1
linux/fs/ntfs3/index.c
Konstantin Komarov 0e8235d28f
fs/ntfs3: Check fields while reading
Added new functions index_hdr_check and index_buf_check.
Now we check all stuff for correctness while reading from disk.
Also fixed bug with stale nfs data.

Reported-by: van fantasy <g1042620637@gmail.com>
Signed-off-by: Konstantin Komarov <almaz.alexandrovich@paragon-software.com>
2022-11-14 19:50:47 +03:00

2661 lines
56 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
*
* Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
*
*/
#include <linux/blkdev.h>
#include <linux/buffer_head.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include "debug.h"
#include "ntfs.h"
#include "ntfs_fs.h"
static const struct INDEX_NAMES {
const __le16 *name;
u8 name_len;
} s_index_names[INDEX_MUTEX_TOTAL] = {
{ I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
{ SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
{ SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) },
};
/*
* cmp_fnames - Compare two names in index.
*
* if l1 != 0
* Both names are little endian on-disk ATTR_FILE_NAME structs.
* else
* key1 - cpu_str, key2 - ATTR_FILE_NAME
*/
static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
const void *data)
{
const struct ATTR_FILE_NAME *f2 = key2;
const struct ntfs_sb_info *sbi = data;
const struct ATTR_FILE_NAME *f1;
u16 fsize2;
bool both_case;
if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
return -1;
fsize2 = fname_full_size(f2);
if (l2 < fsize2)
return -1;
both_case = f2->type != FILE_NAME_DOS && !sbi->options->nocase;
if (!l1) {
const struct le_str *s2 = (struct le_str *)&f2->name_len;
/*
* If names are equal (case insensitive)
* try to compare it case sensitive.
*/
return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
}
f1 = key1;
return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
sbi->upcase, both_case);
}
/*
* cmp_uint - $SII of $Secure and $Q of Quota
*/
static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
const void *data)
{
const u32 *k1 = key1;
const u32 *k2 = key2;
if (l2 < sizeof(u32))
return -1;
if (*k1 < *k2)
return -1;
if (*k1 > *k2)
return 1;
return 0;
}
/*
* cmp_sdh - $SDH of $Secure
*/
static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
const void *data)
{
const struct SECURITY_KEY *k1 = key1;
const struct SECURITY_KEY *k2 = key2;
u32 t1, t2;
if (l2 < sizeof(struct SECURITY_KEY))
return -1;
t1 = le32_to_cpu(k1->hash);
t2 = le32_to_cpu(k2->hash);
/* First value is a hash value itself. */
if (t1 < t2)
return -1;
if (t1 > t2)
return 1;
/* Second value is security Id. */
if (data) {
t1 = le32_to_cpu(k1->sec_id);
t2 = le32_to_cpu(k2->sec_id);
if (t1 < t2)
return -1;
if (t1 > t2)
return 1;
}
return 0;
}
/*
* cmp_uints - $O of ObjId and "$R" for Reparse.
*/
static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
const void *data)
{
const __le32 *k1 = key1;
const __le32 *k2 = key2;
size_t count;
if ((size_t)data == 1) {
/*
* ni_delete_all -> ntfs_remove_reparse ->
* delete all with this reference.
* k1, k2 - pointers to REPARSE_KEY
*/
k1 += 1; // Skip REPARSE_KEY.ReparseTag
k2 += 1; // Skip REPARSE_KEY.ReparseTag
if (l2 <= sizeof(int))
return -1;
l2 -= sizeof(int);
if (l1 <= sizeof(int))
return 1;
l1 -= sizeof(int);
}
if (l2 < sizeof(int))
return -1;
for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
u32 t1 = le32_to_cpu(*k1);
u32 t2 = le32_to_cpu(*k2);
if (t1 > t2)
return 1;
if (t1 < t2)
return -1;
}
if (l1 > l2)
return 1;
if (l1 < l2)
return -1;
return 0;
}
static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
{
switch (root->type) {
case ATTR_NAME:
if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
return &cmp_fnames;
break;
case ATTR_ZERO:
switch (root->rule) {
case NTFS_COLLATION_TYPE_UINT:
return &cmp_uint;
case NTFS_COLLATION_TYPE_SECURITY_HASH:
return &cmp_sdh;
case NTFS_COLLATION_TYPE_UINTS:
return &cmp_uints;
default:
break;
}
break;
default:
break;
}
return NULL;
}
struct bmp_buf {
struct ATTRIB *b;
struct mft_inode *mi;
struct buffer_head *bh;
ulong *buf;
size_t bit;
u32 nbits;
u64 new_valid;
};
static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
size_t bit, struct bmp_buf *bbuf)
{
struct ATTRIB *b;
size_t data_size, valid_size, vbo, off = bit >> 3;
struct ntfs_sb_info *sbi = ni->mi.sbi;
CLST vcn = off >> sbi->cluster_bits;
struct ATTR_LIST_ENTRY *le = NULL;
struct buffer_head *bh;
struct super_block *sb;
u32 blocksize;
const struct INDEX_NAMES *in = &s_index_names[indx->type];
bbuf->bh = NULL;
b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
&vcn, &bbuf->mi);
bbuf->b = b;
if (!b)
return -EINVAL;
if (!b->non_res) {
data_size = le32_to_cpu(b->res.data_size);
if (off >= data_size)
return -EINVAL;
bbuf->buf = (ulong *)resident_data(b);
bbuf->bit = 0;
bbuf->nbits = data_size * 8;
return 0;
}
data_size = le64_to_cpu(b->nres.data_size);
if (WARN_ON(off >= data_size)) {
/* Looks like filesystem error. */
return -EINVAL;
}
valid_size = le64_to_cpu(b->nres.valid_size);
bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
if (!bh)
return -EIO;
if (IS_ERR(bh))
return PTR_ERR(bh);
bbuf->bh = bh;
if (buffer_locked(bh))
__wait_on_buffer(bh);
lock_buffer(bh);
sb = sbi->sb;
blocksize = sb->s_blocksize;
vbo = off & ~(size_t)sbi->block_mask;
bbuf->new_valid = vbo + blocksize;
if (bbuf->new_valid <= valid_size)
bbuf->new_valid = 0;
else if (bbuf->new_valid > data_size)
bbuf->new_valid = data_size;
if (vbo >= valid_size) {
memset(bh->b_data, 0, blocksize);
} else if (vbo + blocksize > valid_size) {
u32 voff = valid_size & sbi->block_mask;
memset(bh->b_data + voff, 0, blocksize - voff);
}
bbuf->buf = (ulong *)bh->b_data;
bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
bbuf->nbits = 8 * blocksize;
return 0;
}
static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
{
struct buffer_head *bh = bbuf->bh;
struct ATTRIB *b = bbuf->b;
if (!bh) {
if (b && !b->non_res && dirty)
bbuf->mi->dirty = true;
return;
}
if (!dirty)
goto out;
if (bbuf->new_valid) {
b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
bbuf->mi->dirty = true;
}
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
out:
unlock_buffer(bh);
put_bh(bh);
}
/*
* indx_mark_used - Mark the bit @bit as used.
*/
static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
size_t bit)
{
int err;
struct bmp_buf bbuf;
err = bmp_buf_get(indx, ni, bit, &bbuf);
if (err)
return err;
__set_bit_le(bit - bbuf.bit, bbuf.buf);
bmp_buf_put(&bbuf, true);
return 0;
}
/*
* indx_mark_free - Mark the bit @bit as free.
*/
static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
size_t bit)
{
int err;
struct bmp_buf bbuf;
err = bmp_buf_get(indx, ni, bit, &bbuf);
if (err)
return err;
__clear_bit_le(bit - bbuf.bit, bbuf.buf);
bmp_buf_put(&bbuf, true);
return 0;
}
/*
* scan_nres_bitmap
*
* If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
* inode is shared locked and no ni_lock.
* Use rw_semaphore for read/write access to bitmap_run.
*/
static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
struct ntfs_index *indx, size_t from,
bool (*fn)(const ulong *buf, u32 bit, u32 bits,
size_t *ret),
size_t *ret)
{
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct super_block *sb = sbi->sb;
struct runs_tree *run = &indx->bitmap_run;
struct rw_semaphore *lock = &indx->run_lock;
u32 nbits = sb->s_blocksize * 8;
u32 blocksize = sb->s_blocksize;
u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
u64 data_size = le64_to_cpu(bitmap->nres.data_size);
sector_t eblock = bytes_to_block(sb, data_size);
size_t vbo = from >> 3;
sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
sector_t vblock = vbo >> sb->s_blocksize_bits;
sector_t blen, block;
CLST lcn, clen, vcn, vcn_next;
size_t idx;
struct buffer_head *bh;
bool ok;
*ret = MINUS_ONE_T;
if (vblock >= eblock)
return 0;
from &= nbits - 1;
vcn = vbo >> sbi->cluster_bits;
down_read(lock);
ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
up_read(lock);
next_run:
if (!ok) {
int err;
const struct INDEX_NAMES *name = &s_index_names[indx->type];
down_write(lock);
err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
name->name_len, run, vcn);
up_write(lock);
if (err)
return err;
down_read(lock);
ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
up_read(lock);
if (!ok)
return -EINVAL;
}
blen = (sector_t)clen * sbi->blocks_per_cluster;
block = (sector_t)lcn * sbi->blocks_per_cluster;
for (; blk < blen; blk++, from = 0) {
bh = ntfs_bread(sb, block + blk);
if (!bh)
return -EIO;
vbo = (u64)vblock << sb->s_blocksize_bits;
if (vbo >= valid_size) {
memset(bh->b_data, 0, blocksize);
} else if (vbo + blocksize > valid_size) {
u32 voff = valid_size & sbi->block_mask;
memset(bh->b_data + voff, 0, blocksize - voff);
}
if (vbo + blocksize > data_size)
nbits = 8 * (data_size - vbo);
ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret)
: false;
put_bh(bh);
if (ok) {
*ret += 8 * vbo;
return 0;
}
if (++vblock >= eblock) {
*ret = MINUS_ONE_T;
return 0;
}
}
blk = 0;
vcn_next = vcn + clen;
down_read(lock);
ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
if (!ok)
vcn = vcn_next;
up_read(lock);
goto next_run;
}
static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
{
size_t pos = find_next_zero_bit_le(buf, bits, bit);
if (pos >= bits)
return false;
*ret = pos;
return true;
}
/*
* indx_find_free - Look for free bit.
*
* Return: -1 if no free bits.
*/
static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
size_t *bit, struct ATTRIB **bitmap)
{
struct ATTRIB *b;
struct ATTR_LIST_ENTRY *le = NULL;
const struct INDEX_NAMES *in = &s_index_names[indx->type];
int err;
b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
NULL, NULL);
if (!b)
return -ENOENT;
*bitmap = b;
*bit = MINUS_ONE_T;
if (!b->non_res) {
u32 nbits = 8 * le32_to_cpu(b->res.data_size);
size_t pos = find_next_zero_bit_le(resident_data(b), nbits, 0);
if (pos < nbits)
*bit = pos;
} else {
err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
if (err)
return err;
}
return 0;
}
static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
{
size_t pos = find_next_bit_le(buf, bits, bit);
if (pos >= bits)
return false;
*ret = pos;
return true;
}
/*
* indx_used_bit - Look for used bit.
*
* Return: MINUS_ONE_T if no used bits.
*/
int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
{
struct ATTRIB *b;
struct ATTR_LIST_ENTRY *le = NULL;
size_t from = *bit;
const struct INDEX_NAMES *in = &s_index_names[indx->type];
int err;
b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
NULL, NULL);
if (!b)
return -ENOENT;
*bit = MINUS_ONE_T;
if (!b->non_res) {
u32 nbits = le32_to_cpu(b->res.data_size) * 8;
size_t pos = find_next_bit_le(resident_data(b), nbits, from);
if (pos < nbits)
*bit = pos;
} else {
err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
if (err)
return err;
}
return 0;
}
/*
* hdr_find_split
*
* Find a point at which the index allocation buffer would like to be split.
* NOTE: This function should never return 'END' entry NULL returns on error.
*/
static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
{
size_t o;
const struct NTFS_DE *e = hdr_first_de(hdr);
u32 used_2 = le32_to_cpu(hdr->used) >> 1;
u16 esize;
if (!e || de_is_last(e))
return NULL;
esize = le16_to_cpu(e->size);
for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
const struct NTFS_DE *p = e;
e = Add2Ptr(hdr, o);
/* We must not return END entry. */
if (de_is_last(e))
return p;
esize = le16_to_cpu(e->size);
}
return e;
}
/*
* hdr_insert_head - Insert some entries at the beginning of the buffer.
*
* It is used to insert entries into a newly-created buffer.
*/
static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
const void *ins, u32 ins_bytes)
{
u32 to_move;
struct NTFS_DE *e = hdr_first_de(hdr);
u32 used = le32_to_cpu(hdr->used);
if (!e)
return NULL;
/* Now we just make room for the inserted entries and jam it in. */
to_move = used - le32_to_cpu(hdr->de_off);
memmove(Add2Ptr(e, ins_bytes), e, to_move);
memcpy(e, ins, ins_bytes);
hdr->used = cpu_to_le32(used + ins_bytes);
return e;
}
/*
* index_hdr_check
*
* return true if INDEX_HDR is valid
*/
static bool index_hdr_check(const struct INDEX_HDR *hdr, u32 bytes)
{
u32 end = le32_to_cpu(hdr->used);
u32 tot = le32_to_cpu(hdr->total);
u32 off = le32_to_cpu(hdr->de_off);
if (!IS_ALIGNED(off, 8) || tot > bytes || end > tot ||
off + sizeof(struct NTFS_DE) > end) {
/* incorrect index buffer. */
return false;
}
return true;
}
/*
* index_buf_check
*
* return true if INDEX_BUFFER seems is valid
*/
static bool index_buf_check(const struct INDEX_BUFFER *ib, u32 bytes,
const CLST *vbn)
{
const struct NTFS_RECORD_HEADER *rhdr = &ib->rhdr;
u16 fo = le16_to_cpu(rhdr->fix_off);
u16 fn = le16_to_cpu(rhdr->fix_num);
if (bytes <= offsetof(struct INDEX_BUFFER, ihdr) ||
rhdr->sign != NTFS_INDX_SIGNATURE ||
fo < sizeof(struct INDEX_BUFFER)
/* Check index buffer vbn. */
|| (vbn && *vbn != le64_to_cpu(ib->vbn)) || (fo % sizeof(short)) ||
fo + fn * sizeof(short) >= bytes ||
fn != ((bytes >> SECTOR_SHIFT) + 1)) {
/* incorrect index buffer. */
return false;
}
return index_hdr_check(&ib->ihdr,
bytes - offsetof(struct INDEX_BUFFER, ihdr));
}
void fnd_clear(struct ntfs_fnd *fnd)
{
int i;
for (i = fnd->level - 1; i >= 0; i--) {
struct indx_node *n = fnd->nodes[i];
if (!n)
continue;
put_indx_node(n);
fnd->nodes[i] = NULL;
}
fnd->level = 0;
fnd->root_de = NULL;
}
static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
struct NTFS_DE *e)
{
int i = fnd->level;
if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
return -EINVAL;
fnd->nodes[i] = n;
fnd->de[i] = e;
fnd->level += 1;
return 0;
}
static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
{
struct indx_node *n;
int i = fnd->level;
i -= 1;
n = fnd->nodes[i];
fnd->nodes[i] = NULL;
fnd->level = i;
return n;
}
static bool fnd_is_empty(struct ntfs_fnd *fnd)
{
if (!fnd->level)
return !fnd->root_de;
return !fnd->de[fnd->level - 1];
}
/*
* hdr_find_e - Locate an entry the index buffer.
*
* If no matching entry is found, it returns the first entry which is greater
* than the desired entry If the search key is greater than all the entries the
* buffer, it returns the 'end' entry. This function does a binary search of the
* current index buffer, for the first entry that is <= to the search value.
*
* Return: NULL if error.
*/
static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
const struct INDEX_HDR *hdr, const void *key,
size_t key_len, const void *ctx, int *diff)
{
struct NTFS_DE *e, *found = NULL;
NTFS_CMP_FUNC cmp = indx->cmp;
int min_idx = 0, mid_idx, max_idx = 0;
int diff2;
int table_size = 8;
u32 e_size, e_key_len;
u32 end = le32_to_cpu(hdr->used);
u32 off = le32_to_cpu(hdr->de_off);
u16 offs[128];
fill_table:
if (off + sizeof(struct NTFS_DE) > end)
return NULL;
e = Add2Ptr(hdr, off);
e_size = le16_to_cpu(e->size);
if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
return NULL;
if (!de_is_last(e)) {
offs[max_idx] = off;
off += e_size;
max_idx++;
if (max_idx < table_size)
goto fill_table;
max_idx--;
}
binary_search:
e_key_len = le16_to_cpu(e->key_size);
diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
if (diff2 > 0) {
if (found) {
min_idx = mid_idx + 1;
} else {
if (de_is_last(e))
return NULL;
max_idx = 0;
table_size = min(table_size * 2,
(int)ARRAY_SIZE(offs));
goto fill_table;
}
} else if (diff2 < 0) {
if (found)
max_idx = mid_idx - 1;
else
max_idx--;
found = e;
} else {
*diff = 0;
return e;
}
if (min_idx > max_idx) {
*diff = -1;
return found;
}
mid_idx = (min_idx + max_idx) >> 1;
e = Add2Ptr(hdr, offs[mid_idx]);
goto binary_search;
}
/*
* hdr_insert_de - Insert an index entry into the buffer.
*
* 'before' should be a pointer previously returned from hdr_find_e.
*/
static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
struct INDEX_HDR *hdr,
const struct NTFS_DE *de,
struct NTFS_DE *before, const void *ctx)
{
int diff;
size_t off = PtrOffset(hdr, before);
u32 used = le32_to_cpu(hdr->used);
u32 total = le32_to_cpu(hdr->total);
u16 de_size = le16_to_cpu(de->size);
/* First, check to see if there's enough room. */
if (used + de_size > total)
return NULL;
/* We know there's enough space, so we know we'll succeed. */
if (before) {
/* Check that before is inside Index. */
if (off >= used || off < le32_to_cpu(hdr->de_off) ||
off + le16_to_cpu(before->size) > total) {
return NULL;
}
goto ok;
}
/* No insert point is applied. Get it manually. */
before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
&diff);
if (!before)
return NULL;
off = PtrOffset(hdr, before);
ok:
/* Now we just make room for the entry and jam it in. */
memmove(Add2Ptr(before, de_size), before, used - off);
hdr->used = cpu_to_le32(used + de_size);
memcpy(before, de, de_size);
return before;
}
/*
* hdr_delete_de - Remove an entry from the index buffer.
*/
static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
struct NTFS_DE *re)
{
u32 used = le32_to_cpu(hdr->used);
u16 esize = le16_to_cpu(re->size);
u32 off = PtrOffset(hdr, re);
int bytes = used - (off + esize);
if (off >= used || esize < sizeof(struct NTFS_DE) ||
bytes < sizeof(struct NTFS_DE))
return NULL;
hdr->used = cpu_to_le32(used - esize);
memmove(re, Add2Ptr(re, esize), bytes);
return re;
}
void indx_clear(struct ntfs_index *indx)
{
run_close(&indx->alloc_run);
run_close(&indx->bitmap_run);
}
int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
const struct ATTRIB *attr, enum index_mutex_classed type)
{
u32 t32;
const struct INDEX_ROOT *root = resident_data(attr);
t32 = le32_to_cpu(attr->res.data_size);
if (t32 <= offsetof(struct INDEX_ROOT, ihdr) ||
!index_hdr_check(&root->ihdr,
t32 - offsetof(struct INDEX_ROOT, ihdr))) {
goto out;
}
/* Check root fields. */
if (!root->index_block_clst)
goto out;
indx->type = type;
indx->idx2vbn_bits = __ffs(root->index_block_clst);
t32 = le32_to_cpu(root->index_block_size);
indx->index_bits = blksize_bits(t32);
/* Check index record size. */
if (t32 < sbi->cluster_size) {
/* Index record is smaller than a cluster, use 512 blocks. */
if (t32 != root->index_block_clst * SECTOR_SIZE)
goto out;
/* Check alignment to a cluster. */
if ((sbi->cluster_size >> SECTOR_SHIFT) &
(root->index_block_clst - 1)) {
goto out;
}
indx->vbn2vbo_bits = SECTOR_SHIFT;
} else {
/* Index record must be a multiple of cluster size. */
if (t32 != root->index_block_clst << sbi->cluster_bits)
goto out;
indx->vbn2vbo_bits = sbi->cluster_bits;
}
init_rwsem(&indx->run_lock);
indx->cmp = get_cmp_func(root);
if (!indx->cmp)
goto out;
return 0;
out:
ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
return -EINVAL;
}
static struct indx_node *indx_new(struct ntfs_index *indx,
struct ntfs_inode *ni, CLST vbn,
const __le64 *sub_vbn)
{
int err;
struct NTFS_DE *e;
struct indx_node *r;
struct INDEX_HDR *hdr;
struct INDEX_BUFFER *index;
u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
u32 bytes = 1u << indx->index_bits;
u16 fn;
u32 eo;
r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
if (!r)
return ERR_PTR(-ENOMEM);
index = kzalloc(bytes, GFP_NOFS);
if (!index) {
kfree(r);
return ERR_PTR(-ENOMEM);
}
err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
if (err) {
kfree(index);
kfree(r);
return ERR_PTR(err);
}
/* Create header. */
index->rhdr.sign = NTFS_INDX_SIGNATURE;
index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
fn = (bytes >> SECTOR_SHIFT) + 1; // 9
index->rhdr.fix_num = cpu_to_le16(fn);
index->vbn = cpu_to_le64(vbn);
hdr = &index->ihdr;
eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
hdr->de_off = cpu_to_le32(eo);
e = Add2Ptr(hdr, eo);
if (sub_vbn) {
e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
hdr->used =
cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
de_set_vbn_le(e, *sub_vbn);
hdr->flags = 1;
} else {
e->size = cpu_to_le16(sizeof(struct NTFS_DE));
hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
e->flags = NTFS_IE_LAST;
}
hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
r->index = index;
return r;
}
struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
struct ATTRIB **attr, struct mft_inode **mi)
{
struct ATTR_LIST_ENTRY *le = NULL;
struct ATTRIB *a;
const struct INDEX_NAMES *in = &s_index_names[indx->type];
a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
mi);
if (!a)
return NULL;
if (attr)
*attr = a;
return resident_data_ex(a, sizeof(struct INDEX_ROOT));
}
static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
struct indx_node *node, int sync)
{
struct INDEX_BUFFER *ib = node->index;
return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
}
/*
* indx_read
*
* If ntfs_readdir calls this function
* inode is shared locked and no ni_lock.
* Use rw_semaphore for read/write access to alloc_run.
*/
int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
struct indx_node **node)
{
int err;
struct INDEX_BUFFER *ib;
struct runs_tree *run = &indx->alloc_run;
struct rw_semaphore *lock = &indx->run_lock;
u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
u32 bytes = 1u << indx->index_bits;
struct indx_node *in = *node;
const struct INDEX_NAMES *name;
if (!in) {
in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
if (!in)
return -ENOMEM;
} else {
nb_put(&in->nb);
}
ib = in->index;
if (!ib) {
ib = kmalloc(bytes, GFP_NOFS);
if (!ib) {
err = -ENOMEM;
goto out;
}
}
down_read(lock);
err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
up_read(lock);
if (!err)
goto ok;
if (err == -E_NTFS_FIXUP)
goto ok;
if (err != -ENOENT)
goto out;
name = &s_index_names[indx->type];
down_write(lock);
err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
run, vbo, vbo + bytes);
up_write(lock);
if (err)
goto out;
down_read(lock);
err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
up_read(lock);
if (err == -E_NTFS_FIXUP)
goto ok;
if (err)
goto out;
ok:
if (!index_buf_check(ib, bytes, &vbn)) {
ntfs_inode_err(&ni->vfs_inode, "directory corrupted");
ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
err = -EINVAL;
goto out;
}
if (err == -E_NTFS_FIXUP) {
ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
err = 0;
}
/* check for index header length */
if (offsetof(struct INDEX_BUFFER, ihdr) + ib->ihdr.used > bytes) {
err = -EINVAL;
goto out;
}
in->index = ib;
*node = in;
out:
if (ib != in->index)
kfree(ib);
if (*node != in) {
nb_put(&in->nb);
kfree(in);
}
return err;
}
/*
* indx_find - Scan NTFS directory for given entry.
*/
int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
const struct INDEX_ROOT *root, const void *key, size_t key_len,
const void *ctx, int *diff, struct NTFS_DE **entry,
struct ntfs_fnd *fnd)
{
int err;
struct NTFS_DE *e;
struct indx_node *node;
if (!root)
root = indx_get_root(&ni->dir, ni, NULL, NULL);
if (!root) {
/* Should not happen. */
return -EINVAL;
}
/* Check cache. */
e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
if (e && !de_is_last(e) &&
!(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
*entry = e;
*diff = 0;
return 0;
}
/* Soft finder reset. */
fnd_clear(fnd);
/* Lookup entry that is <= to the search value. */
e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff);
if (!e)
return -EINVAL;
fnd->root_de = e;
for (;;) {
node = NULL;
if (*diff >= 0 || !de_has_vcn_ex(e))
break;
/* Read next level. */
err = indx_read(indx, ni, de_get_vbn(e), &node);
if (err)
return err;
/* Lookup entry that is <= to the search value. */
e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
diff);
if (!e) {
put_indx_node(node);
return -EINVAL;
}
fnd_push(fnd, node, e);
}
*entry = e;
return 0;
}
int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
const struct INDEX_ROOT *root, struct NTFS_DE **entry,
struct ntfs_fnd *fnd)
{
int err;
struct indx_node *n = NULL;
struct NTFS_DE *e;
size_t iter = 0;
int level = fnd->level;
if (!*entry) {
/* Start find. */
e = hdr_first_de(&root->ihdr);
if (!e)
return 0;
fnd_clear(fnd);
fnd->root_de = e;
} else if (!level) {
if (de_is_last(fnd->root_de)) {
*entry = NULL;
return 0;
}
e = hdr_next_de(&root->ihdr, fnd->root_de);
if (!e)
return -EINVAL;
fnd->root_de = e;
} else {
n = fnd->nodes[level - 1];
e = fnd->de[level - 1];
if (de_is_last(e))
goto pop_level;
e = hdr_next_de(&n->index->ihdr, e);
if (!e)
return -EINVAL;
fnd->de[level - 1] = e;
}
/* Just to avoid tree cycle. */
next_iter:
if (iter++ >= 1000)
return -EINVAL;
while (de_has_vcn_ex(e)) {
if (le16_to_cpu(e->size) <
sizeof(struct NTFS_DE) + sizeof(u64)) {
if (n) {
fnd_pop(fnd);
kfree(n);
}
return -EINVAL;
}
/* Read next level. */
err = indx_read(indx, ni, de_get_vbn(e), &n);
if (err)
return err;
/* Try next level. */
e = hdr_first_de(&n->index->ihdr);
if (!e) {
kfree(n);
return -EINVAL;
}
fnd_push(fnd, n, e);
}
if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
*entry = e;
return 0;
}
pop_level:
for (;;) {
if (!de_is_last(e))
goto next_iter;
/* Pop one level. */
if (n) {
fnd_pop(fnd);
kfree(n);
}
level = fnd->level;
if (level) {
n = fnd->nodes[level - 1];
e = fnd->de[level - 1];
} else if (fnd->root_de) {
n = NULL;
e = fnd->root_de;
fnd->root_de = NULL;
} else {
*entry = NULL;
return 0;
}
if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
*entry = e;
if (!fnd->root_de)
fnd->root_de = e;
return 0;
}
}
}
int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
const struct INDEX_ROOT *root, struct NTFS_DE **entry,
size_t *off, struct ntfs_fnd *fnd)
{
int err;
struct indx_node *n = NULL;
struct NTFS_DE *e = NULL;
struct NTFS_DE *e2;
size_t bit;
CLST next_used_vbn;
CLST next_vbn;
u32 record_size = ni->mi.sbi->record_size;
/* Use non sorted algorithm. */
if (!*entry) {
/* This is the first call. */
e = hdr_first_de(&root->ihdr);
if (!e)
return 0;
fnd_clear(fnd);
fnd->root_de = e;
/* The first call with setup of initial element. */
if (*off >= record_size) {
next_vbn = (((*off - record_size) >> indx->index_bits))
<< indx->idx2vbn_bits;
/* Jump inside cycle 'for'. */
goto next;
}
/* Start enumeration from root. */
*off = 0;
} else if (!fnd->root_de)
return -EINVAL;
for (;;) {
/* Check if current entry can be used. */
if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
goto ok;
if (!fnd->level) {
/* Continue to enumerate root. */
if (!de_is_last(fnd->root_de)) {
e = hdr_next_de(&root->ihdr, fnd->root_de);
if (!e)
return -EINVAL;
fnd->root_de = e;
continue;
}
/* Start to enumerate indexes from 0. */
next_vbn = 0;
} else {
/* Continue to enumerate indexes. */
e2 = fnd->de[fnd->level - 1];
n = fnd->nodes[fnd->level - 1];
if (!de_is_last(e2)) {
e = hdr_next_de(&n->index->ihdr, e2);
if (!e)
return -EINVAL;
fnd->de[fnd->level - 1] = e;
continue;
}
/* Continue with next index. */
next_vbn = le64_to_cpu(n->index->vbn) +
root->index_block_clst;
}
next:
/* Release current index. */
if (n) {
fnd_pop(fnd);
put_indx_node(n);
n = NULL;
}
/* Skip all free indexes. */
bit = next_vbn >> indx->idx2vbn_bits;
err = indx_used_bit(indx, ni, &bit);
if (err == -ENOENT || bit == MINUS_ONE_T) {
/* No used indexes. */
*entry = NULL;
return 0;
}
next_used_vbn = bit << indx->idx2vbn_bits;
/* Read buffer into memory. */
err = indx_read(indx, ni, next_used_vbn, &n);
if (err)
return err;
e = hdr_first_de(&n->index->ihdr);
fnd_push(fnd, n, e);
if (!e)
return -EINVAL;
}
ok:
/* Return offset to restore enumerator if necessary. */
if (!n) {
/* 'e' points in root, */
*off = PtrOffset(&root->ihdr, e);
} else {
/* 'e' points in index, */
*off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
record_size + PtrOffset(&n->index->ihdr, e);
}
*entry = e;
return 0;
}
/*
* indx_create_allocate - Create "Allocation + Bitmap" attributes.
*/
static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
CLST *vbn)
{
int err;
struct ntfs_sb_info *sbi = ni->mi.sbi;
struct ATTRIB *bitmap;
struct ATTRIB *alloc;
u32 data_size = 1u << indx->index_bits;
u32 alloc_size = ntfs_up_cluster(sbi, data_size);
CLST len = alloc_size >> sbi->cluster_bits;
const struct INDEX_NAMES *in = &s_index_names[indx->type];
CLST alen;
struct runs_tree run;
run_init(&run);
err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, ALLOCATE_DEF,
&alen, 0, NULL, NULL);
if (err)
goto out;
err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
&run, 0, len, 0, &alloc, NULL, NULL);
if (err)
goto out1;
alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
in->name_len, &bitmap, NULL, NULL);
if (err)
goto out2;
if (in->name == I30_NAME) {
ni->vfs_inode.i_size = data_size;
inode_set_bytes(&ni->vfs_inode, alloc_size);
}
memcpy(&indx->alloc_run, &run, sizeof(run));
*vbn = 0;
return 0;
out2:
mi_remove_attr(NULL, &ni->mi, alloc);
out1:
run_deallocate(sbi, &run, false);
out:
return err;
}
/*
* indx_add_allocate - Add clusters to index.
*/
static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
CLST *vbn)
{
int err;
size_t bit;
u64 data_size;
u64 bmp_size, bmp_size_v;
struct ATTRIB *bmp, *alloc;
struct mft_inode *mi;
const struct INDEX_NAMES *in = &s_index_names[indx->type];
err = indx_find_free(indx, ni, &bit, &bmp);
if (err)
goto out1;
if (bit != MINUS_ONE_T) {
bmp = NULL;
} else {
if (bmp->non_res) {
bmp_size = le64_to_cpu(bmp->nres.data_size);
bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
} else {
bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
}
bit = bmp_size << 3;
}
data_size = (u64)(bit + 1) << indx->index_bits;
if (bmp) {
/* Increase bitmap. */
err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
&indx->bitmap_run, bitmap_size(bit + 1),
NULL, true, NULL);
if (err)
goto out1;
}
alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
NULL, &mi);
if (!alloc) {
err = -EINVAL;
if (bmp)
goto out2;
goto out1;
}
/* Increase allocation. */
err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
&indx->alloc_run, data_size, &data_size, true,
NULL);
if (err) {
if (bmp)
goto out2;
goto out1;
}
if (in->name == I30_NAME)
ni->vfs_inode.i_size = data_size;
*vbn = bit << indx->idx2vbn_bits;
return 0;
out2:
/* Ops. No space? */
attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
&indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
out1:
return err;
}
/*
* indx_insert_into_root - Attempt to insert an entry into the index root.
*
* @undo - True if we undoing previous remove.
* If necessary, it will twiddle the index b-tree.
*/
static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
const struct NTFS_DE *new_de,
struct NTFS_DE *root_de, const void *ctx,
struct ntfs_fnd *fnd, bool undo)
{
int err = 0;
struct NTFS_DE *e, *e0, *re;
struct mft_inode *mi;
struct ATTRIB *attr;
struct INDEX_HDR *hdr;
struct indx_node *n;
CLST new_vbn;
__le64 *sub_vbn, t_vbn;
u16 new_de_size;
u32 hdr_used, hdr_total, asize, to_move;
u32 root_size, new_root_size;
struct ntfs_sb_info *sbi;
int ds_root;
struct INDEX_ROOT *root, *a_root;
/* Get the record this root placed in. */
root = indx_get_root(indx, ni, &attr, &mi);
if (!root)
return -EINVAL;
/*
* Try easy case:
* hdr_insert_de will succeed if there's
* room the root for the new entry.
*/
hdr = &root->ihdr;
sbi = ni->mi.sbi;
new_de_size = le16_to_cpu(new_de->size);
hdr_used = le32_to_cpu(hdr->used);
hdr_total = le32_to_cpu(hdr->total);
asize = le32_to_cpu(attr->size);
root_size = le32_to_cpu(attr->res.data_size);
ds_root = new_de_size + hdr_used - hdr_total;
/* If 'undo' is set then reduce requirements. */
if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
mi_resize_attr(mi, attr, ds_root)) {
hdr->total = cpu_to_le32(hdr_total + ds_root);
e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
WARN_ON(!e);
fnd_clear(fnd);
fnd->root_de = e;
return 0;
}
/* Make a copy of root attribute to restore if error. */
a_root = kmemdup(attr, asize, GFP_NOFS);
if (!a_root)
return -ENOMEM;
/*
* Copy all the non-end entries from
* the index root to the new buffer.
*/
to_move = 0;
e0 = hdr_first_de(hdr);
/* Calculate the size to copy. */
for (e = e0;; e = hdr_next_de(hdr, e)) {
if (!e) {
err = -EINVAL;
goto out_free_root;
}
if (de_is_last(e))
break;
to_move += le16_to_cpu(e->size);
}
if (!to_move) {
re = NULL;
} else {
re = kmemdup(e0, to_move, GFP_NOFS);
if (!re) {
err = -ENOMEM;
goto out_free_root;
}
}
sub_vbn = NULL;
if (de_has_vcn(e)) {
t_vbn = de_get_vbn_le(e);
sub_vbn = &t_vbn;
}
new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
sizeof(u64);
ds_root = new_root_size - root_size;
if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
/* Make root external. */
err = -EOPNOTSUPP;
goto out_free_re;
}
if (ds_root)
mi_resize_attr(mi, attr, ds_root);
/* Fill first entry (vcn will be set later). */
e = (struct NTFS_DE *)(root + 1);
memset(e, 0, sizeof(struct NTFS_DE));
e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
hdr->flags = 1;
hdr->used = hdr->total =
cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
fnd->root_de = hdr_first_de(hdr);
mi->dirty = true;
/* Create alloc and bitmap attributes (if not). */
err = run_is_empty(&indx->alloc_run)
? indx_create_allocate(indx, ni, &new_vbn)
: indx_add_allocate(indx, ni, &new_vbn);
/* Layout of record may be changed, so rescan root. */
root = indx_get_root(indx, ni, &attr, &mi);
if (!root) {
/* Bug? */
ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
err = -EINVAL;
goto out_free_re;
}
if (err) {
/* Restore root. */
if (mi_resize_attr(mi, attr, -ds_root)) {
memcpy(attr, a_root, asize);
} else {
/* Bug? */
ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
}
goto out_free_re;
}
e = (struct NTFS_DE *)(root + 1);
*(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
mi->dirty = true;
/* Now we can create/format the new buffer and copy the entries into. */
n = indx_new(indx, ni, new_vbn, sub_vbn);
if (IS_ERR(n)) {
err = PTR_ERR(n);
goto out_free_re;
}
hdr = &n->index->ihdr;
hdr_used = le32_to_cpu(hdr->used);
hdr_total = le32_to_cpu(hdr->total);
/* Copy root entries into new buffer. */
hdr_insert_head(hdr, re, to_move);
/* Update bitmap attribute. */
indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
/* Check if we can insert new entry new index buffer. */
if (hdr_used + new_de_size > hdr_total) {
/*
* This occurs if MFT record is the same or bigger than index
* buffer. Move all root new index and have no space to add
* new entry classic case when MFT record is 1K and index
* buffer 4K the problem should not occurs.
*/
kfree(re);
indx_write(indx, ni, n, 0);
put_indx_node(n);
fnd_clear(fnd);
err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
goto out_free_root;
}
/*
* Now root is a parent for new index buffer.
* Insert NewEntry a new buffer.
*/
e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
if (!e) {
err = -EINVAL;
goto out_put_n;
}
fnd_push(fnd, n, e);
/* Just write updates index into disk. */
indx_write(indx, ni, n, 0);
n = NULL;
out_put_n:
put_indx_node(n);
out_free_re:
kfree(re);
out_free_root:
kfree(a_root);
return err;
}
/*
* indx_insert_into_buffer
*
* Attempt to insert an entry into an Index Allocation Buffer.
* If necessary, it will split the buffer.
*/
static int
indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
const void *ctx, int level, struct ntfs_fnd *fnd)
{
int err;
const struct NTFS_DE *sp;
struct NTFS_DE *e, *de_t, *up_e;
struct indx_node *n2;
struct indx_node *n1 = fnd->nodes[level];
struct INDEX_HDR *hdr1 = &n1->index->ihdr;
struct INDEX_HDR *hdr2;
u32 to_copy, used;
CLST new_vbn;
__le64 t_vbn, *sub_vbn;
u16 sp_size;
/* Try the most easy case. */
e = fnd->level - 1 == level ? fnd->de[level] : NULL;
e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
fnd->de[level] = e;
if (e) {
/* Just write updated index into disk. */
indx_write(indx, ni, n1, 0);
return 0;
}
/*
* No space to insert into buffer. Split it.
* To split we:
* - Save split point ('cause index buffers will be changed)
* - Allocate NewBuffer and copy all entries <= sp into new buffer
* - Remove all entries (sp including) from TargetBuffer
* - Insert NewEntry into left or right buffer (depending on sp <=>
* NewEntry)
* - Insert sp into parent buffer (or root)
* - Make sp a parent for new buffer
*/
sp = hdr_find_split(hdr1);
if (!sp)
return -EINVAL;
sp_size = le16_to_cpu(sp->size);
up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
if (!up_e)
return -ENOMEM;
memcpy(up_e, sp, sp_size);
if (!hdr1->flags) {
up_e->flags |= NTFS_IE_HAS_SUBNODES;
up_e->size = cpu_to_le16(sp_size + sizeof(u64));
sub_vbn = NULL;
} else {
t_vbn = de_get_vbn_le(up_e);
sub_vbn = &t_vbn;
}
/* Allocate on disk a new index allocation buffer. */
err = indx_add_allocate(indx, ni, &new_vbn);
if (err)
goto out;
/* Allocate and format memory a new index buffer. */
n2 = indx_new(indx, ni, new_vbn, sub_vbn);
if (IS_ERR(n2)) {
err = PTR_ERR(n2);
goto out;
}
hdr2 = &n2->index->ihdr;
/* Make sp a parent for new buffer. */
de_set_vbn(up_e, new_vbn);
/* Copy all the entries <= sp into the new buffer. */
de_t = hdr_first_de(hdr1);
to_copy = PtrOffset(de_t, sp);
hdr_insert_head(hdr2, de_t, to_copy);
/* Remove all entries (sp including) from hdr1. */
used = le32_to_cpu(hdr1->used) - to_copy - sp_size;
memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
hdr1->used = cpu_to_le32(used);
/*
* Insert new entry into left or right buffer
* (depending on sp <=> new_de).
*/
hdr_insert_de(indx,
(*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
up_e + 1, le16_to_cpu(up_e->key_size),
ctx) < 0
? hdr2
: hdr1,
new_de, NULL, ctx);
indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
indx_write(indx, ni, n1, 0);
indx_write(indx, ni, n2, 0);
put_indx_node(n2);
/*
* We've finished splitting everybody, so we are ready to
* insert the promoted entry into the parent.
*/
if (!level) {
/* Insert in root. */
err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
if (err)
goto out;
} else {
/*
* The target buffer's parent is another index buffer.
* TODO: Remove recursion.
*/
err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
level - 1, fnd);
if (err)
goto out;
}
out:
kfree(up_e);
return err;
}
/*
* indx_insert_entry - Insert new entry into index.
*
* @undo - True if we undoing previous remove.
*/
int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
const struct NTFS_DE *new_de, const void *ctx,
struct ntfs_fnd *fnd, bool undo)
{
int err;
int diff;
struct NTFS_DE *e;
struct ntfs_fnd *fnd_a = NULL;
struct INDEX_ROOT *root;
if (!fnd) {
fnd_a = fnd_get();
if (!fnd_a) {
err = -ENOMEM;
goto out1;
}
fnd = fnd_a;
}
root = indx_get_root(indx, ni, NULL, NULL);
if (!root) {
err = -EINVAL;
goto out;
}
if (fnd_is_empty(fnd)) {
/*
* Find the spot the tree where we want to
* insert the new entry.
*/
err = indx_find(indx, ni, root, new_de + 1,
le16_to_cpu(new_de->key_size), ctx, &diff, &e,
fnd);
if (err)
goto out;
if (!diff) {
err = -EEXIST;
goto out;
}
}
if (!fnd->level) {
/*
* The root is also a leaf, so we'll insert the
* new entry into it.
*/
err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
fnd, undo);
if (err)
goto out;
} else {
/*
* Found a leaf buffer, so we'll insert the new entry into it.
*/
err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
fnd->level - 1, fnd);
if (err)
goto out;
}
out:
fnd_put(fnd_a);
out1:
return err;
}
/*
* indx_find_buffer - Locate a buffer from the tree.
*/
static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
struct ntfs_inode *ni,
const struct INDEX_ROOT *root,
__le64 vbn, struct indx_node *n)
{
int err;
const struct NTFS_DE *e;
struct indx_node *r;
const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
/* Step 1: Scan one level. */
for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
if (!e)
return ERR_PTR(-EINVAL);
if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
return n;
if (de_is_last(e))
break;
}
/* Step2: Do recursion. */
e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
for (;;) {
if (de_has_vcn_ex(e)) {
err = indx_read(indx, ni, de_get_vbn(e), &n);
if (err)
return ERR_PTR(err);
r = indx_find_buffer(indx, ni, root, vbn, n);
if (r)
return r;
}
if (de_is_last(e))
break;
e = Add2Ptr(e, le16_to_cpu(e->size));
}
return NULL;
}
/*
* indx_shrink - Deallocate unused tail indexes.
*/
static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
size_t bit)
{
int err = 0;
u64 bpb, new_data;
size_t nbits;
struct ATTRIB *b;
struct ATTR_LIST_ENTRY *le = NULL;
const struct INDEX_NAMES *in = &s_index_names[indx->type];
b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
NULL, NULL);
if (!b)
return -ENOENT;
if (!b->non_res) {
unsigned long pos;
const unsigned long *bm = resident_data(b);
nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
if (bit >= nbits)
return 0;
pos = find_next_bit_le(bm, nbits, bit);
if (pos < nbits)
return 0;
} else {
size_t used = MINUS_ONE_T;
nbits = le64_to_cpu(b->nres.data_size) * 8;
if (bit >= nbits)
return 0;
err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
if (err)
return err;
if (used != MINUS_ONE_T)
return 0;
}
new_data = (u64)bit << indx->index_bits;
err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
&indx->alloc_run, new_data, &new_data, false, NULL);
if (err)
return err;
if (in->name == I30_NAME)
ni->vfs_inode.i_size = new_data;
bpb = bitmap_size(bit);
if (bpb * 8 == nbits)
return 0;
err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
&indx->bitmap_run, bpb, &bpb, false, NULL);
return err;
}
static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
const struct NTFS_DE *e, bool trim)
{
int err;
struct indx_node *n = NULL;
struct INDEX_HDR *hdr;
CLST vbn = de_get_vbn(e);
size_t i;
err = indx_read(indx, ni, vbn, &n);
if (err)
return err;
hdr = &n->index->ihdr;
/* First, recurse into the children, if any. */
if (hdr_has_subnode(hdr)) {
for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
indx_free_children(indx, ni, e, false);
if (de_is_last(e))
break;
}
}
put_indx_node(n);
i = vbn >> indx->idx2vbn_bits;
/*
* We've gotten rid of the children; add this buffer to the free list.
*/
indx_mark_free(indx, ni, i);
if (!trim)
return 0;
/*
* If there are no used indexes after current free index
* then we can truncate allocation and bitmap.
* Use bitmap to estimate the case.
*/
indx_shrink(indx, ni, i + 1);
return 0;
}
/*
* indx_get_entry_to_replace
*
* Find a replacement entry for a deleted entry.
* Always returns a node entry:
* NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
*/
static int indx_get_entry_to_replace(struct ntfs_index *indx,
struct ntfs_inode *ni,
const struct NTFS_DE *de_next,
struct NTFS_DE **de_to_replace,
struct ntfs_fnd *fnd)
{
int err;
int level = -1;
CLST vbn;
struct NTFS_DE *e, *te, *re;
struct indx_node *n;
struct INDEX_BUFFER *ib;
*de_to_replace = NULL;
/* Find first leaf entry down from de_next. */
vbn = de_get_vbn(de_next);
for (;;) {
n = NULL;
err = indx_read(indx, ni, vbn, &n);
if (err)
goto out;
e = hdr_first_de(&n->index->ihdr);
fnd_push(fnd, n, e);
if (!de_is_last(e)) {
/*
* This buffer is non-empty, so its first entry
* could be used as the replacement entry.
*/
level = fnd->level - 1;
}
if (!de_has_vcn(e))
break;
/* This buffer is a node. Continue to go down. */
vbn = de_get_vbn(e);
}
if (level == -1)
goto out;
n = fnd->nodes[level];
te = hdr_first_de(&n->index->ihdr);
/* Copy the candidate entry into the replacement entry buffer. */
re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
if (!re) {
err = -ENOMEM;
goto out;
}
*de_to_replace = re;
memcpy(re, te, le16_to_cpu(te->size));
if (!de_has_vcn(re)) {
/*
* The replacement entry we found doesn't have a sub_vcn.
* increase its size to hold one.
*/
le16_add_cpu(&re->size, sizeof(u64));
re->flags |= NTFS_IE_HAS_SUBNODES;
} else {
/*
* The replacement entry we found was a node entry, which
* means that all its child buffers are empty. Return them
* to the free pool.
*/
indx_free_children(indx, ni, te, true);
}
/*
* Expunge the replacement entry from its former location,
* and then write that buffer.
*/
ib = n->index;
e = hdr_delete_de(&ib->ihdr, te);
fnd->de[level] = e;
indx_write(indx, ni, n, 0);
if (ib_is_leaf(ib) && ib_is_empty(ib)) {
/* An empty leaf. */
return 0;
}
out:
fnd_clear(fnd);
return err;
}
/*
* indx_delete_entry - Delete an entry from the index.
*/
int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
const void *key, u32 key_len, const void *ctx)
{
int err, diff;
struct INDEX_ROOT *root;
struct INDEX_HDR *hdr;
struct ntfs_fnd *fnd, *fnd2;
struct INDEX_BUFFER *ib;
struct NTFS_DE *e, *re, *next, *prev, *me;
struct indx_node *n, *n2d = NULL;
__le64 sub_vbn;
int level, level2;
struct ATTRIB *attr;
struct mft_inode *mi;
u32 e_size, root_size, new_root_size;
size_t trim_bit;
const struct INDEX_NAMES *in;
fnd = fnd_get();
if (!fnd) {
err = -ENOMEM;
goto out2;
}
fnd2 = fnd_get();
if (!fnd2) {
err = -ENOMEM;
goto out1;
}
root = indx_get_root(indx, ni, &attr, &mi);
if (!root) {
err = -EINVAL;
goto out;
}
/* Locate the entry to remove. */
err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
if (err)
goto out;
if (!e || diff) {
err = -ENOENT;
goto out;
}
level = fnd->level;
if (level) {
n = fnd->nodes[level - 1];
e = fnd->de[level - 1];
ib = n->index;
hdr = &ib->ihdr;
} else {
hdr = &root->ihdr;
e = fnd->root_de;
n = NULL;
}
e_size = le16_to_cpu(e->size);
if (!de_has_vcn_ex(e)) {
/* The entry to delete is a leaf, so we can just rip it out. */
hdr_delete_de(hdr, e);
if (!level) {
hdr->total = hdr->used;
/* Shrink resident root attribute. */
mi_resize_attr(mi, attr, 0 - e_size);
goto out;
}
indx_write(indx, ni, n, 0);
/*
* Check to see if removing that entry made
* the leaf empty.
*/
if (ib_is_leaf(ib) && ib_is_empty(ib)) {
fnd_pop(fnd);
fnd_push(fnd2, n, e);
}
} else {
/*
* The entry we wish to delete is a node buffer, so we
* have to find a replacement for it.
*/
next = de_get_next(e);
err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
if (err)
goto out;
if (re) {
de_set_vbn_le(re, de_get_vbn_le(e));
hdr_delete_de(hdr, e);
err = level ? indx_insert_into_buffer(indx, ni, root,
re, ctx,
fnd->level - 1,
fnd)
: indx_insert_into_root(indx, ni, re, e,
ctx, fnd, 0);
kfree(re);
if (err)
goto out;
} else {
/*
* There is no replacement for the current entry.
* This means that the subtree rooted at its node
* is empty, and can be deleted, which turn means
* that the node can just inherit the deleted
* entry sub_vcn.
*/
indx_free_children(indx, ni, next, true);
de_set_vbn_le(next, de_get_vbn_le(e));
hdr_delete_de(hdr, e);
if (level) {
indx_write(indx, ni, n, 0);
} else {
hdr->total = hdr->used;
/* Shrink resident root attribute. */
mi_resize_attr(mi, attr, 0 - e_size);
}
}
}
/* Delete a branch of tree. */
if (!fnd2 || !fnd2->level)
goto out;
/* Reinit root 'cause it can be changed. */
root = indx_get_root(indx, ni, &attr, &mi);
if (!root) {
err = -EINVAL;
goto out;
}
n2d = NULL;
sub_vbn = fnd2->nodes[0]->index->vbn;
level2 = 0;
level = fnd->level;
hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
/* Scan current level. */
for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
if (!e) {
err = -EINVAL;
goto out;
}
if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
break;
if (de_is_last(e)) {
e = NULL;
break;
}
}
if (!e) {
/* Do slow search from root. */
struct indx_node *in;
fnd_clear(fnd);
in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
if (IS_ERR(in)) {
err = PTR_ERR(in);
goto out;
}
if (in)
fnd_push(fnd, in, NULL);
}
/* Merge fnd2 -> fnd. */
for (level = 0; level < fnd2->level; level++) {
fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
fnd2->nodes[level] = NULL;
}
fnd2->level = 0;
hdr = NULL;
for (level = fnd->level; level; level--) {
struct indx_node *in = fnd->nodes[level - 1];
ib = in->index;
if (ib_is_empty(ib)) {
sub_vbn = ib->vbn;
} else {
hdr = &ib->ihdr;
n2d = in;
level2 = level;
break;
}
}
if (!hdr)
hdr = &root->ihdr;
e = hdr_first_de(hdr);
if (!e) {
err = -EINVAL;
goto out;
}
if (hdr != &root->ihdr || !de_is_last(e)) {
prev = NULL;
while (!de_is_last(e)) {
if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
break;
prev = e;
e = hdr_next_de(hdr, e);
if (!e) {
err = -EINVAL;
goto out;
}
}
if (sub_vbn != de_get_vbn_le(e)) {
/*
* Didn't find the parent entry, although this buffer
* is the parent trail. Something is corrupt.
*/
err = -EINVAL;
goto out;
}
if (de_is_last(e)) {
/*
* Since we can't remove the end entry, we'll remove
* its predecessor instead. This means we have to
* transfer the predecessor's sub_vcn to the end entry.
* Note: This index block is not empty, so the
* predecessor must exist.
*/
if (!prev) {
err = -EINVAL;
goto out;
}
if (de_has_vcn(prev)) {
de_set_vbn_le(e, de_get_vbn_le(prev));
} else if (de_has_vcn(e)) {
le16_sub_cpu(&e->size, sizeof(u64));
e->flags &= ~NTFS_IE_HAS_SUBNODES;
le32_sub_cpu(&hdr->used, sizeof(u64));
}
e = prev;
}
/*
* Copy the current entry into a temporary buffer (stripping
* off its down-pointer, if any) and delete it from the current
* buffer or root, as appropriate.
*/
e_size = le16_to_cpu(e->size);
me = kmemdup(e, e_size, GFP_NOFS);
if (!me) {
err = -ENOMEM;
goto out;
}
if (de_has_vcn(me)) {
me->flags &= ~NTFS_IE_HAS_SUBNODES;
le16_sub_cpu(&me->size, sizeof(u64));
}
hdr_delete_de(hdr, e);
if (hdr == &root->ihdr) {
level = 0;
hdr->total = hdr->used;
/* Shrink resident root attribute. */
mi_resize_attr(mi, attr, 0 - e_size);
} else {
indx_write(indx, ni, n2d, 0);
level = level2;
}
/* Mark unused buffers as free. */
trim_bit = -1;
for (; level < fnd->level; level++) {
ib = fnd->nodes[level]->index;
if (ib_is_empty(ib)) {
size_t k = le64_to_cpu(ib->vbn) >>
indx->idx2vbn_bits;
indx_mark_free(indx, ni, k);
if (k < trim_bit)
trim_bit = k;
}
}
fnd_clear(fnd);
/*fnd->root_de = NULL;*/
/*
* Re-insert the entry into the tree.
* Find the spot the tree where we want to insert the new entry.
*/
err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
kfree(me);
if (err)
goto out;
if (trim_bit != -1)
indx_shrink(indx, ni, trim_bit);
} else {
/*
* This tree needs to be collapsed down to an empty root.
* Recreate the index root as an empty leaf and free all
* the bits the index allocation bitmap.
*/
fnd_clear(fnd);
fnd_clear(fnd2);
in = &s_index_names[indx->type];
err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
&indx->alloc_run, 0, NULL, false, NULL);
if (in->name == I30_NAME)
ni->vfs_inode.i_size = 0;
err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
false, NULL);
run_close(&indx->alloc_run);
err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
&indx->bitmap_run, 0, NULL, false, NULL);
err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
false, NULL);
run_close(&indx->bitmap_run);
root = indx_get_root(indx, ni, &attr, &mi);
if (!root) {
err = -EINVAL;
goto out;
}
root_size = le32_to_cpu(attr->res.data_size);
new_root_size =
sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
if (new_root_size != root_size &&
!mi_resize_attr(mi, attr, new_root_size - root_size)) {
err = -EINVAL;
goto out;
}
/* Fill first entry. */
e = (struct NTFS_DE *)(root + 1);
e->ref.low = 0;
e->ref.high = 0;
e->ref.seq = 0;
e->size = cpu_to_le16(sizeof(struct NTFS_DE));
e->flags = NTFS_IE_LAST; // 0x02
e->key_size = 0;
e->res = 0;
hdr = &root->ihdr;
hdr->flags = 0;
hdr->used = hdr->total = cpu_to_le32(
new_root_size - offsetof(struct INDEX_ROOT, ihdr));
mi->dirty = true;
}
out:
fnd_put(fnd2);
out1:
fnd_put(fnd);
out2:
return err;
}
/*
* Update duplicated information in directory entry
* 'dup' - info from MFT record
*/
int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
const struct ATTR_FILE_NAME *fname,
const struct NTFS_DUP_INFO *dup, int sync)
{
int err, diff;
struct NTFS_DE *e = NULL;
struct ATTR_FILE_NAME *e_fname;
struct ntfs_fnd *fnd;
struct INDEX_ROOT *root;
struct mft_inode *mi;
struct ntfs_index *indx = &ni->dir;
fnd = fnd_get();
if (!fnd)
return -ENOMEM;
root = indx_get_root(indx, ni, NULL, &mi);
if (!root) {
err = -EINVAL;
goto out;
}
/* Find entry in directory. */
err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
&diff, &e, fnd);
if (err)
goto out;
if (!e) {
err = -EINVAL;
goto out;
}
if (diff) {
err = -EINVAL;
goto out;
}
e_fname = (struct ATTR_FILE_NAME *)(e + 1);
if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
/*
* Nothing to update in index! Try to avoid this call.
*/
goto out;
}
memcpy(&e_fname->dup, dup, sizeof(*dup));
if (fnd->level) {
/* Directory entry in index. */
err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
} else {
/* Directory entry in directory MFT record. */
mi->dirty = true;
if (sync)
err = mi_write(mi, 1);
else
mark_inode_dirty(&ni->vfs_inode);
}
out:
fnd_put(fnd);
return err;
}