1
linux/net/mac80211/ieee80211_sta.c
Johannes Berg b708e61062 [MAC80211]: remove turbo modes
This patch removes all mention of the atheros turbo modes that
can't possibly work properly anyway since in some places we don't
check for them when we should.

I have no idea what the iwlwifi drivers were doing with these but
it can't possibly have been correct.

Cc: Zhu Yi <yi.zhu@intel.com>
Signed-off-by: Johannes Berg <johannes@sipsolutions.net>
Acked-by: Michael Wu <flamingice@sourmilk.net>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2007-10-10 16:49:27 -07:00

3135 lines
85 KiB
C

/*
* BSS client mode implementation
* Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
* Copyright 2004, Instant802 Networks, Inc.
* Copyright 2005, Devicescape Software, Inc.
* Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
* Copyright 2007, Michael Wu <flamingice@sourmilk.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/* TODO:
* BSS table: use <BSSID,SSID> as the key to support multi-SSID APs
* order BSS list by RSSI(?) ("quality of AP")
* scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
* SSID)
*/
#include <linux/delay.h>
#include <linux/if_ether.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/wireless.h>
#include <linux/random.h>
#include <linux/etherdevice.h>
#include <net/iw_handler.h>
#include <asm/types.h>
#include <net/mac80211.h>
#include "ieee80211_i.h"
#include "ieee80211_rate.h"
#include "hostapd_ioctl.h"
#define IEEE80211_AUTH_TIMEOUT (HZ / 5)
#define IEEE80211_AUTH_MAX_TRIES 3
#define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
#define IEEE80211_ASSOC_MAX_TRIES 3
#define IEEE80211_MONITORING_INTERVAL (2 * HZ)
#define IEEE80211_PROBE_INTERVAL (60 * HZ)
#define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
#define IEEE80211_SCAN_INTERVAL (2 * HZ)
#define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
#define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
#define IEEE80211_PROBE_DELAY (HZ / 33)
#define IEEE80211_CHANNEL_TIME (HZ / 33)
#define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
#define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
#define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
#define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
#define IEEE80211_IBSS_MAX_STA_ENTRIES 128
#define IEEE80211_FC(type, stype) cpu_to_le16(type | stype)
#define ERP_INFO_USE_PROTECTION BIT(1)
static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
u8 *ssid, size_t ssid_len);
static struct ieee80211_sta_bss *
ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid);
static void ieee80211_rx_bss_put(struct net_device *dev,
struct ieee80211_sta_bss *bss);
static int ieee80211_sta_find_ibss(struct net_device *dev,
struct ieee80211_if_sta *ifsta);
static int ieee80211_sta_wep_configured(struct net_device *dev);
static int ieee80211_sta_start_scan(struct net_device *dev,
u8 *ssid, size_t ssid_len);
static int ieee80211_sta_config_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta);
/* Parsed Information Elements */
struct ieee802_11_elems {
/* pointers to IEs */
u8 *ssid;
u8 *supp_rates;
u8 *fh_params;
u8 *ds_params;
u8 *cf_params;
u8 *tim;
u8 *ibss_params;
u8 *challenge;
u8 *wpa;
u8 *rsn;
u8 *erp_info;
u8 *ext_supp_rates;
u8 *wmm_info;
u8 *wmm_param;
/* length of them, respectively */
u8 ssid_len;
u8 supp_rates_len;
u8 fh_params_len;
u8 ds_params_len;
u8 cf_params_len;
u8 tim_len;
u8 ibss_params_len;
u8 challenge_len;
u8 wpa_len;
u8 rsn_len;
u8 erp_info_len;
u8 ext_supp_rates_len;
u8 wmm_info_len;
u8 wmm_param_len;
};
typedef enum { ParseOK = 0, ParseUnknown = 1, ParseFailed = -1 } ParseRes;
static ParseRes ieee802_11_parse_elems(u8 *start, size_t len,
struct ieee802_11_elems *elems)
{
size_t left = len;
u8 *pos = start;
int unknown = 0;
memset(elems, 0, sizeof(*elems));
while (left >= 2) {
u8 id, elen;
id = *pos++;
elen = *pos++;
left -= 2;
if (elen > left) {
#if 0
if (net_ratelimit())
printk(KERN_DEBUG "IEEE 802.11 element parse "
"failed (id=%d elen=%d left=%d)\n",
id, elen, left);
#endif
return ParseFailed;
}
switch (id) {
case WLAN_EID_SSID:
elems->ssid = pos;
elems->ssid_len = elen;
break;
case WLAN_EID_SUPP_RATES:
elems->supp_rates = pos;
elems->supp_rates_len = elen;
break;
case WLAN_EID_FH_PARAMS:
elems->fh_params = pos;
elems->fh_params_len = elen;
break;
case WLAN_EID_DS_PARAMS:
elems->ds_params = pos;
elems->ds_params_len = elen;
break;
case WLAN_EID_CF_PARAMS:
elems->cf_params = pos;
elems->cf_params_len = elen;
break;
case WLAN_EID_TIM:
elems->tim = pos;
elems->tim_len = elen;
break;
case WLAN_EID_IBSS_PARAMS:
elems->ibss_params = pos;
elems->ibss_params_len = elen;
break;
case WLAN_EID_CHALLENGE:
elems->challenge = pos;
elems->challenge_len = elen;
break;
case WLAN_EID_WPA:
if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
pos[2] == 0xf2) {
/* Microsoft OUI (00:50:F2) */
if (pos[3] == 1) {
/* OUI Type 1 - WPA IE */
elems->wpa = pos;
elems->wpa_len = elen;
} else if (elen >= 5 && pos[3] == 2) {
if (pos[4] == 0) {
elems->wmm_info = pos;
elems->wmm_info_len = elen;
} else if (pos[4] == 1) {
elems->wmm_param = pos;
elems->wmm_param_len = elen;
}
}
}
break;
case WLAN_EID_RSN:
elems->rsn = pos;
elems->rsn_len = elen;
break;
case WLAN_EID_ERP_INFO:
elems->erp_info = pos;
elems->erp_info_len = elen;
break;
case WLAN_EID_EXT_SUPP_RATES:
elems->ext_supp_rates = pos;
elems->ext_supp_rates_len = elen;
break;
default:
#if 0
printk(KERN_DEBUG "IEEE 802.11 element parse ignored "
"unknown element (id=%d elen=%d)\n",
id, elen);
#endif
unknown++;
break;
}
left -= elen;
pos += elen;
}
/* Do not trigger error if left == 1 as Apple Airport base stations
* send AssocResps that are one spurious byte too long. */
return unknown ? ParseUnknown : ParseOK;
}
static int ecw2cw(int ecw)
{
int cw = 1;
while (ecw > 0) {
cw <<= 1;
ecw--;
}
return cw - 1;
}
static void ieee80211_sta_wmm_params(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
u8 *wmm_param, size_t wmm_param_len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_tx_queue_params params;
size_t left;
int count;
u8 *pos;
if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
return;
count = wmm_param[6] & 0x0f;
if (count == ifsta->wmm_last_param_set)
return;
ifsta->wmm_last_param_set = count;
pos = wmm_param + 8;
left = wmm_param_len - 8;
memset(&params, 0, sizeof(params));
if (!local->ops->conf_tx)
return;
local->wmm_acm = 0;
for (; left >= 4; left -= 4, pos += 4) {
int aci = (pos[0] >> 5) & 0x03;
int acm = (pos[0] >> 4) & 0x01;
int queue;
switch (aci) {
case 1:
queue = IEEE80211_TX_QUEUE_DATA3;
if (acm) {
local->wmm_acm |= BIT(0) | BIT(3);
}
break;
case 2:
queue = IEEE80211_TX_QUEUE_DATA1;
if (acm) {
local->wmm_acm |= BIT(4) | BIT(5);
}
break;
case 3:
queue = IEEE80211_TX_QUEUE_DATA0;
if (acm) {
local->wmm_acm |= BIT(6) | BIT(7);
}
break;
case 0:
default:
queue = IEEE80211_TX_QUEUE_DATA2;
if (acm) {
local->wmm_acm |= BIT(1) | BIT(2);
}
break;
}
params.aifs = pos[0] & 0x0f;
params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
params.cw_min = ecw2cw(pos[1] & 0x0f);
/* TXOP is in units of 32 usec; burst_time in 0.1 ms */
params.burst_time = (pos[2] | (pos[3] << 8)) * 32 / 100;
printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
"cWmin=%d cWmax=%d burst=%d\n",
dev->name, queue, aci, acm, params.aifs, params.cw_min,
params.cw_max, params.burst_time);
/* TODO: handle ACM (block TX, fallback to next lowest allowed
* AC for now) */
if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
printk(KERN_DEBUG "%s: failed to set TX queue "
"parameters for queue %d\n", dev->name, queue);
}
}
}
static void ieee80211_handle_erp_ie(struct net_device *dev, u8 erp_value)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
int use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
int preamble_mode = (erp_value & WLAN_ERP_BARKER_PREAMBLE) != 0;
u8 changes = 0;
if (use_protection != !!(sdata->flags & IEEE80211_SDATA_USE_PROTECTION)) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
MAC_FMT ")\n",
dev->name,
use_protection ? "enabled" : "disabled",
MAC_ARG(ifsta->bssid));
}
if (use_protection)
sdata->flags |= IEEE80211_SDATA_USE_PROTECTION;
else
sdata->flags &= ~IEEE80211_SDATA_USE_PROTECTION;
changes |= IEEE80211_ERP_CHANGE_PROTECTION;
}
if (preamble_mode != !(sdata->flags & IEEE80211_SDATA_SHORT_PREAMBLE)) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: switched to %s barker preamble"
" (BSSID=" MAC_FMT ")\n",
dev->name,
(preamble_mode == WLAN_ERP_PREAMBLE_SHORT) ?
"short" : "long",
MAC_ARG(ifsta->bssid));
}
if (preamble_mode)
sdata->flags &= ~IEEE80211_SDATA_SHORT_PREAMBLE;
else
sdata->flags |= IEEE80211_SDATA_SHORT_PREAMBLE;
changes |= IEEE80211_ERP_CHANGE_PREAMBLE;
}
if (changes)
ieee80211_erp_info_change_notify(dev, changes);
}
static void ieee80211_sta_send_associnfo(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
char *buf;
size_t len;
int i;
union iwreq_data wrqu;
if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
return;
buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
ifsta->assocresp_ies_len), GFP_KERNEL);
if (!buf)
return;
len = sprintf(buf, "ASSOCINFO(");
if (ifsta->assocreq_ies) {
len += sprintf(buf + len, "ReqIEs=");
for (i = 0; i < ifsta->assocreq_ies_len; i++) {
len += sprintf(buf + len, "%02x",
ifsta->assocreq_ies[i]);
}
}
if (ifsta->assocresp_ies) {
if (ifsta->assocreq_ies)
len += sprintf(buf + len, " ");
len += sprintf(buf + len, "RespIEs=");
for (i = 0; i < ifsta->assocresp_ies_len; i++) {
len += sprintf(buf + len, "%02x",
ifsta->assocresp_ies[i]);
}
}
len += sprintf(buf + len, ")");
if (len > IW_CUSTOM_MAX) {
len = sprintf(buf, "ASSOCRESPIE=");
for (i = 0; i < ifsta->assocresp_ies_len; i++) {
len += sprintf(buf + len, "%02x",
ifsta->assocresp_ies[i]);
}
}
memset(&wrqu, 0, sizeof(wrqu));
wrqu.data.length = len;
wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
kfree(buf);
}
static void ieee80211_set_associated(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
unsigned int assoc)
{
union iwreq_data wrqu;
if (!!(ifsta->flags & IEEE80211_STA_ASSOCIATED) == assoc)
return;
if (assoc) {
struct ieee80211_sub_if_data *sdata;
struct ieee80211_sta_bss *bss;
ifsta->flags |= IEEE80211_STA_ASSOCIATED;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (sdata->type != IEEE80211_IF_TYPE_STA)
return;
bss = ieee80211_rx_bss_get(dev, ifsta->bssid);
if (bss) {
if (bss->has_erp_value)
ieee80211_handle_erp_ie(dev, bss->erp_value);
ieee80211_rx_bss_put(dev, bss);
}
netif_carrier_on(dev);
ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
ieee80211_sta_send_associnfo(dev, ifsta);
} else {
ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
netif_carrier_off(dev);
ieee80211_reset_erp_info(dev);
memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
}
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
ifsta->last_probe = jiffies;
}
static void ieee80211_set_disassoc(struct net_device *dev,
struct ieee80211_if_sta *ifsta, int deauth)
{
if (deauth)
ifsta->auth_tries = 0;
ifsta->assoc_tries = 0;
ieee80211_set_associated(dev, ifsta, 0);
}
static void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
int encrypt)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_tx_packet_data *pkt_data;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
skb->dev = sdata->local->mdev;
skb_set_mac_header(skb, 0);
skb_set_network_header(skb, 0);
skb_set_transport_header(skb, 0);
pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
pkt_data->ifindex = sdata->dev->ifindex;
if (sdata->type == IEEE80211_IF_TYPE_MGMT)
pkt_data->flags |= IEEE80211_TXPD_MGMT_IFACE;
if (!encrypt)
pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
dev_queue_xmit(skb);
}
static void ieee80211_send_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
int transaction, u8 *extra, size_t extra_len,
int encrypt)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
skb = dev_alloc_skb(local->hw.extra_tx_headroom +
sizeof(*mgmt) + 6 + extra_len);
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
"frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
memset(mgmt, 0, 24 + 6);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_AUTH);
if (encrypt)
mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
ifsta->auth_transaction = transaction + 1;
mgmt->u.auth.status_code = cpu_to_le16(0);
if (extra)
memcpy(skb_put(skb, extra_len), extra, extra_len);
ieee80211_sta_tx(dev, skb, encrypt);
}
static void ieee80211_authenticate(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
ifsta->auth_tries++;
if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
printk(KERN_DEBUG "%s: authentication with AP " MAC_FMT
" timed out\n",
dev->name, MAC_ARG(ifsta->bssid));
ifsta->state = IEEE80211_DISABLED;
return;
}
ifsta->state = IEEE80211_AUTHENTICATE;
printk(KERN_DEBUG "%s: authenticate with AP " MAC_FMT "\n",
dev->name, MAC_ARG(ifsta->bssid));
ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
}
static void ieee80211_send_assoc(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hw_mode *mode;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
u8 *pos, *ies;
int i, len;
u16 capab;
struct ieee80211_sta_bss *bss;
int wmm = 0;
skb = dev_alloc_skb(local->hw.extra_tx_headroom +
sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
ifsta->ssid_len);
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
"frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mode = local->oper_hw_mode;
capab = ifsta->capab;
if (mode->mode == MODE_IEEE80211G) {
capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME |
WLAN_CAPABILITY_SHORT_PREAMBLE;
}
bss = ieee80211_rx_bss_get(dev, ifsta->bssid);
if (bss) {
if (bss->capability & WLAN_CAPABILITY_PRIVACY)
capab |= WLAN_CAPABILITY_PRIVACY;
if (bss->wmm_ie) {
wmm = 1;
}
ieee80211_rx_bss_put(dev, bss);
}
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
skb_put(skb, 10);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_REASSOC_REQ);
mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
ETH_ALEN);
} else {
skb_put(skb, 4);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_ASSOC_REQ);
mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
}
/* SSID */
ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
*pos++ = WLAN_EID_SSID;
*pos++ = ifsta->ssid_len;
memcpy(pos, ifsta->ssid, ifsta->ssid_len);
len = mode->num_rates;
if (len > 8)
len = 8;
pos = skb_put(skb, len + 2);
*pos++ = WLAN_EID_SUPP_RATES;
*pos++ = len;
for (i = 0; i < len; i++) {
int rate = mode->rates[i].rate;
*pos++ = (u8) (rate / 5);
}
if (mode->num_rates > len) {
pos = skb_put(skb, mode->num_rates - len + 2);
*pos++ = WLAN_EID_EXT_SUPP_RATES;
*pos++ = mode->num_rates - len;
for (i = len; i < mode->num_rates; i++) {
int rate = mode->rates[i].rate;
*pos++ = (u8) (rate / 5);
}
}
if (ifsta->extra_ie) {
pos = skb_put(skb, ifsta->extra_ie_len);
memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
}
if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
pos = skb_put(skb, 9);
*pos++ = WLAN_EID_VENDOR_SPECIFIC;
*pos++ = 7; /* len */
*pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
*pos++ = 0x50;
*pos++ = 0xf2;
*pos++ = 2; /* WME */
*pos++ = 0; /* WME info */
*pos++ = 1; /* WME ver */
*pos++ = 0;
}
kfree(ifsta->assocreq_ies);
ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
if (ifsta->assocreq_ies)
memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
ieee80211_sta_tx(dev, skb, 0);
}
static void ieee80211_send_deauth(struct net_device *dev,
struct ieee80211_if_sta *ifsta, u16 reason)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
"frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_DEAUTH);
skb_put(skb, 2);
mgmt->u.deauth.reason_code = cpu_to_le16(reason);
ieee80211_sta_tx(dev, skb, 0);
}
static void ieee80211_send_disassoc(struct net_device *dev,
struct ieee80211_if_sta *ifsta, u16 reason)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
"frame\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_DISASSOC);
skb_put(skb, 2);
mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
ieee80211_sta_tx(dev, skb, 0);
}
static int ieee80211_privacy_mismatch(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_sta_bss *bss;
int res = 0;
if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL) ||
ifsta->key_management_enabled)
return 0;
bss = ieee80211_rx_bss_get(dev, ifsta->bssid);
if (!bss)
return 0;
if (ieee80211_sta_wep_configured(dev) !=
!!(bss->capability & WLAN_CAPABILITY_PRIVACY))
res = 1;
ieee80211_rx_bss_put(dev, bss);
return res;
}
static void ieee80211_associate(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
ifsta->assoc_tries++;
if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
printk(KERN_DEBUG "%s: association with AP " MAC_FMT
" timed out\n",
dev->name, MAC_ARG(ifsta->bssid));
ifsta->state = IEEE80211_DISABLED;
return;
}
ifsta->state = IEEE80211_ASSOCIATE;
printk(KERN_DEBUG "%s: associate with AP " MAC_FMT "\n",
dev->name, MAC_ARG(ifsta->bssid));
if (ieee80211_privacy_mismatch(dev, ifsta)) {
printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
"mixed-cell disabled - abort association\n", dev->name);
ifsta->state = IEEE80211_DISABLED;
return;
}
ieee80211_send_assoc(dev, ifsta);
mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
}
static void ieee80211_associated(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sta_info *sta;
int disassoc;
/* TODO: start monitoring current AP signal quality and number of
* missed beacons. Scan other channels every now and then and search
* for better APs. */
/* TODO: remove expired BSSes */
ifsta->state = IEEE80211_ASSOCIATED;
sta = sta_info_get(local, ifsta->bssid);
if (!sta) {
printk(KERN_DEBUG "%s: No STA entry for own AP " MAC_FMT "\n",
dev->name, MAC_ARG(ifsta->bssid));
disassoc = 1;
} else {
disassoc = 0;
if (time_after(jiffies,
sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
printk(KERN_DEBUG "%s: No ProbeResp from "
"current AP " MAC_FMT " - assume out of "
"range\n",
dev->name, MAC_ARG(ifsta->bssid));
disassoc = 1;
sta_info_free(sta);
} else
ieee80211_send_probe_req(dev, ifsta->bssid,
local->scan_ssid,
local->scan_ssid_len);
ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
} else {
ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
if (time_after(jiffies, ifsta->last_probe +
IEEE80211_PROBE_INTERVAL)) {
ifsta->last_probe = jiffies;
ieee80211_send_probe_req(dev, ifsta->bssid,
ifsta->ssid,
ifsta->ssid_len);
}
}
sta_info_put(sta);
}
if (disassoc) {
union iwreq_data wrqu;
memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
wrqu.ap_addr.sa_family = ARPHRD_ETHER;
wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
mod_timer(&ifsta->timer, jiffies +
IEEE80211_MONITORING_INTERVAL + 30 * HZ);
} else {
mod_timer(&ifsta->timer, jiffies +
IEEE80211_MONITORING_INTERVAL);
}
}
static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
u8 *ssid, size_t ssid_len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hw_mode *mode;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
u8 *pos, *supp_rates, *esupp_rates = NULL;
int i;
skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
"request\n", dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
memset(mgmt, 0, 24);
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_PROBE_REQ);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
if (dst) {
memcpy(mgmt->da, dst, ETH_ALEN);
memcpy(mgmt->bssid, dst, ETH_ALEN);
} else {
memset(mgmt->da, 0xff, ETH_ALEN);
memset(mgmt->bssid, 0xff, ETH_ALEN);
}
pos = skb_put(skb, 2 + ssid_len);
*pos++ = WLAN_EID_SSID;
*pos++ = ssid_len;
memcpy(pos, ssid, ssid_len);
supp_rates = skb_put(skb, 2);
supp_rates[0] = WLAN_EID_SUPP_RATES;
supp_rates[1] = 0;
mode = local->oper_hw_mode;
for (i = 0; i < mode->num_rates; i++) {
struct ieee80211_rate *rate = &mode->rates[i];
if (!(rate->flags & IEEE80211_RATE_SUPPORTED))
continue;
if (esupp_rates) {
pos = skb_put(skb, 1);
esupp_rates[1]++;
} else if (supp_rates[1] == 8) {
esupp_rates = skb_put(skb, 3);
esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
esupp_rates[1] = 1;
pos = &esupp_rates[2];
} else {
pos = skb_put(skb, 1);
supp_rates[1]++;
}
*pos = rate->rate / 5;
}
ieee80211_sta_tx(dev, skb, 0);
}
static int ieee80211_sta_wep_configured(struct net_device *dev)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (!sdata || !sdata->default_key ||
sdata->default_key->conf.alg != ALG_WEP)
return 0;
return 1;
}
static void ieee80211_auth_completed(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
printk(KERN_DEBUG "%s: authenticated\n", dev->name);
ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
ieee80211_associate(dev, ifsta);
}
static void ieee80211_auth_challenge(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len)
{
u8 *pos;
struct ieee802_11_elems elems;
printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
pos = mgmt->u.auth.variable;
if (ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems)
== ParseFailed) {
printk(KERN_DEBUG "%s: failed to parse Auth(challenge)\n",
dev->name);
return;
}
if (!elems.challenge) {
printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
"frame\n", dev->name);
return;
}
ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
elems.challenge_len + 2, 1);
}
static void ieee80211_rx_mgmt_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
u16 auth_alg, auth_transaction, status_code;
if (ifsta->state != IEEE80211_AUTHENTICATE &&
sdata->type != IEEE80211_IF_TYPE_IBSS) {
printk(KERN_DEBUG "%s: authentication frame received from "
MAC_FMT ", but not in authenticate state - ignored\n",
dev->name, MAC_ARG(mgmt->sa));
return;
}
if (len < 24 + 6) {
printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
"received from " MAC_FMT " - ignored\n",
dev->name, len, MAC_ARG(mgmt->sa));
return;
}
if (sdata->type != IEEE80211_IF_TYPE_IBSS &&
memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
printk(KERN_DEBUG "%s: authentication frame received from "
"unknown AP (SA=" MAC_FMT " BSSID=" MAC_FMT ") - "
"ignored\n", dev->name, MAC_ARG(mgmt->sa),
MAC_ARG(mgmt->bssid));
return;
}
if (sdata->type != IEEE80211_IF_TYPE_IBSS &&
memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
printk(KERN_DEBUG "%s: authentication frame received from "
"unknown BSSID (SA=" MAC_FMT " BSSID=" MAC_FMT ") - "
"ignored\n", dev->name, MAC_ARG(mgmt->sa),
MAC_ARG(mgmt->bssid));
return;
}
auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
status_code = le16_to_cpu(mgmt->u.auth.status_code);
printk(KERN_DEBUG "%s: RX authentication from " MAC_FMT " (alg=%d "
"transaction=%d status=%d)\n",
dev->name, MAC_ARG(mgmt->sa), auth_alg,
auth_transaction, status_code);
if (sdata->type == IEEE80211_IF_TYPE_IBSS) {
/* IEEE 802.11 standard does not require authentication in IBSS
* networks and most implementations do not seem to use it.
* However, try to reply to authentication attempts if someone
* has actually implemented this.
* TODO: Could implement shared key authentication. */
if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
printk(KERN_DEBUG "%s: unexpected IBSS authentication "
"frame (alg=%d transaction=%d)\n",
dev->name, auth_alg, auth_transaction);
return;
}
ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
}
if (auth_alg != ifsta->auth_alg ||
auth_transaction != ifsta->auth_transaction) {
printk(KERN_DEBUG "%s: unexpected authentication frame "
"(alg=%d transaction=%d)\n",
dev->name, auth_alg, auth_transaction);
return;
}
if (status_code != WLAN_STATUS_SUCCESS) {
printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
"code=%d)\n", dev->name, ifsta->auth_alg, status_code);
if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
u8 algs[3];
const int num_algs = ARRAY_SIZE(algs);
int i, pos;
algs[0] = algs[1] = algs[2] = 0xff;
if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
algs[0] = WLAN_AUTH_OPEN;
if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
algs[1] = WLAN_AUTH_SHARED_KEY;
if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
algs[2] = WLAN_AUTH_LEAP;
if (ifsta->auth_alg == WLAN_AUTH_OPEN)
pos = 0;
else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
pos = 1;
else
pos = 2;
for (i = 0; i < num_algs; i++) {
pos++;
if (pos >= num_algs)
pos = 0;
if (algs[pos] == ifsta->auth_alg ||
algs[pos] == 0xff)
continue;
if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
!ieee80211_sta_wep_configured(dev))
continue;
ifsta->auth_alg = algs[pos];
printk(KERN_DEBUG "%s: set auth_alg=%d for "
"next try\n",
dev->name, ifsta->auth_alg);
break;
}
}
return;
}
switch (ifsta->auth_alg) {
case WLAN_AUTH_OPEN:
case WLAN_AUTH_LEAP:
ieee80211_auth_completed(dev, ifsta);
break;
case WLAN_AUTH_SHARED_KEY:
if (ifsta->auth_transaction == 4)
ieee80211_auth_completed(dev, ifsta);
else
ieee80211_auth_challenge(dev, ifsta, mgmt, len);
break;
}
}
static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len)
{
u16 reason_code;
if (len < 24 + 2) {
printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
"received from " MAC_FMT " - ignored\n",
dev->name, len, MAC_ARG(mgmt->sa));
return;
}
if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
printk(KERN_DEBUG "%s: deauthentication frame received from "
"unknown AP (SA=" MAC_FMT " BSSID=" MAC_FMT ") - "
"ignored\n", dev->name, MAC_ARG(mgmt->sa),
MAC_ARG(mgmt->bssid));
return;
}
reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
printk(KERN_DEBUG "%s: RX deauthentication from " MAC_FMT
" (reason=%d)\n",
dev->name, MAC_ARG(mgmt->sa), reason_code);
if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
}
if (ifsta->state == IEEE80211_AUTHENTICATE ||
ifsta->state == IEEE80211_ASSOCIATE ||
ifsta->state == IEEE80211_ASSOCIATED) {
ifsta->state = IEEE80211_AUTHENTICATE;
mod_timer(&ifsta->timer, jiffies +
IEEE80211_RETRY_AUTH_INTERVAL);
}
ieee80211_set_disassoc(dev, ifsta, 1);
ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
}
static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len)
{
u16 reason_code;
if (len < 24 + 2) {
printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
"received from " MAC_FMT " - ignored\n",
dev->name, len, MAC_ARG(mgmt->sa));
return;
}
if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
printk(KERN_DEBUG "%s: disassociation frame received from "
"unknown AP (SA=" MAC_FMT " BSSID=" MAC_FMT ") - "
"ignored\n", dev->name, MAC_ARG(mgmt->sa),
MAC_ARG(mgmt->bssid));
return;
}
reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
printk(KERN_DEBUG "%s: RX disassociation from " MAC_FMT
" (reason=%d)\n",
dev->name, MAC_ARG(mgmt->sa), reason_code);
if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
printk(KERN_DEBUG "%s: disassociated\n", dev->name);
if (ifsta->state == IEEE80211_ASSOCIATED) {
ifsta->state = IEEE80211_ASSOCIATE;
mod_timer(&ifsta->timer, jiffies +
IEEE80211_RETRY_AUTH_INTERVAL);
}
ieee80211_set_disassoc(dev, ifsta, 0);
}
static void ieee80211_rx_mgmt_assoc_resp(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len,
int reassoc)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_hw_mode *mode;
struct sta_info *sta;
u32 rates;
u16 capab_info, status_code, aid;
struct ieee802_11_elems elems;
u8 *pos;
int i, j;
/* AssocResp and ReassocResp have identical structure, so process both
* of them in this function. */
if (ifsta->state != IEEE80211_ASSOCIATE) {
printk(KERN_DEBUG "%s: association frame received from "
MAC_FMT ", but not in associate state - ignored\n",
dev->name, MAC_ARG(mgmt->sa));
return;
}
if (len < 24 + 6) {
printk(KERN_DEBUG "%s: too short (%zd) association frame "
"received from " MAC_FMT " - ignored\n",
dev->name, len, MAC_ARG(mgmt->sa));
return;
}
if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
printk(KERN_DEBUG "%s: association frame received from "
"unknown AP (SA=" MAC_FMT " BSSID=" MAC_FMT ") - "
"ignored\n", dev->name, MAC_ARG(mgmt->sa),
MAC_ARG(mgmt->bssid));
return;
}
capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
"set\n", dev->name, aid);
aid &= ~(BIT(15) | BIT(14));
printk(KERN_DEBUG "%s: RX %sssocResp from " MAC_FMT " (capab=0x%x "
"status=%d aid=%d)\n",
dev->name, reassoc ? "Rea" : "A", MAC_ARG(mgmt->sa),
capab_info, status_code, aid);
if (status_code != WLAN_STATUS_SUCCESS) {
printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
dev->name, status_code);
/* if this was a reassociation, ensure we try a "full"
* association next time. This works around some broken APs
* which do not correctly reject reassociation requests. */
ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
return;
}
pos = mgmt->u.assoc_resp.variable;
if (ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems)
== ParseFailed) {
printk(KERN_DEBUG "%s: failed to parse AssocResp\n",
dev->name);
return;
}
if (!elems.supp_rates) {
printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
dev->name);
return;
}
/* it probably doesn't, but if the frame includes an ERP value then
* update our stored copy */
if (elems.erp_info && elems.erp_info_len >= 1) {
struct ieee80211_sta_bss *bss
= ieee80211_rx_bss_get(dev, ifsta->bssid);
if (bss) {
bss->erp_value = elems.erp_info[0];
bss->has_erp_value = 1;
ieee80211_rx_bss_put(dev, bss);
}
}
printk(KERN_DEBUG "%s: associated\n", dev->name);
ifsta->aid = aid;
ifsta->ap_capab = capab_info;
kfree(ifsta->assocresp_ies);
ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
if (ifsta->assocresp_ies)
memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
ieee80211_set_associated(dev, ifsta, 1);
/* Add STA entry for the AP */
sta = sta_info_get(local, ifsta->bssid);
if (!sta) {
struct ieee80211_sta_bss *bss;
sta = sta_info_add(local, dev, ifsta->bssid, GFP_KERNEL);
if (!sta) {
printk(KERN_DEBUG "%s: failed to add STA entry for the"
" AP\n", dev->name);
return;
}
bss = ieee80211_rx_bss_get(dev, ifsta->bssid);
if (bss) {
sta->last_rssi = bss->rssi;
sta->last_signal = bss->signal;
sta->last_noise = bss->noise;
ieee80211_rx_bss_put(dev, bss);
}
}
sta->dev = dev;
sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP;
rates = 0;
mode = local->oper_hw_mode;
for (i = 0; i < elems.supp_rates_len; i++) {
int rate = (elems.supp_rates[i] & 0x7f) * 5;
for (j = 0; j < mode->num_rates; j++)
if (mode->rates[j].rate == rate)
rates |= BIT(j);
}
for (i = 0; i < elems.ext_supp_rates_len; i++) {
int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
for (j = 0; j < mode->num_rates; j++)
if (mode->rates[j].rate == rate)
rates |= BIT(j);
}
sta->supp_rates = rates;
rate_control_rate_init(sta, local);
if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
sta->flags |= WLAN_STA_WME;
ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
elems.wmm_param_len);
}
sta_info_put(sta);
ieee80211_associated(dev, ifsta);
}
/* Caller must hold local->sta_bss_lock */
static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
struct ieee80211_sta_bss *bss)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
bss->hnext = local->sta_bss_hash[STA_HASH(bss->bssid)];
local->sta_bss_hash[STA_HASH(bss->bssid)] = bss;
}
/* Caller must hold local->sta_bss_lock */
static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
struct ieee80211_sta_bss *bss)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *b, *prev = NULL;
b = local->sta_bss_hash[STA_HASH(bss->bssid)];
while (b) {
if (b == bss) {
if (!prev)
local->sta_bss_hash[STA_HASH(bss->bssid)] =
bss->hnext;
else
prev->hnext = bss->hnext;
break;
}
prev = b;
b = b->hnext;
}
}
static struct ieee80211_sta_bss *
ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
if (!bss)
return NULL;
atomic_inc(&bss->users);
atomic_inc(&bss->users);
memcpy(bss->bssid, bssid, ETH_ALEN);
spin_lock_bh(&local->sta_bss_lock);
/* TODO: order by RSSI? */
list_add_tail(&bss->list, &local->sta_bss_list);
__ieee80211_rx_bss_hash_add(dev, bss);
spin_unlock_bh(&local->sta_bss_lock);
return bss;
}
static struct ieee80211_sta_bss *
ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
spin_lock_bh(&local->sta_bss_lock);
bss = local->sta_bss_hash[STA_HASH(bssid)];
while (bss) {
if (memcmp(bss->bssid, bssid, ETH_ALEN) == 0) {
atomic_inc(&bss->users);
break;
}
bss = bss->hnext;
}
spin_unlock_bh(&local->sta_bss_lock);
return bss;
}
static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
{
kfree(bss->wpa_ie);
kfree(bss->rsn_ie);
kfree(bss->wmm_ie);
kfree(bss);
}
static void ieee80211_rx_bss_put(struct net_device *dev,
struct ieee80211_sta_bss *bss)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
if (!atomic_dec_and_test(&bss->users))
return;
spin_lock_bh(&local->sta_bss_lock);
__ieee80211_rx_bss_hash_del(dev, bss);
list_del(&bss->list);
spin_unlock_bh(&local->sta_bss_lock);
ieee80211_rx_bss_free(bss);
}
void ieee80211_rx_bss_list_init(struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
spin_lock_init(&local->sta_bss_lock);
INIT_LIST_HEAD(&local->sta_bss_list);
}
void ieee80211_rx_bss_list_deinit(struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss, *tmp;
list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
ieee80211_rx_bss_put(dev, bss);
}
static void ieee80211_rx_bss_info(struct net_device *dev,
struct ieee80211_mgmt *mgmt,
size_t len,
struct ieee80211_rx_status *rx_status,
int beacon)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee802_11_elems elems;
size_t baselen;
int channel, invalid = 0, clen;
struct ieee80211_sta_bss *bss;
struct sta_info *sta;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
u64 timestamp;
if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
return; /* ignore ProbeResp to foreign address */
#if 0
printk(KERN_DEBUG "%s: RX %s from " MAC_FMT " to " MAC_FMT "\n",
dev->name, beacon ? "Beacon" : "Probe Response",
MAC_ARG(mgmt->sa), MAC_ARG(mgmt->da));
#endif
baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
if (baselen > len)
return;
timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
if (sdata->type == IEEE80211_IF_TYPE_IBSS && beacon &&
memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0) {
#ifdef CONFIG_MAC80211_IBSS_DEBUG
static unsigned long last_tsf_debug = 0;
u64 tsf;
if (local->ops->get_tsf)
tsf = local->ops->get_tsf(local_to_hw(local));
else
tsf = -1LLU;
if (time_after(jiffies, last_tsf_debug + 5 * HZ)) {
printk(KERN_DEBUG "RX beacon SA=" MAC_FMT " BSSID="
MAC_FMT " TSF=0x%llx BCN=0x%llx diff=%lld "
"@%lu\n",
MAC_ARG(mgmt->sa), MAC_ARG(mgmt->bssid),
(unsigned long long)tsf,
(unsigned long long)timestamp,
(unsigned long long)(tsf - timestamp),
jiffies);
last_tsf_debug = jiffies;
}
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
}
if (ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen,
&elems) == ParseFailed)
invalid = 1;
if (sdata->type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
(sta = sta_info_get(local, mgmt->sa))) {
struct ieee80211_hw_mode *mode;
struct ieee80211_rate *rates;
size_t num_rates;
u32 supp_rates, prev_rates;
int i, j;
mode = local->sta_scanning ?
local->scan_hw_mode : local->oper_hw_mode;
rates = mode->rates;
num_rates = mode->num_rates;
supp_rates = 0;
for (i = 0; i < elems.supp_rates_len +
elems.ext_supp_rates_len; i++) {
u8 rate = 0;
int own_rate;
if (i < elems.supp_rates_len)
rate = elems.supp_rates[i];
else if (elems.ext_supp_rates)
rate = elems.ext_supp_rates
[i - elems.supp_rates_len];
own_rate = 5 * (rate & 0x7f);
for (j = 0; j < num_rates; j++)
if (rates[j].rate == own_rate)
supp_rates |= BIT(j);
}
prev_rates = sta->supp_rates;
sta->supp_rates &= supp_rates;
if (sta->supp_rates == 0) {
/* No matching rates - this should not really happen.
* Make sure that at least one rate is marked
* supported to avoid issues with TX rate ctrl. */
sta->supp_rates = sdata->u.sta.supp_rates_bits;
}
if (sta->supp_rates != prev_rates) {
printk(KERN_DEBUG "%s: updated supp_rates set for "
MAC_FMT " based on beacon info (0x%x & 0x%x -> "
"0x%x)\n",
dev->name, MAC_ARG(sta->addr), prev_rates,
supp_rates, sta->supp_rates);
}
sta_info_put(sta);
}
if (!elems.ssid)
return;
if (elems.ds_params && elems.ds_params_len == 1)
channel = elems.ds_params[0];
else
channel = rx_status->channel;
bss = ieee80211_rx_bss_get(dev, mgmt->bssid);
if (!bss) {
bss = ieee80211_rx_bss_add(dev, mgmt->bssid);
if (!bss)
return;
} else {
#if 0
/* TODO: order by RSSI? */
spin_lock_bh(&local->sta_bss_lock);
list_move_tail(&bss->list, &local->sta_bss_list);
spin_unlock_bh(&local->sta_bss_lock);
#endif
}
if (bss->probe_resp && beacon) {
/* Do not allow beacon to override data from Probe Response. */
ieee80211_rx_bss_put(dev, bss);
return;
}
/* save the ERP value so that it is available at association time */
if (elems.erp_info && elems.erp_info_len >= 1) {
bss->erp_value = elems.erp_info[0];
bss->has_erp_value = 1;
}
bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
if (elems.ssid && elems.ssid_len <= IEEE80211_MAX_SSID_LEN) {
memcpy(bss->ssid, elems.ssid, elems.ssid_len);
bss->ssid_len = elems.ssid_len;
}
bss->supp_rates_len = 0;
if (elems.supp_rates) {
clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
if (clen > elems.supp_rates_len)
clen = elems.supp_rates_len;
memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
clen);
bss->supp_rates_len += clen;
}
if (elems.ext_supp_rates) {
clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
if (clen > elems.ext_supp_rates_len)
clen = elems.ext_supp_rates_len;
memcpy(&bss->supp_rates[bss->supp_rates_len],
elems.ext_supp_rates, clen);
bss->supp_rates_len += clen;
}
if (elems.wpa &&
(!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
kfree(bss->wpa_ie);
bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
if (bss->wpa_ie) {
memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
bss->wpa_ie_len = elems.wpa_len + 2;
} else
bss->wpa_ie_len = 0;
} else if (!elems.wpa && bss->wpa_ie) {
kfree(bss->wpa_ie);
bss->wpa_ie = NULL;
bss->wpa_ie_len = 0;
}
if (elems.rsn &&
(!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
kfree(bss->rsn_ie);
bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
if (bss->rsn_ie) {
memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
bss->rsn_ie_len = elems.rsn_len + 2;
} else
bss->rsn_ie_len = 0;
} else if (!elems.rsn && bss->rsn_ie) {
kfree(bss->rsn_ie);
bss->rsn_ie = NULL;
bss->rsn_ie_len = 0;
}
if (elems.wmm_param &&
(!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
kfree(bss->wmm_ie);
bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
if (bss->wmm_ie) {
memcpy(bss->wmm_ie, elems.wmm_param - 2,
elems.wmm_param_len + 2);
bss->wmm_ie_len = elems.wmm_param_len + 2;
} else
bss->wmm_ie_len = 0;
} else if (!elems.wmm_param && bss->wmm_ie) {
kfree(bss->wmm_ie);
bss->wmm_ie = NULL;
bss->wmm_ie_len = 0;
}
bss->hw_mode = rx_status->phymode;
bss->channel = channel;
bss->freq = rx_status->freq;
if (channel != rx_status->channel &&
(bss->hw_mode == MODE_IEEE80211G ||
bss->hw_mode == MODE_IEEE80211B) &&
channel >= 1 && channel <= 14) {
static const int freq_list[] = {
2412, 2417, 2422, 2427, 2432, 2437, 2442,
2447, 2452, 2457, 2462, 2467, 2472, 2484
};
/* IEEE 802.11g/b mode can receive packets from neighboring
* channels, so map the channel into frequency. */
bss->freq = freq_list[channel - 1];
}
bss->timestamp = timestamp;
bss->last_update = jiffies;
bss->rssi = rx_status->ssi;
bss->signal = rx_status->signal;
bss->noise = rx_status->noise;
if (!beacon)
bss->probe_resp++;
ieee80211_rx_bss_put(dev, bss);
}
static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
struct ieee80211_mgmt *mgmt,
size_t len,
struct ieee80211_rx_status *rx_status)
{
ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
}
static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
struct ieee80211_mgmt *mgmt,
size_t len,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_sta *ifsta;
size_t baselen;
struct ieee802_11_elems elems;
ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (sdata->type != IEEE80211_IF_TYPE_STA)
return;
ifsta = &sdata->u.sta;
if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
return;
/* Process beacon from the current BSS */
baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
if (baselen > len)
return;
if (ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen,
&elems) == ParseFailed)
return;
if (elems.erp_info && elems.erp_info_len >= 1)
ieee80211_handle_erp_ie(dev, elems.erp_info[0]);
if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
elems.wmm_param_len);
}
}
static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_mgmt *mgmt,
size_t len,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
int tx_last_beacon;
struct sk_buff *skb;
struct ieee80211_mgmt *resp;
u8 *pos, *end;
if (sdata->type != IEEE80211_IF_TYPE_IBSS ||
ifsta->state != IEEE80211_IBSS_JOINED ||
len < 24 + 2 || !ifsta->probe_resp)
return;
if (local->ops->tx_last_beacon)
tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
else
tx_last_beacon = 1;
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "%s: RX ProbeReq SA=" MAC_FMT " DA=" MAC_FMT " BSSID="
MAC_FMT " (tx_last_beacon=%d)\n",
dev->name, MAC_ARG(mgmt->sa), MAC_ARG(mgmt->da),
MAC_ARG(mgmt->bssid), tx_last_beacon);
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
if (!tx_last_beacon)
return;
if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
return;
end = ((u8 *) mgmt) + len;
pos = mgmt->u.probe_req.variable;
if (pos[0] != WLAN_EID_SSID ||
pos + 2 + pos[1] > end) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
"from " MAC_FMT "\n",
dev->name, MAC_ARG(mgmt->sa));
}
return;
}
if (pos[1] != 0 &&
(pos[1] != ifsta->ssid_len ||
memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
/* Ignore ProbeReq for foreign SSID */
return;
}
/* Reply with ProbeResp */
skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
if (!skb)
return;
resp = (struct ieee80211_mgmt *) skb->data;
memcpy(resp->da, mgmt->sa, ETH_ALEN);
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "%s: Sending ProbeResp to " MAC_FMT "\n",
dev->name, MAC_ARG(resp->da));
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
ieee80211_sta_tx(dev, skb, 0);
}
void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_sta *ifsta;
struct ieee80211_mgmt *mgmt;
u16 fc;
if (skb->len < 24)
goto fail;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ifsta = &sdata->u.sta;
mgmt = (struct ieee80211_mgmt *) skb->data;
fc = le16_to_cpu(mgmt->frame_control);
switch (fc & IEEE80211_FCTL_STYPE) {
case IEEE80211_STYPE_PROBE_REQ:
case IEEE80211_STYPE_PROBE_RESP:
case IEEE80211_STYPE_BEACON:
memcpy(skb->cb, rx_status, sizeof(*rx_status));
case IEEE80211_STYPE_AUTH:
case IEEE80211_STYPE_ASSOC_RESP:
case IEEE80211_STYPE_REASSOC_RESP:
case IEEE80211_STYPE_DEAUTH:
case IEEE80211_STYPE_DISASSOC:
skb_queue_tail(&ifsta->skb_queue, skb);
queue_work(local->hw.workqueue, &ifsta->work);
return;
default:
printk(KERN_DEBUG "%s: received unknown management frame - "
"stype=%d\n", dev->name,
(fc & IEEE80211_FCTL_STYPE) >> 4);
break;
}
fail:
kfree_skb(skb);
}
static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
struct sk_buff *skb)
{
struct ieee80211_rx_status *rx_status;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_sta *ifsta;
struct ieee80211_mgmt *mgmt;
u16 fc;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ifsta = &sdata->u.sta;
rx_status = (struct ieee80211_rx_status *) skb->cb;
mgmt = (struct ieee80211_mgmt *) skb->data;
fc = le16_to_cpu(mgmt->frame_control);
switch (fc & IEEE80211_FCTL_STYPE) {
case IEEE80211_STYPE_PROBE_REQ:
ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
rx_status);
break;
case IEEE80211_STYPE_PROBE_RESP:
ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
break;
case IEEE80211_STYPE_BEACON:
ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
break;
case IEEE80211_STYPE_AUTH:
ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
break;
case IEEE80211_STYPE_ASSOC_RESP:
ieee80211_rx_mgmt_assoc_resp(dev, ifsta, mgmt, skb->len, 0);
break;
case IEEE80211_STYPE_REASSOC_RESP:
ieee80211_rx_mgmt_assoc_resp(dev, ifsta, mgmt, skb->len, 1);
break;
case IEEE80211_STYPE_DEAUTH:
ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
break;
case IEEE80211_STYPE_DISASSOC:
ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
break;
}
kfree_skb(skb);
}
void ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
struct ieee80211_rx_status *rx_status)
{
struct ieee80211_mgmt *mgmt;
u16 fc;
if (skb->len < 24) {
dev_kfree_skb(skb);
return;
}
mgmt = (struct ieee80211_mgmt *) skb->data;
fc = le16_to_cpu(mgmt->frame_control);
if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
ieee80211_rx_mgmt_probe_resp(dev, mgmt,
skb->len, rx_status);
} else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
rx_status);
}
}
dev_kfree_skb(skb);
}
static int ieee80211_sta_active_ibss(struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
int active = 0;
struct sta_info *sta;
read_lock_bh(&local->sta_lock);
list_for_each_entry(sta, &local->sta_list, list) {
if (sta->dev == dev &&
time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
jiffies)) {
active++;
break;
}
}
read_unlock_bh(&local->sta_lock);
return active;
}
static void ieee80211_sta_expire(struct net_device *dev)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sta_info *sta, *tmp;
LIST_HEAD(tmp_list);
write_lock_bh(&local->sta_lock);
list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
if (time_after(jiffies, sta->last_rx +
IEEE80211_IBSS_INACTIVITY_LIMIT)) {
printk(KERN_DEBUG "%s: expiring inactive STA " MAC_FMT
"\n", dev->name, MAC_ARG(sta->addr));
__sta_info_get(sta);
sta_info_remove(sta);
list_add(&sta->list, &tmp_list);
}
write_unlock_bh(&local->sta_lock);
list_for_each_entry_safe(sta, tmp, &tmp_list, list) {
sta_info_free(sta);
sta_info_put(sta);
}
}
static void ieee80211_sta_merge_ibss(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
ieee80211_sta_expire(dev);
if (ieee80211_sta_active_ibss(dev))
return;
printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
"IBSS networks with same SSID (merge)\n", dev->name);
ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
}
void ieee80211_sta_timer(unsigned long data)
{
struct ieee80211_sub_if_data *sdata =
(struct ieee80211_sub_if_data *) data;
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
struct ieee80211_local *local = wdev_priv(&sdata->wdev);
set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
queue_work(local->hw.workqueue, &ifsta->work);
}
void ieee80211_sta_work(struct work_struct *work)
{
struct ieee80211_sub_if_data *sdata =
container_of(work, struct ieee80211_sub_if_data, u.sta.work);
struct net_device *dev = sdata->dev;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_if_sta *ifsta;
struct sk_buff *skb;
if (!netif_running(dev))
return;
if (local->sta_scanning)
return;
if (sdata->type != IEEE80211_IF_TYPE_STA &&
sdata->type != IEEE80211_IF_TYPE_IBSS) {
printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
"(type=%d)\n", dev->name, sdata->type);
return;
}
ifsta = &sdata->u.sta;
while ((skb = skb_dequeue(&ifsta->skb_queue)))
ieee80211_sta_rx_queued_mgmt(dev, skb);
if (ifsta->state != IEEE80211_AUTHENTICATE &&
ifsta->state != IEEE80211_ASSOCIATE &&
test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
ieee80211_sta_start_scan(dev, NULL, 0);
return;
}
if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
if (ieee80211_sta_config_auth(dev, ifsta))
return;
clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
} else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
return;
switch (ifsta->state) {
case IEEE80211_DISABLED:
break;
case IEEE80211_AUTHENTICATE:
ieee80211_authenticate(dev, ifsta);
break;
case IEEE80211_ASSOCIATE:
ieee80211_associate(dev, ifsta);
break;
case IEEE80211_ASSOCIATED:
ieee80211_associated(dev, ifsta);
break;
case IEEE80211_IBSS_SEARCH:
ieee80211_sta_find_ibss(dev, ifsta);
break;
case IEEE80211_IBSS_JOINED:
ieee80211_sta_merge_ibss(dev, ifsta);
break;
default:
printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
ifsta->state);
break;
}
if (ieee80211_privacy_mismatch(dev, ifsta)) {
printk(KERN_DEBUG "%s: privacy configuration mismatch and "
"mixed-cell disabled - disassociate\n", dev->name);
ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
ieee80211_set_disassoc(dev, ifsta, 0);
}
}
static void ieee80211_sta_reset_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
if (local->ops->reset_tsf) {
/* Reset own TSF to allow time synchronization work. */
local->ops->reset_tsf(local_to_hw(local));
}
ifsta->wmm_last_param_set = -1; /* allow any WMM update */
if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
ifsta->auth_alg = WLAN_AUTH_OPEN;
else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
ifsta->auth_alg = WLAN_AUTH_LEAP;
else
ifsta->auth_alg = WLAN_AUTH_OPEN;
printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
ifsta->auth_alg);
ifsta->auth_transaction = -1;
ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
ifsta->auth_tries = ifsta->assoc_tries = 0;
netif_carrier_off(dev);
}
void ieee80211_sta_req_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (sdata->type != IEEE80211_IF_TYPE_STA)
return;
if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
IEEE80211_STA_AUTO_BSSID_SEL)) &&
(ifsta->flags & (IEEE80211_STA_SSID_SET |
IEEE80211_STA_AUTO_SSID_SEL))) {
set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
queue_work(local->hw.workqueue, &ifsta->work);
}
}
static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
const char *ssid, int ssid_len)
{
int tmp, hidden_ssid;
if (!memcmp(ifsta->ssid, ssid, ssid_len))
return 1;
if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
return 0;
hidden_ssid = 1;
tmp = ssid_len;
while (tmp--) {
if (ssid[tmp] != '\0') {
hidden_ssid = 0;
break;
}
}
if (hidden_ssid && ifsta->ssid_len == ssid_len)
return 1;
if (ssid_len == 1 && ssid[0] == ' ')
return 1;
return 0;
}
static int ieee80211_sta_config_auth(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_sta_bss *bss, *selected = NULL;
int top_rssi = 0, freq;
if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) {
ifsta->state = IEEE80211_AUTHENTICATE;
ieee80211_sta_reset_auth(dev, ifsta);
return 0;
}
spin_lock_bh(&local->sta_bss_lock);
freq = local->oper_channel->freq;
list_for_each_entry(bss, &local->sta_bss_list, list) {
if (!(bss->capability & WLAN_CAPABILITY_ESS))
continue;
if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
!!sdata->default_key)
continue;
if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
bss->freq != freq)
continue;
if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
continue;
if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
!ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
continue;
if (!selected || top_rssi < bss->rssi) {
selected = bss;
top_rssi = bss->rssi;
}
}
if (selected)
atomic_inc(&selected->users);
spin_unlock_bh(&local->sta_bss_lock);
if (selected) {
ieee80211_set_channel(local, -1, selected->freq);
if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
ieee80211_sta_set_ssid(dev, selected->ssid,
selected->ssid_len);
ieee80211_sta_set_bssid(dev, selected->bssid);
ieee80211_rx_bss_put(dev, selected);
ifsta->state = IEEE80211_AUTHENTICATE;
ieee80211_sta_reset_auth(dev, ifsta);
return 0;
} else {
if (ifsta->state != IEEE80211_AUTHENTICATE) {
if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
ieee80211_sta_start_scan(dev, NULL, 0);
else
ieee80211_sta_start_scan(dev, ifsta->ssid,
ifsta->ssid_len);
ifsta->state = IEEE80211_AUTHENTICATE;
set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
} else
ifsta->state = IEEE80211_DISABLED;
}
return -1;
}
static int ieee80211_sta_join_ibss(struct net_device *dev,
struct ieee80211_if_sta *ifsta,
struct ieee80211_sta_bss *bss)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
int res, rates, i, j;
struct sk_buff *skb;
struct ieee80211_mgmt *mgmt;
struct ieee80211_tx_control control;
struct ieee80211_rate *rate;
struct ieee80211_hw_mode *mode;
struct rate_control_extra extra;
u8 *pos;
struct ieee80211_sub_if_data *sdata;
/* Remove possible STA entries from other IBSS networks. */
sta_info_flush(local, NULL);
if (local->ops->reset_tsf) {
/* Reset own TSF to allow time synchronization work. */
local->ops->reset_tsf(local_to_hw(local));
}
memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
res = ieee80211_if_config(dev);
if (res)
return res;
local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
sdata->drop_unencrypted = bss->capability &
WLAN_CAPABILITY_PRIVACY ? 1 : 0;
res = ieee80211_set_channel(local, -1, bss->freq);
if (!(local->oper_channel->flag & IEEE80211_CHAN_W_IBSS)) {
printk(KERN_DEBUG "%s: IBSS not allowed on channel %d "
"(%d MHz)\n", dev->name, local->hw.conf.channel,
local->hw.conf.freq);
return -1;
}
/* Set beacon template based on scan results */
skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
do {
if (!skb)
break;
skb_reserve(skb, local->hw.extra_tx_headroom);
mgmt = (struct ieee80211_mgmt *)
skb_put(skb, 24 + sizeof(mgmt->u.beacon));
memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_BEACON);
memset(mgmt->da, 0xff, ETH_ALEN);
memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
mgmt->u.beacon.beacon_int =
cpu_to_le16(local->hw.conf.beacon_int);
mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
pos = skb_put(skb, 2 + ifsta->ssid_len);
*pos++ = WLAN_EID_SSID;
*pos++ = ifsta->ssid_len;
memcpy(pos, ifsta->ssid, ifsta->ssid_len);
rates = bss->supp_rates_len;
if (rates > 8)
rates = 8;
pos = skb_put(skb, 2 + rates);
*pos++ = WLAN_EID_SUPP_RATES;
*pos++ = rates;
memcpy(pos, bss->supp_rates, rates);
pos = skb_put(skb, 2 + 1);
*pos++ = WLAN_EID_DS_PARAMS;
*pos++ = 1;
*pos++ = bss->channel;
pos = skb_put(skb, 2 + 2);
*pos++ = WLAN_EID_IBSS_PARAMS;
*pos++ = 2;
/* FIX: set ATIM window based on scan results */
*pos++ = 0;
*pos++ = 0;
if (bss->supp_rates_len > 8) {
rates = bss->supp_rates_len - 8;
pos = skb_put(skb, 2 + rates);
*pos++ = WLAN_EID_EXT_SUPP_RATES;
*pos++ = rates;
memcpy(pos, &bss->supp_rates[8], rates);
}
memset(&control, 0, sizeof(control));
memset(&extra, 0, sizeof(extra));
extra.mode = local->oper_hw_mode;
rate = rate_control_get_rate(local, dev, skb, &extra);
if (!rate) {
printk(KERN_DEBUG "%s: Failed to determine TX rate "
"for IBSS beacon\n", dev->name);
break;
}
control.tx_rate =
((sdata->flags & IEEE80211_SDATA_SHORT_PREAMBLE) &&
(rate->flags & IEEE80211_RATE_PREAMBLE2)) ?
rate->val2 : rate->val;
control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
control.power_level = local->hw.conf.power_level;
control.flags |= IEEE80211_TXCTL_NO_ACK;
control.retry_limit = 1;
ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
if (ifsta->probe_resp) {
mgmt = (struct ieee80211_mgmt *)
ifsta->probe_resp->data;
mgmt->frame_control =
IEEE80211_FC(IEEE80211_FTYPE_MGMT,
IEEE80211_STYPE_PROBE_RESP);
} else {
printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
"template for IBSS\n", dev->name);
}
if (local->ops->beacon_update &&
local->ops->beacon_update(local_to_hw(local),
skb, &control) == 0) {
printk(KERN_DEBUG "%s: Configured IBSS beacon "
"template based on scan results\n", dev->name);
skb = NULL;
}
rates = 0;
mode = local->oper_hw_mode;
for (i = 0; i < bss->supp_rates_len; i++) {
int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
for (j = 0; j < mode->num_rates; j++)
if (mode->rates[j].rate == bitrate)
rates |= BIT(j);
}
ifsta->supp_rates_bits = rates;
} while (0);
if (skb) {
printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
"template\n", dev->name);
dev_kfree_skb(skb);
}
ifsta->state = IEEE80211_IBSS_JOINED;
mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
ieee80211_rx_bss_put(dev, bss);
return res;
}
static int ieee80211_sta_create_ibss(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
struct ieee80211_sub_if_data *sdata;
struct ieee80211_hw_mode *mode;
u8 bssid[ETH_ALEN], *pos;
int i;
#if 0
/* Easier testing, use fixed BSSID. */
memset(bssid, 0xfe, ETH_ALEN);
#else
/* Generate random, not broadcast, locally administered BSSID. Mix in
* own MAC address to make sure that devices that do not have proper
* random number generator get different BSSID. */
get_random_bytes(bssid, ETH_ALEN);
for (i = 0; i < ETH_ALEN; i++)
bssid[i] ^= dev->dev_addr[i];
bssid[0] &= ~0x01;
bssid[0] |= 0x02;
#endif
printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID " MAC_FMT "\n",
dev->name, MAC_ARG(bssid));
bss = ieee80211_rx_bss_add(dev, bssid);
if (!bss)
return -ENOMEM;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
mode = local->oper_hw_mode;
if (local->hw.conf.beacon_int == 0)
local->hw.conf.beacon_int = 100;
bss->beacon_int = local->hw.conf.beacon_int;
bss->hw_mode = local->hw.conf.phymode;
bss->channel = local->hw.conf.channel;
bss->freq = local->hw.conf.freq;
bss->last_update = jiffies;
bss->capability = WLAN_CAPABILITY_IBSS;
if (sdata->default_key) {
bss->capability |= WLAN_CAPABILITY_PRIVACY;
} else
sdata->drop_unencrypted = 0;
bss->supp_rates_len = mode->num_rates;
pos = bss->supp_rates;
for (i = 0; i < mode->num_rates; i++) {
int rate = mode->rates[i].rate;
*pos++ = (u8) (rate / 5);
}
return ieee80211_sta_join_ibss(dev, ifsta, bss);
}
static int ieee80211_sta_find_ibss(struct net_device *dev,
struct ieee80211_if_sta *ifsta)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sta_bss *bss;
int found = 0;
u8 bssid[ETH_ALEN];
int active_ibss;
if (ifsta->ssid_len == 0)
return -EINVAL;
active_ibss = ieee80211_sta_active_ibss(dev);
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
dev->name, active_ibss);
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
spin_lock_bh(&local->sta_bss_lock);
list_for_each_entry(bss, &local->sta_bss_list, list) {
if (ifsta->ssid_len != bss->ssid_len ||
memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
|| !(bss->capability & WLAN_CAPABILITY_IBSS))
continue;
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG " bssid=" MAC_FMT " found\n",
MAC_ARG(bss->bssid));
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
memcpy(bssid, bss->bssid, ETH_ALEN);
found = 1;
if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
break;
}
spin_unlock_bh(&local->sta_bss_lock);
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG " sta_find_ibss: selected " MAC_FMT " current "
MAC_FMT "\n", MAC_ARG(bssid), MAC_ARG(ifsta->bssid));
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
(bss = ieee80211_rx_bss_get(dev, bssid))) {
printk(KERN_DEBUG "%s: Selected IBSS BSSID " MAC_FMT
" based on configured SSID\n",
dev->name, MAC_ARG(bssid));
return ieee80211_sta_join_ibss(dev, ifsta, bss);
}
#ifdef CONFIG_MAC80211_IBSS_DEBUG
printk(KERN_DEBUG " did not try to join ibss\n");
#endif /* CONFIG_MAC80211_IBSS_DEBUG */
/* Selected IBSS not found in current scan results - try to scan */
if (ifsta->state == IEEE80211_IBSS_JOINED &&
!ieee80211_sta_active_ibss(dev)) {
mod_timer(&ifsta->timer, jiffies +
IEEE80211_IBSS_MERGE_INTERVAL);
} else if (time_after(jiffies, local->last_scan_completed +
IEEE80211_SCAN_INTERVAL)) {
printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
"join\n", dev->name);
return ieee80211_sta_req_scan(dev, ifsta->ssid,
ifsta->ssid_len);
} else if (ifsta->state != IEEE80211_IBSS_JOINED) {
int interval = IEEE80211_SCAN_INTERVAL;
if (time_after(jiffies, ifsta->ibss_join_req +
IEEE80211_IBSS_JOIN_TIMEOUT)) {
if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
local->oper_channel->flag & IEEE80211_CHAN_W_IBSS)
return ieee80211_sta_create_ibss(dev, ifsta);
if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
printk(KERN_DEBUG "%s: IBSS not allowed on the"
" configured channel %d (%d MHz)\n",
dev->name, local->hw.conf.channel,
local->hw.conf.freq);
}
/* No IBSS found - decrease scan interval and continue
* scanning. */
interval = IEEE80211_SCAN_INTERVAL_SLOW;
}
ifsta->state = IEEE80211_IBSS_SEARCH;
mod_timer(&ifsta->timer, jiffies + interval);
return 0;
}
return 0;
}
int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_sta *ifsta;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
if (len > IEEE80211_MAX_SSID_LEN)
return -EINVAL;
/* TODO: This should always be done for IBSS, even if IEEE80211_QOS is
* not defined. */
if (local->ops->conf_tx) {
struct ieee80211_tx_queue_params qparam;
int i;
memset(&qparam, 0, sizeof(qparam));
/* TODO: are these ok defaults for all hw_modes? */
qparam.aifs = 2;
qparam.cw_min =
local->hw.conf.phymode == MODE_IEEE80211B ? 31 : 15;
qparam.cw_max = 1023;
qparam.burst_time = 0;
for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
{
local->ops->conf_tx(local_to_hw(local),
i + IEEE80211_TX_QUEUE_DATA0,
&qparam);
}
/* IBSS uses different parameters for Beacon sending */
qparam.cw_min++;
qparam.cw_min *= 2;
qparam.cw_min--;
local->ops->conf_tx(local_to_hw(local),
IEEE80211_TX_QUEUE_BEACON, &qparam);
}
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ifsta = &sdata->u.sta;
if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
memcpy(ifsta->ssid, ssid, len);
memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
ifsta->ssid_len = len;
if (len)
ifsta->flags |= IEEE80211_STA_SSID_SET;
else
ifsta->flags &= ~IEEE80211_STA_SSID_SET;
if (sdata->type == IEEE80211_IF_TYPE_IBSS &&
!(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
ifsta->ibss_join_req = jiffies;
ifsta->state = IEEE80211_IBSS_SEARCH;
return ieee80211_sta_find_ibss(dev, ifsta);
}
return 0;
}
int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
*len = ifsta->ssid_len;
return 0;
}
int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
{
struct ieee80211_sub_if_data *sdata;
struct ieee80211_if_sta *ifsta;
int res;
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
ifsta = &sdata->u.sta;
if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
memcpy(ifsta->bssid, bssid, ETH_ALEN);
res = ieee80211_if_config(dev);
if (res) {
printk(KERN_DEBUG "%s: Failed to config new BSSID to "
"the low-level driver\n", dev->name);
return res;
}
}
if (is_valid_ether_addr(bssid))
ifsta->flags |= IEEE80211_STA_BSSID_SET;
else
ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
return 0;
}
static void ieee80211_send_nullfunc(struct ieee80211_local *local,
struct ieee80211_sub_if_data *sdata,
int powersave)
{
struct sk_buff *skb;
struct ieee80211_hdr *nullfunc;
u16 fc;
skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
if (!skb) {
printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
"frame\n", sdata->dev->name);
return;
}
skb_reserve(skb, local->hw.extra_tx_headroom);
nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
memset(nullfunc, 0, 24);
fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
IEEE80211_FCTL_TODS;
if (powersave)
fc |= IEEE80211_FCTL_PM;
nullfunc->frame_control = cpu_to_le16(fc);
memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
ieee80211_sta_tx(sdata->dev, skb, 0);
}
void ieee80211_scan_completed(struct ieee80211_hw *hw)
{
struct ieee80211_local *local = hw_to_local(hw);
struct net_device *dev = local->scan_dev;
struct ieee80211_sub_if_data *sdata;
union iwreq_data wrqu;
local->last_scan_completed = jiffies;
wmb();
local->sta_scanning = 0;
if (ieee80211_hw_config(local))
printk(KERN_DEBUG "%s: failed to restore operational"
"channel after scan\n", dev->name);
if (!(local->hw.flags & IEEE80211_HW_NO_PROBE_FILTERING) &&
ieee80211_if_config(dev))
printk(KERN_DEBUG "%s: failed to restore operational"
"BSSID after scan\n", dev->name);
memset(&wrqu, 0, sizeof(wrqu));
wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
read_lock(&local->sub_if_lock);
list_for_each_entry(sdata, &local->sub_if_list, list) {
/* No need to wake the master device. */
if (sdata->dev == local->mdev)
continue;
if (sdata->type == IEEE80211_IF_TYPE_STA) {
if (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
ieee80211_send_nullfunc(local, sdata, 0);
ieee80211_sta_timer((unsigned long)sdata);
}
netif_wake_queue(sdata->dev);
}
read_unlock(&local->sub_if_lock);
sdata = IEEE80211_DEV_TO_SUB_IF(dev);
if (sdata->type == IEEE80211_IF_TYPE_IBSS) {
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
(!ifsta->state == IEEE80211_IBSS_JOINED &&
!ieee80211_sta_active_ibss(dev)))
ieee80211_sta_find_ibss(dev, ifsta);
}
}
EXPORT_SYMBOL(ieee80211_scan_completed);
void ieee80211_sta_scan_work(struct work_struct *work)
{
struct ieee80211_local *local =
container_of(work, struct ieee80211_local, scan_work.work);
struct net_device *dev = local->scan_dev;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_hw_mode *mode;
struct ieee80211_channel *chan;
int skip;
unsigned long next_delay = 0;
if (!local->sta_scanning)
return;
switch (local->scan_state) {
case SCAN_SET_CHANNEL:
mode = local->scan_hw_mode;
if (local->scan_hw_mode->list.next == &local->modes_list &&
local->scan_channel_idx >= mode->num_channels) {
ieee80211_scan_completed(local_to_hw(local));
return;
}
skip = !(local->enabled_modes & (1 << mode->mode));
chan = &mode->channels[local->scan_channel_idx];
if (!(chan->flag & IEEE80211_CHAN_W_SCAN) ||
(sdata->type == IEEE80211_IF_TYPE_IBSS &&
!(chan->flag & IEEE80211_CHAN_W_IBSS)) ||
(local->hw_modes & local->enabled_modes &
(1 << MODE_IEEE80211G) && mode->mode == MODE_IEEE80211B))
skip = 1;
if (!skip) {
#if 0
printk(KERN_DEBUG "%s: scan channel %d (%d MHz)\n",
dev->name, chan->chan, chan->freq);
#endif
local->scan_channel = chan;
if (ieee80211_hw_config(local)) {
printk(KERN_DEBUG "%s: failed to set channel "
"%d (%d MHz) for scan\n", dev->name,
chan->chan, chan->freq);
skip = 1;
}
}
local->scan_channel_idx++;
if (local->scan_channel_idx >= local->scan_hw_mode->num_channels) {
if (local->scan_hw_mode->list.next != &local->modes_list) {
local->scan_hw_mode = list_entry(local->scan_hw_mode->list.next,
struct ieee80211_hw_mode,
list);
local->scan_channel_idx = 0;
}
}
if (skip)
break;
next_delay = IEEE80211_PROBE_DELAY +
usecs_to_jiffies(local->hw.channel_change_time);
local->scan_state = SCAN_SEND_PROBE;
break;
case SCAN_SEND_PROBE:
if (local->scan_channel->flag & IEEE80211_CHAN_W_ACTIVE_SCAN) {
ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
local->scan_ssid_len);
next_delay = IEEE80211_CHANNEL_TIME;
} else
next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
local->scan_state = SCAN_SET_CHANNEL;
break;
}
if (local->sta_scanning)
queue_delayed_work(local->hw.workqueue, &local->scan_work,
next_delay);
}
static int ieee80211_sta_start_scan(struct net_device *dev,
u8 *ssid, size_t ssid_len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct ieee80211_sub_if_data *sdata;
if (ssid_len > IEEE80211_MAX_SSID_LEN)
return -EINVAL;
/* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
* BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
* BSSID: MACAddress
* SSID
* ScanType: ACTIVE, PASSIVE
* ProbeDelay: delay (in microseconds) to be used prior to transmitting
* a Probe frame during active scanning
* ChannelList
* MinChannelTime (>= ProbeDelay), in TU
* MaxChannelTime: (>= MinChannelTime), in TU
*/
/* MLME-SCAN.confirm
* BSSDescriptionSet
* ResultCode: SUCCESS, INVALID_PARAMETERS
*/
if (local->sta_scanning) {
if (local->scan_dev == dev)
return 0;
return -EBUSY;
}
if (local->ops->hw_scan) {
int rc = local->ops->hw_scan(local_to_hw(local),
ssid, ssid_len);
if (!rc) {
local->sta_scanning = 1;
local->scan_dev = dev;
}
return rc;
}
local->sta_scanning = 1;
read_lock(&local->sub_if_lock);
list_for_each_entry(sdata, &local->sub_if_list, list) {
/* Don't stop the master interface, otherwise we can't transmit
* probes! */
if (sdata->dev == local->mdev)
continue;
netif_stop_queue(sdata->dev);
if (sdata->type == IEEE80211_IF_TYPE_STA &&
(sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
ieee80211_send_nullfunc(local, sdata, 1);
}
read_unlock(&local->sub_if_lock);
if (ssid) {
local->scan_ssid_len = ssid_len;
memcpy(local->scan_ssid, ssid, ssid_len);
} else
local->scan_ssid_len = 0;
local->scan_state = SCAN_SET_CHANNEL;
local->scan_hw_mode = list_entry(local->modes_list.next,
struct ieee80211_hw_mode,
list);
local->scan_channel_idx = 0;
local->scan_dev = dev;
if (!(local->hw.flags & IEEE80211_HW_NO_PROBE_FILTERING) &&
ieee80211_if_config(dev))
printk(KERN_DEBUG "%s: failed to set BSSID for scan\n",
dev->name);
/* TODO: start scan as soon as all nullfunc frames are ACKed */
queue_delayed_work(local->hw.workqueue, &local->scan_work,
IEEE80211_CHANNEL_TIME);
return 0;
}
int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
if (sdata->type != IEEE80211_IF_TYPE_STA)
return ieee80211_sta_start_scan(dev, ssid, ssid_len);
if (local->sta_scanning) {
if (local->scan_dev == dev)
return 0;
return -EBUSY;
}
set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
queue_work(local->hw.workqueue, &ifsta->work);
return 0;
}
static char *
ieee80211_sta_scan_result(struct net_device *dev,
struct ieee80211_sta_bss *bss,
char *current_ev, char *end_buf)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct iw_event iwe;
if (time_after(jiffies,
bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
return current_ev;
if (!(local->enabled_modes & (1 << bss->hw_mode)))
return current_ev;
if (local->scan_flags & IEEE80211_SCAN_WPA_ONLY &&
!bss->wpa_ie && !bss->rsn_ie)
return current_ev;
if (local->scan_flags & IEEE80211_SCAN_MATCH_SSID &&
(local->scan_ssid_len != bss->ssid_len ||
memcmp(local->scan_ssid, bss->ssid, bss->ssid_len) != 0))
return current_ev;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWAP;
iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
IW_EV_ADDR_LEN);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWESSID;
iwe.u.data.length = bss->ssid_len;
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
bss->ssid);
if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWMODE;
if (bss->capability & WLAN_CAPABILITY_ESS)
iwe.u.mode = IW_MODE_MASTER;
else
iwe.u.mode = IW_MODE_ADHOC;
current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
IW_EV_UINT_LEN);
}
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = bss->channel;
iwe.u.freq.e = 0;
current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
IW_EV_FREQ_LEN);
iwe.u.freq.m = bss->freq * 100000;
iwe.u.freq.e = 1;
current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
IW_EV_FREQ_LEN);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVQUAL;
iwe.u.qual.qual = bss->signal;
iwe.u.qual.level = bss->rssi;
iwe.u.qual.noise = bss->noise;
iwe.u.qual.updated = local->wstats_flags;
current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
IW_EV_QUAL_LEN);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWENCODE;
if (bss->capability & WLAN_CAPABILITY_PRIVACY)
iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
else
iwe.u.data.flags = IW_ENCODE_DISABLED;
iwe.u.data.length = 0;
current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
if (bss && bss->wpa_ie) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = bss->wpa_ie_len;
current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
bss->wpa_ie);
}
if (bss && bss->rsn_ie) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVGENIE;
iwe.u.data.length = bss->rsn_ie_len;
current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
bss->rsn_ie);
}
if (bss && bss->supp_rates_len > 0) {
/* display all supported rates in readable format */
char *p = current_ev + IW_EV_LCP_LEN;
int i;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = SIOCGIWRATE;
/* Those two flags are ignored... */
iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
for (i = 0; i < bss->supp_rates_len; i++) {
iwe.u.bitrate.value = ((bss->supp_rates[i] &
0x7f) * 500000);
p = iwe_stream_add_value(current_ev, p,
end_buf, &iwe, IW_EV_PARAM_LEN);
}
current_ev = p;
}
if (bss) {
char *buf;
buf = kmalloc(30, GFP_ATOMIC);
if (buf) {
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(current_ev, end_buf,
&iwe, buf);
kfree(buf);
}
}
do {
char *buf;
if (!(local->scan_flags & IEEE80211_SCAN_EXTRA_INFO))
break;
buf = kmalloc(100, GFP_ATOMIC);
if (!buf)
break;
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
sprintf(buf, "bcn_int=%d", bss->beacon_int);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
buf);
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
sprintf(buf, "capab=0x%04x", bss->capability);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
buf);
kfree(buf);
break;
} while (0);
return current_ev;
}
int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
char *current_ev = buf;
char *end_buf = buf + len;
struct ieee80211_sta_bss *bss;
spin_lock_bh(&local->sta_bss_lock);
list_for_each_entry(bss, &local->sta_bss_list, list) {
if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
spin_unlock_bh(&local->sta_bss_lock);
return -E2BIG;
}
current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
end_buf);
}
spin_unlock_bh(&local->sta_bss_lock);
return current_ev - buf;
}
int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
kfree(ifsta->extra_ie);
if (len == 0) {
ifsta->extra_ie = NULL;
ifsta->extra_ie_len = 0;
return 0;
}
ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
if (!ifsta->extra_ie) {
ifsta->extra_ie_len = 0;
return -ENOMEM;
}
memcpy(ifsta->extra_ie, ie, len);
ifsta->extra_ie_len = len;
return 0;
}
struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
struct sk_buff *skb, u8 *bssid,
u8 *addr)
{
struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
struct sta_info *sta;
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
/* TODO: Could consider removing the least recently used entry and
* allow new one to be added. */
if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
if (net_ratelimit()) {
printk(KERN_DEBUG "%s: No room for a new IBSS STA "
"entry " MAC_FMT "\n", dev->name, MAC_ARG(addr));
}
return NULL;
}
printk(KERN_DEBUG "%s: Adding new IBSS station " MAC_FMT " (dev=%s)\n",
local->mdev->name, MAC_ARG(addr), dev->name);
sta = sta_info_add(local, dev, addr, GFP_ATOMIC);
if (!sta)
return NULL;
sta->supp_rates = sdata->u.sta.supp_rates_bits;
rate_control_rate_init(sta, local);
return sta; /* caller will call sta_info_put() */
}
int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
dev->name, reason);
if (sdata->type != IEEE80211_IF_TYPE_STA &&
sdata->type != IEEE80211_IF_TYPE_IBSS)
return -EINVAL;
ieee80211_send_deauth(dev, ifsta, reason);
ieee80211_set_disassoc(dev, ifsta, 1);
return 0;
}
int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
{
struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
struct ieee80211_if_sta *ifsta = &sdata->u.sta;
printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
dev->name, reason);
if (sdata->type != IEEE80211_IF_TYPE_STA)
return -EINVAL;
if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
return -1;
ieee80211_send_disassoc(dev, ifsta, reason);
ieee80211_set_disassoc(dev, ifsta, 0);
return 0;
}