1
linux/drivers/char/hpet.c
Clemens Ladisch ba3f213f8a [PATCH] HPET: make frequency calculations 32 bit safe
On 32-bit architectures, the multiplication in the argument for
hpet_time_div() often overflows.  In the typical case of a 14.32 MHz timer,
this happens when the desired frequency exceeds 61 Hz.

To avoid this multiplication, we can precompute and store the hardware
timer frequency, instead of the period, in the device structure, which
leaves us with a simple division when computing the number of timer ticks.

As a side effect, this also removes a theoretical bug where the timer
interpolator's frequency would be computed as a 32-bit value even if the
HPET frequency is greater than 2^32 Hz (the HPET spec allows up to 10 GHz).

Signed-off-by: Clemens Ladisch <clemens@ladisch.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2005-10-30 17:37:29 -08:00

1007 lines
21 KiB
C

/*
* Intel & MS High Precision Event Timer Implementation.
*
* Copyright (C) 2003 Intel Corporation
* Venki Pallipadi
* (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
* Bob Picco <robert.picco@hp.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/config.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/miscdevice.h>
#include <linux/major.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/spinlock.h>
#include <linux/sysctl.h>
#include <linux/wait.h>
#include <linux/bcd.h>
#include <linux/seq_file.h>
#include <linux/bitops.h>
#include <asm/current.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/div64.h>
#include <linux/acpi.h>
#include <acpi/acpi_bus.h>
#include <linux/hpet.h>
/*
* The High Precision Event Timer driver.
* This driver is closely modelled after the rtc.c driver.
* http://www.intel.com/hardwaredesign/hpetspec.htm
*/
#define HPET_USER_FREQ (64)
#define HPET_DRIFT (500)
static u32 hpet_ntimer, hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
/* A lock for concurrent access by app and isr hpet activity. */
static DEFINE_SPINLOCK(hpet_lock);
/* A lock for concurrent intermodule access to hpet and isr hpet activity. */
static DEFINE_SPINLOCK(hpet_task_lock);
#define HPET_DEV_NAME (7)
struct hpet_dev {
struct hpets *hd_hpets;
struct hpet __iomem *hd_hpet;
struct hpet_timer __iomem *hd_timer;
unsigned long hd_ireqfreq;
unsigned long hd_irqdata;
wait_queue_head_t hd_waitqueue;
struct fasync_struct *hd_async_queue;
struct hpet_task *hd_task;
unsigned int hd_flags;
unsigned int hd_irq;
unsigned int hd_hdwirq;
char hd_name[HPET_DEV_NAME];
};
struct hpets {
struct hpets *hp_next;
struct hpet __iomem *hp_hpet;
unsigned long hp_hpet_phys;
struct time_interpolator *hp_interpolator;
unsigned long long hp_tick_freq;
unsigned long hp_delta;
unsigned int hp_ntimer;
unsigned int hp_which;
struct hpet_dev hp_dev[1];
};
static struct hpets *hpets;
#define HPET_OPEN 0x0001
#define HPET_IE 0x0002 /* interrupt enabled */
#define HPET_PERIODIC 0x0004
#if BITS_PER_LONG == 64
#define write_counter(V, MC) writeq(V, MC)
#define read_counter(MC) readq(MC)
#else
#define write_counter(V, MC) writel(V, MC)
#define read_counter(MC) readl(MC)
#endif
#ifndef readq
static inline unsigned long long readq(void __iomem *addr)
{
return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
}
#endif
#ifndef writeq
static inline void writeq(unsigned long long v, void __iomem *addr)
{
writel(v & 0xffffffff, addr);
writel(v >> 32, addr + 4);
}
#endif
static irqreturn_t hpet_interrupt(int irq, void *data, struct pt_regs *regs)
{
struct hpet_dev *devp;
unsigned long isr;
devp = data;
spin_lock(&hpet_lock);
devp->hd_irqdata++;
/*
* For non-periodic timers, increment the accumulator.
* This has the effect of treating non-periodic like periodic.
*/
if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
unsigned long m, t;
t = devp->hd_ireqfreq;
m = read_counter(&devp->hd_hpet->hpet_mc);
write_counter(t + m + devp->hd_hpets->hp_delta,
&devp->hd_timer->hpet_compare);
}
isr = (1 << (devp - devp->hd_hpets->hp_dev));
writeq(isr, &devp->hd_hpet->hpet_isr);
spin_unlock(&hpet_lock);
spin_lock(&hpet_task_lock);
if (devp->hd_task)
devp->hd_task->ht_func(devp->hd_task->ht_data);
spin_unlock(&hpet_task_lock);
wake_up_interruptible(&devp->hd_waitqueue);
kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
return IRQ_HANDLED;
}
static int hpet_open(struct inode *inode, struct file *file)
{
struct hpet_dev *devp;
struct hpets *hpetp;
int i;
if (file->f_mode & FMODE_WRITE)
return -EINVAL;
spin_lock_irq(&hpet_lock);
for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
for (i = 0; i < hpetp->hp_ntimer; i++)
if (hpetp->hp_dev[i].hd_flags & HPET_OPEN
|| hpetp->hp_dev[i].hd_task)
continue;
else {
devp = &hpetp->hp_dev[i];
break;
}
if (!devp) {
spin_unlock_irq(&hpet_lock);
return -EBUSY;
}
file->private_data = devp;
devp->hd_irqdata = 0;
devp->hd_flags |= HPET_OPEN;
spin_unlock_irq(&hpet_lock);
return 0;
}
static ssize_t
hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long data;
ssize_t retval;
struct hpet_dev *devp;
devp = file->private_data;
if (!devp->hd_ireqfreq)
return -EIO;
if (count < sizeof(unsigned long))
return -EINVAL;
add_wait_queue(&devp->hd_waitqueue, &wait);
for ( ; ; ) {
set_current_state(TASK_INTERRUPTIBLE);
spin_lock_irq(&hpet_lock);
data = devp->hd_irqdata;
devp->hd_irqdata = 0;
spin_unlock_irq(&hpet_lock);
if (data)
break;
else if (file->f_flags & O_NONBLOCK) {
retval = -EAGAIN;
goto out;
} else if (signal_pending(current)) {
retval = -ERESTARTSYS;
goto out;
}
schedule();
}
retval = put_user(data, (unsigned long __user *)buf);
if (!retval)
retval = sizeof(unsigned long);
out:
__set_current_state(TASK_RUNNING);
remove_wait_queue(&devp->hd_waitqueue, &wait);
return retval;
}
static unsigned int hpet_poll(struct file *file, poll_table * wait)
{
unsigned long v;
struct hpet_dev *devp;
devp = file->private_data;
if (!devp->hd_ireqfreq)
return 0;
poll_wait(file, &devp->hd_waitqueue, wait);
spin_lock_irq(&hpet_lock);
v = devp->hd_irqdata;
spin_unlock_irq(&hpet_lock);
if (v != 0)
return POLLIN | POLLRDNORM;
return 0;
}
static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
{
#ifdef CONFIG_HPET_MMAP
struct hpet_dev *devp;
unsigned long addr;
if (((vma->vm_end - vma->vm_start) != PAGE_SIZE) || vma->vm_pgoff)
return -EINVAL;
devp = file->private_data;
addr = devp->hd_hpets->hp_hpet_phys;
if (addr & (PAGE_SIZE - 1))
return -ENOSYS;
vma->vm_flags |= VM_IO;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
PAGE_SIZE, vma->vm_page_prot)) {
printk(KERN_ERR "remap_pfn_range failed in hpet.c\n");
return -EAGAIN;
}
return 0;
#else
return -ENOSYS;
#endif
}
static int hpet_fasync(int fd, struct file *file, int on)
{
struct hpet_dev *devp;
devp = file->private_data;
if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
return 0;
else
return -EIO;
}
static int hpet_release(struct inode *inode, struct file *file)
{
struct hpet_dev *devp;
struct hpet_timer __iomem *timer;
int irq = 0;
devp = file->private_data;
timer = devp->hd_timer;
spin_lock_irq(&hpet_lock);
writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
&timer->hpet_config);
irq = devp->hd_irq;
devp->hd_irq = 0;
devp->hd_ireqfreq = 0;
if (devp->hd_flags & HPET_PERIODIC
&& readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
unsigned long v;
v = readq(&timer->hpet_config);
v ^= Tn_TYPE_CNF_MASK;
writeq(v, &timer->hpet_config);
}
devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
spin_unlock_irq(&hpet_lock);
if (irq)
free_irq(irq, devp);
if (file->f_flags & FASYNC)
hpet_fasync(-1, file, 0);
file->private_data = NULL;
return 0;
}
static int hpet_ioctl_common(struct hpet_dev *, int, unsigned long, int);
static int
hpet_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
unsigned long arg)
{
struct hpet_dev *devp;
devp = file->private_data;
return hpet_ioctl_common(devp, cmd, arg, 0);
}
static int hpet_ioctl_ieon(struct hpet_dev *devp)
{
struct hpet_timer __iomem *timer;
struct hpet __iomem *hpet;
struct hpets *hpetp;
int irq;
unsigned long g, v, t, m;
unsigned long flags, isr;
timer = devp->hd_timer;
hpet = devp->hd_hpet;
hpetp = devp->hd_hpets;
if (!devp->hd_ireqfreq)
return -EIO;
v = readq(&timer->hpet_config);
spin_lock_irq(&hpet_lock);
if (devp->hd_flags & HPET_IE) {
spin_unlock_irq(&hpet_lock);
return -EBUSY;
}
devp->hd_flags |= HPET_IE;
spin_unlock_irq(&hpet_lock);
t = readq(&timer->hpet_config);
irq = devp->hd_hdwirq;
if (irq) {
sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
if (request_irq
(irq, hpet_interrupt, SA_INTERRUPT, devp->hd_name, (void *)devp)) {
printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
irq = 0;
}
}
if (irq == 0) {
spin_lock_irq(&hpet_lock);
devp->hd_flags ^= HPET_IE;
spin_unlock_irq(&hpet_lock);
return -EIO;
}
devp->hd_irq = irq;
t = devp->hd_ireqfreq;
v = readq(&timer->hpet_config);
g = v | Tn_INT_ENB_CNF_MASK;
if (devp->hd_flags & HPET_PERIODIC) {
write_counter(t, &timer->hpet_compare);
g |= Tn_TYPE_CNF_MASK;
v |= Tn_TYPE_CNF_MASK;
writeq(v, &timer->hpet_config);
v |= Tn_VAL_SET_CNF_MASK;
writeq(v, &timer->hpet_config);
local_irq_save(flags);
m = read_counter(&hpet->hpet_mc);
write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
} else {
local_irq_save(flags);
m = read_counter(&hpet->hpet_mc);
write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
}
isr = (1 << (devp - hpets->hp_dev));
writeq(isr, &hpet->hpet_isr);
writeq(g, &timer->hpet_config);
local_irq_restore(flags);
return 0;
}
/* converts Hz to number of timer ticks */
static inline unsigned long hpet_time_div(struct hpets *hpets,
unsigned long dis)
{
unsigned long long m;
m = hpets->hp_tick_freq + (dis >> 1);
do_div(m, dis);
return (unsigned long)m;
}
static int
hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg, int kernel)
{
struct hpet_timer __iomem *timer;
struct hpet __iomem *hpet;
struct hpets *hpetp;
int err;
unsigned long v;
switch (cmd) {
case HPET_IE_OFF:
case HPET_INFO:
case HPET_EPI:
case HPET_DPI:
case HPET_IRQFREQ:
timer = devp->hd_timer;
hpet = devp->hd_hpet;
hpetp = devp->hd_hpets;
break;
case HPET_IE_ON:
return hpet_ioctl_ieon(devp);
default:
return -EINVAL;
}
err = 0;
switch (cmd) {
case HPET_IE_OFF:
if ((devp->hd_flags & HPET_IE) == 0)
break;
v = readq(&timer->hpet_config);
v &= ~Tn_INT_ENB_CNF_MASK;
writeq(v, &timer->hpet_config);
if (devp->hd_irq) {
free_irq(devp->hd_irq, devp);
devp->hd_irq = 0;
}
devp->hd_flags ^= HPET_IE;
break;
case HPET_INFO:
{
struct hpet_info info;
info.hi_ireqfreq = hpet_time_div(hpetp,
devp->hd_ireqfreq);
info.hi_flags =
readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
info.hi_hpet = devp->hd_hpets->hp_which;
info.hi_timer = devp - devp->hd_hpets->hp_dev;
if (copy_to_user((void __user *)arg, &info, sizeof(info)))
err = -EFAULT;
break;
}
case HPET_EPI:
v = readq(&timer->hpet_config);
if ((v & Tn_PER_INT_CAP_MASK) == 0) {
err = -ENXIO;
break;
}
devp->hd_flags |= HPET_PERIODIC;
break;
case HPET_DPI:
v = readq(&timer->hpet_config);
if ((v & Tn_PER_INT_CAP_MASK) == 0) {
err = -ENXIO;
break;
}
if (devp->hd_flags & HPET_PERIODIC &&
readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
v = readq(&timer->hpet_config);
v ^= Tn_TYPE_CNF_MASK;
writeq(v, &timer->hpet_config);
}
devp->hd_flags &= ~HPET_PERIODIC;
break;
case HPET_IRQFREQ:
if (!kernel && (arg > hpet_max_freq) &&
!capable(CAP_SYS_RESOURCE)) {
err = -EACCES;
break;
}
if (!arg || (arg & (arg - 1))) {
err = -EINVAL;
break;
}
devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
}
return err;
}
static struct file_operations hpet_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = hpet_read,
.poll = hpet_poll,
.ioctl = hpet_ioctl,
.open = hpet_open,
.release = hpet_release,
.fasync = hpet_fasync,
.mmap = hpet_mmap,
};
EXPORT_SYMBOL(hpet_alloc);
EXPORT_SYMBOL(hpet_register);
EXPORT_SYMBOL(hpet_unregister);
EXPORT_SYMBOL(hpet_control);
int hpet_register(struct hpet_task *tp, int periodic)
{
unsigned int i;
u64 mask;
struct hpet_timer __iomem *timer;
struct hpet_dev *devp;
struct hpets *hpetp;
switch (periodic) {
case 1:
mask = Tn_PER_INT_CAP_MASK;
break;
case 0:
mask = 0;
break;
default:
return -EINVAL;
}
spin_lock_irq(&hpet_task_lock);
spin_lock(&hpet_lock);
for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
for (timer = hpetp->hp_hpet->hpet_timers, i = 0;
i < hpetp->hp_ntimer; i++, timer++) {
if ((readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK)
!= mask)
continue;
devp = &hpetp->hp_dev[i];
if (devp->hd_flags & HPET_OPEN || devp->hd_task) {
devp = NULL;
continue;
}
tp->ht_opaque = devp;
devp->hd_task = tp;
break;
}
spin_unlock(&hpet_lock);
spin_unlock_irq(&hpet_task_lock);
if (tp->ht_opaque)
return 0;
else
return -EBUSY;
}
static inline int hpet_tpcheck(struct hpet_task *tp)
{
struct hpet_dev *devp;
struct hpets *hpetp;
devp = tp->ht_opaque;
if (!devp)
return -ENXIO;
for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
if (devp >= hpetp->hp_dev
&& devp < (hpetp->hp_dev + hpetp->hp_ntimer)
&& devp->hd_hpet == hpetp->hp_hpet)
return 0;
return -ENXIO;
}
int hpet_unregister(struct hpet_task *tp)
{
struct hpet_dev *devp;
struct hpet_timer __iomem *timer;
int err;
if ((err = hpet_tpcheck(tp)))
return err;
spin_lock_irq(&hpet_task_lock);
spin_lock(&hpet_lock);
devp = tp->ht_opaque;
if (devp->hd_task != tp) {
spin_unlock(&hpet_lock);
spin_unlock_irq(&hpet_task_lock);
return -ENXIO;
}
timer = devp->hd_timer;
writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
&timer->hpet_config);
devp->hd_flags &= ~(HPET_IE | HPET_PERIODIC);
devp->hd_task = NULL;
spin_unlock(&hpet_lock);
spin_unlock_irq(&hpet_task_lock);
return 0;
}
int hpet_control(struct hpet_task *tp, unsigned int cmd, unsigned long arg)
{
struct hpet_dev *devp;
int err;
if ((err = hpet_tpcheck(tp)))
return err;
spin_lock_irq(&hpet_lock);
devp = tp->ht_opaque;
if (devp->hd_task != tp) {
spin_unlock_irq(&hpet_lock);
return -ENXIO;
}
spin_unlock_irq(&hpet_lock);
return hpet_ioctl_common(devp, cmd, arg, 1);
}
static ctl_table hpet_table[] = {
{
.ctl_name = 1,
.procname = "max-user-freq",
.data = &hpet_max_freq,
.maxlen = sizeof(int),
.mode = 0644,
.proc_handler = &proc_dointvec,
},
{.ctl_name = 0}
};
static ctl_table hpet_root[] = {
{
.ctl_name = 1,
.procname = "hpet",
.maxlen = 0,
.mode = 0555,
.child = hpet_table,
},
{.ctl_name = 0}
};
static ctl_table dev_root[] = {
{
.ctl_name = CTL_DEV,
.procname = "dev",
.maxlen = 0,
.mode = 0555,
.child = hpet_root,
},
{.ctl_name = 0}
};
static struct ctl_table_header *sysctl_header;
static void hpet_register_interpolator(struct hpets *hpetp)
{
#ifdef CONFIG_TIME_INTERPOLATION
struct time_interpolator *ti;
ti = kmalloc(sizeof(*ti), GFP_KERNEL);
if (!ti)
return;
memset(ti, 0, sizeof(*ti));
ti->source = TIME_SOURCE_MMIO64;
ti->shift = 10;
ti->addr = &hpetp->hp_hpet->hpet_mc;
ti->frequency = hpetp->hp_tick_freq;
ti->drift = HPET_DRIFT;
ti->mask = -1;
hpetp->hp_interpolator = ti;
register_time_interpolator(ti);
#endif
}
/*
* Adjustment for when arming the timer with
* initial conditions. That is, main counter
* ticks expired before interrupts are enabled.
*/
#define TICK_CALIBRATE (1000UL)
static unsigned long hpet_calibrate(struct hpets *hpetp)
{
struct hpet_timer __iomem *timer = NULL;
unsigned long t, m, count, i, flags, start;
struct hpet_dev *devp;
int j;
struct hpet __iomem *hpet;
for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
if ((devp->hd_flags & HPET_OPEN) == 0) {
timer = devp->hd_timer;
break;
}
if (!timer)
return 0;
hpet = hpets->hp_hpet;
t = read_counter(&timer->hpet_compare);
i = 0;
count = hpet_time_div(hpetp, TICK_CALIBRATE);
local_irq_save(flags);
start = read_counter(&hpet->hpet_mc);
do {
m = read_counter(&hpet->hpet_mc);
write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
} while (i++, (m - start) < count);
local_irq_restore(flags);
return (m - start) / i;
}
int hpet_alloc(struct hpet_data *hdp)
{
u64 cap, mcfg;
struct hpet_dev *devp;
u32 i, ntimer;
struct hpets *hpetp;
size_t siz;
struct hpet __iomem *hpet;
static struct hpets *last = (struct hpets *)0;
unsigned long ns, period;
unsigned long long temp;
/*
* hpet_alloc can be called by platform dependent code.
* if platform dependent code has allocated the hpet
* ACPI also reports hpet, then we catch it here.
*/
for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
if (hpetp->hp_hpet == hdp->hd_address)
return 0;
siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
sizeof(struct hpet_dev));
hpetp = kmalloc(siz, GFP_KERNEL);
if (!hpetp)
return -ENOMEM;
memset(hpetp, 0, siz);
hpetp->hp_which = hpet_nhpet++;
hpetp->hp_hpet = hdp->hd_address;
hpetp->hp_hpet_phys = hdp->hd_phys_address;
hpetp->hp_ntimer = hdp->hd_nirqs;
for (i = 0; i < hdp->hd_nirqs; i++)
hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
hpet = hpetp->hp_hpet;
cap = readq(&hpet->hpet_cap);
ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
if (hpetp->hp_ntimer != ntimer) {
printk(KERN_WARNING "hpet: number irqs doesn't agree"
" with number of timers\n");
kfree(hpetp);
return -ENODEV;
}
if (last)
last->hp_next = hpetp;
else
hpets = hpetp;
last = hpetp;
period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
temp += period >> 1; /* round */
do_div(temp, period);
hpetp->hp_tick_freq = temp; /* ticks per second */
printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
hpetp->hp_which, hdp->hd_phys_address,
hpetp->hp_ntimer > 1 ? "s" : "");
for (i = 0; i < hpetp->hp_ntimer; i++)
printk("%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
printk("\n");
ns = period / 1000000; /* convert to nanoseconds, 10^-9 */
printk(KERN_INFO "hpet%d: %ldns tick, %d %d-bit timers\n",
hpetp->hp_which, ns, hpetp->hp_ntimer,
cap & HPET_COUNTER_SIZE_MASK ? 64 : 32);
mcfg = readq(&hpet->hpet_config);
if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
write_counter(0L, &hpet->hpet_mc);
mcfg |= HPET_ENABLE_CNF_MASK;
writeq(mcfg, &hpet->hpet_config);
}
for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer;
i++, hpet_ntimer++, devp++) {
unsigned long v;
struct hpet_timer __iomem *timer;
timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
v = readq(&timer->hpet_config);
devp->hd_hpets = hpetp;
devp->hd_hpet = hpet;
devp->hd_timer = timer;
/*
* If the timer was reserved by platform code,
* then make timer unavailable for opens.
*/
if (hdp->hd_state & (1 << i)) {
devp->hd_flags = HPET_OPEN;
continue;
}
init_waitqueue_head(&devp->hd_waitqueue);
}
hpetp->hp_delta = hpet_calibrate(hpetp);
hpet_register_interpolator(hpetp);
return 0;
}
static acpi_status hpet_resources(struct acpi_resource *res, void *data)
{
struct hpet_data *hdp;
acpi_status status;
struct acpi_resource_address64 addr;
struct hpets *hpetp;
hdp = data;
status = acpi_resource_to_address64(res, &addr);
if (ACPI_SUCCESS(status)) {
unsigned long size;
size = addr.max_address_range - addr.min_address_range + 1;
hdp->hd_phys_address = addr.min_address_range;
hdp->hd_address = ioremap(addr.min_address_range, size);
for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
if (hpetp->hp_hpet == hdp->hd_address)
return -EBUSY;
} else if (res->id == ACPI_RSTYPE_EXT_IRQ) {
struct acpi_resource_ext_irq *irqp;
int i;
irqp = &res->data.extended_irq;
if (irqp->number_of_interrupts > 0) {
hdp->hd_nirqs = irqp->number_of_interrupts;
for (i = 0; i < hdp->hd_nirqs; i++) {
int rc =
acpi_register_gsi(irqp->interrupts[i],
irqp->edge_level,
irqp->active_high_low);
if (rc < 0)
return AE_ERROR;
hdp->hd_irq[i] = rc;
}
}
}
return AE_OK;
}
static int hpet_acpi_add(struct acpi_device *device)
{
acpi_status result;
struct hpet_data data;
memset(&data, 0, sizeof(data));
result =
acpi_walk_resources(device->handle, METHOD_NAME__CRS,
hpet_resources, &data);
if (ACPI_FAILURE(result))
return -ENODEV;
if (!data.hd_address || !data.hd_nirqs) {
printk("%s: no address or irqs in _CRS\n", __FUNCTION__);
return -ENODEV;
}
return hpet_alloc(&data);
}
static int hpet_acpi_remove(struct acpi_device *device, int type)
{
/* XXX need to unregister interpolator, dealloc mem, etc */
return -EINVAL;
}
static struct acpi_driver hpet_acpi_driver = {
.name = "hpet",
.ids = "PNP0103",
.ops = {
.add = hpet_acpi_add,
.remove = hpet_acpi_remove,
},
};
static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
static int __init hpet_init(void)
{
int result;
result = misc_register(&hpet_misc);
if (result < 0)
return -ENODEV;
sysctl_header = register_sysctl_table(dev_root, 0);
result = acpi_bus_register_driver(&hpet_acpi_driver);
if (result < 0) {
if (sysctl_header)
unregister_sysctl_table(sysctl_header);
misc_deregister(&hpet_misc);
return result;
}
return 0;
}
static void __exit hpet_exit(void)
{
acpi_bus_unregister_driver(&hpet_acpi_driver);
if (sysctl_header)
unregister_sysctl_table(sysctl_header);
misc_deregister(&hpet_misc);
return;
}
module_init(hpet_init);
module_exit(hpet_exit);
MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
MODULE_LICENSE("GPL");