcode,
G_TID(ntohl(p->opcode_tid)));
}
#endif
if (ret & CPL_RET_BUF_DONE)
kfree_skb(skb);
}
return 0;
}
/*
* Sends an sk_buff to a T3C driver after dealing with any active network taps.
*/
int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
{
int r;
local_bh_disable();
r = dev->send(dev, skb);
local_bh_enable();
return r;
}
EXPORT_SYMBOL(cxgb3_ofld_send);
static int is_offloading(struct net_device *dev)
{
struct adapter *adapter;
int i;
read_lock_bh(&adapter_list_lock);
list_for_each_entry(adapter, &adapter_list, adapter_list) {
for_each_port(adapter, i) {
if (dev == adapter->port[i]) {
read_unlock_bh(&adapter_list_lock);
return 1;
}
}
}
read_unlock_bh(&adapter_list_lock);
return 0;
}
void cxgb_neigh_update(struct neighbour *neigh)
{
struct net_device *dev = neigh->dev;
if (dev && (is_offloading(dev))) {
struct t3cdev *tdev = dev2t3cdev(dev);
BUG_ON(!tdev);
t3_l2t_update(tdev, neigh);
}
}
static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
{
struct sk_buff *skb;
struct cpl_set_tcb_field *req;
skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
if (!skb) {
printk(KERN_ERR "%s: cannot allocate skb!\n", __func__);
return;
}
skb->priority = CPL_PRIORITY_CONTROL;
req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
req->reply = 0;
req->cpu_idx = 0;
req->word = htons(W_TCB_L2T_IX);
req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
tdev->send(tdev, skb);
}
void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
{
struct net_device *olddev, *newdev;
struct tid_info *ti;
struct t3cdev *tdev;
u32 tid;
int update_tcb;
struct l2t_entry *e;
struct t3c_tid_entry *te;
olddev = old->neighbour->dev;
newdev = new->neighbour->dev;
if (!is_offloading(olddev))
return;
if (!is_offloading(newdev)) {
printk(KERN_WARNING "%s: Redirect to non-offload "
"device ignored.\n", __func__);
return;
}
tdev = dev2t3cdev(olddev);
BUG_ON(!tdev);
if (tdev != dev2t3cdev(newdev)) {
printk(KERN_WARNING "%s: Redirect to different "
"offload device ignored.\n", __func__);
return;
}
/* Add new L2T entry */
e = t3_l2t_get(tdev, new->neighbour, newdev);
if (!e) {
printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
__func__);
return;
}
/* Walk tid table and notify clients of dst change. */
ti = &(T3C_DATA(tdev))->tid_maps;
for (tid = 0; tid < ti->ntids; tid++) {
te = lookup_tid(ti, tid);
BUG_ON(!te);
if (te && te->ctx && te->client && te->client->redirect) {
update_tcb = te->client->redirect(te->ctx, old, new, e);
if (update_tcb) {
l2t_hold(L2DATA(tdev), e);
set_l2t_ix(tdev, tid, e);
}
}
}
l2t_release(L2DATA(tdev), e);
}
/*
* Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
* The allocated memory is cleared.
*/
void *cxgb_alloc_mem(unsigned long size)
{
void *p = kmalloc(size, GFP_KERNEL);
if (!p)
p = vmalloc(size);
if (p)
memset(p, 0, size);
return p;
}
/*
* Free memory allocated through t3_alloc_mem().
*/
void cxgb_free_mem(void *addr)
{
if (is_vmalloc_addr(addr))
vfree(addr);
else
kfree(addr);
}
/*
* Allocate and initialize the TID tables. Returns 0 on success.
*/
static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
unsigned int natids, unsigned int nstids,
unsigned int atid_base, unsigned int stid_base)
{
unsigned long size = ntids * sizeof(*t->tid_tab) +
natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
t->tid_tab = cxgb_alloc_mem(size);
if (!t->tid_tab)
return -ENOMEM;
t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
t->ntids = ntids;
t->nstids = nstids;
t->stid_base = stid_base;
t->sfree = NULL;
t->natids = natids;
t->atid_base = atid_base;
t->afree = NULL;
t->stids_in_use = t->atids_in_use = 0;
atomic_set(&t->tids_in_use, 0);
spin_lock_init(&t->stid_lock);
spin_lock_init(&t->atid_lock);
/*
* Setup the free lists for stid_tab and atid_tab.
*/
if (nstids) {
while (--nstids)
t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
t->sfree = t->stid_tab;
}
if (natids) {
while (--natids)
t->atid_tab[natids - 1].next = &t->atid_tab[natids];
t->afree = t->atid_tab;
}
return 0;
}
static void free_tid_maps(struct tid_info *t)
{
cxgb_free_mem(t->tid_tab);
}
static inline void add_adapter(struct adapter *adap)
{
write_lock_bh(&adapter_list_lock);
list_add_tail(&adap->adapter_list, &adapter_list);
write_unlock_bh(&adapter_list_lock);
}
static inline void remove_adapter(struct adapter *adap)
{
write_lock_bh(&adapter_list_lock);
list_del(&adap->adapter_list);
write_unlock_bh(&adapter_list_lock);
}
int cxgb3_offload_activate(struct adapter *adapter)
{
struct t3cdev *dev = &adapter->tdev;
int natids, err;
struct t3c_data *t;
struct tid_range stid_range, tid_range;
struct mtutab mtutab;
unsigned int l2t_capacity;
t = kcalloc(1, sizeof(*t), GFP_KERNEL);
if (!t)
return -ENOMEM;
err = -EOPNOTSUPP;
if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
goto out_free;
err = -ENOMEM;
L2DATA(dev) = t3_init_l2t(l2t_capacity);
if (!L2DATA(dev))
goto out_free;
natids = min(tid_range.num / 2, MAX_ATIDS);
err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
stid_range.num, ATID_BASE, stid_range.base);
if (err)
goto out_free_l2t;
t->mtus = mtutab.mtus;
t->nmtus = mtutab.size;
INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
spin_lock_init(&t->tid_release_lock);
INIT_LIST_HEAD(&t->list_node);
t->dev = dev;
T3C_DATA(dev) = t;
dev->recv = process_rx;
dev->neigh_update = t3_l2t_update;
/* Register netevent handler once */
if (list_empty(&adapter_list))
register_netevent_notifier(&nb);
t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL);
t->release_list_incomplete = 0;
add_adapter(adapter);
return 0;
out_free_l2t:
t3_free_l2t(L2DATA(dev));
L2DATA(dev) = NULL;
out_free:
kfree(t);
return err;
}
void cxgb3_offload_deactivate(struct adapter *adapter)
{
struct t3cdev *tdev = &adapter->tdev;
struct t3c_data *t = T3C_DATA(tdev);
remove_adapter(adapter);
if (list_empty(&adapter_list))
unregister_netevent_notifier(&nb);
free_tid_maps(&t->tid_maps);
T3C_DATA(tdev) = NULL;
t3_free_l2t(L2DATA(tdev));
L2DATA(tdev) = NULL;
if (t->nofail_skb)
kfree_skb(t->nofail_skb);
kfree(t);
}
static inline void register_tdev(struct t3cdev *tdev)
{
static int unit;
mutex_lock(&cxgb3_db_lock);
snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
mutex_unlock(&cxgb3_db_lock);
}
static inline void unregister_tdev(struct t3cdev *tdev)
{
mutex_lock(&cxgb3_db_lock);
list_del(&tdev->ofld_dev_list);
mutex_unlock(&cxgb3_db_lock);
}
static inline int adap2type(struct adapter *adapter)
{
int type = 0;
switch (adapter->params.rev) {
case T3_REV_A:
type = T3A;
break;
case T3_REV_B:
case T3_REV_B2:
type = T3B;
break;
case T3_REV_C:
type = T3C;
break;
}
return type;
}
void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
{
struct t3cdev *tdev = &adapter->tdev;
INIT_LIST_HEAD(&tdev->ofld_dev_list);
cxgb3_set_dummy_ops(tdev);
tdev->send = t3_offload_tx;
tdev->ctl = cxgb_offload_ctl;
tdev->type = adap2type(adapter);
register_tdev(tdev);
}
void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
{
struct t3cdev *tdev = &adapter->tdev;
tdev->recv = NULL;
tdev->neigh_update = NULL;
unregister_tdev(tdev);
}
void __init cxgb3_offload_init(void)
{
int i;
for (i = 0; i < NUM_CPL_CMDS; ++i)
cpl_handlers[i] = do_bad_cpl;
t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
}