1
linux/fs/proc/base.c
Stephen Smalley 006ebb40d3 Security: split proc ptrace checking into read vs. attach
Enable security modules to distinguish reading of process state via
proc from full ptrace access by renaming ptrace_may_attach to
ptrace_may_access and adding a mode argument indicating whether only
read access or full attach access is requested.  This allows security
modules to permit access to reading process state without granting
full ptrace access.  The base DAC/capability checking remains unchanged.

Read access to /proc/pid/mem continues to apply a full ptrace attach
check since check_mem_permission() already requires the current task
to already be ptracing the target.  The other ptrace checks within
proc for elements like environ, maps, and fds are changed to pass the
read mode instead of attach.

In the SELinux case, we model such reading of process state as a
reading of a proc file labeled with the target process' label.  This
enables SELinux policy to permit such reading of process state without
permitting control or manipulation of the target process, as there are
a number of cases where programs probe for such information via proc
but do not need to be able to control the target (e.g. procps,
lsof, PolicyKit, ConsoleKit).  At present we have to choose between
allowing full ptrace in policy (more permissive than required/desired)
or breaking functionality (or in some cases just silencing the denials
via dontaudit rules but this can hide genuine attacks).

This version of the patch incorporates comments from Casey Schaufler
(change/replace existing ptrace_may_attach interface, pass access
mode), and Chris Wright (provide greater consistency in the checking).

Note that like their predecessors __ptrace_may_attach and
ptrace_may_attach, the __ptrace_may_access and ptrace_may_access
interfaces use different return value conventions from each other (0
or -errno vs. 1 or 0).  I retained this difference to avoid any
changes to the caller logic but made the difference clearer by
changing the latter interface to return a bool rather than an int and
by adding a comment about it to ptrace.h for any future callers.

Signed-off-by:  Stephen Smalley <sds@tycho.nsa.gov>
Acked-by: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: James Morris <jmorris@namei.org>
2008-07-14 15:01:47 +10:00

3058 lines
71 KiB
C

/*
* linux/fs/proc/base.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* proc base directory handling functions
*
* 1999, Al Viro. Rewritten. Now it covers the whole per-process part.
* Instead of using magical inumbers to determine the kind of object
* we allocate and fill in-core inodes upon lookup. They don't even
* go into icache. We cache the reference to task_struct upon lookup too.
* Eventually it should become a filesystem in its own. We don't use the
* rest of procfs anymore.
*
*
* Changelog:
* 17-Jan-2005
* Allan Bezerra
* Bruna Moreira <bruna.moreira@indt.org.br>
* Edjard Mota <edjard.mota@indt.org.br>
* Ilias Biris <ilias.biris@indt.org.br>
* Mauricio Lin <mauricio.lin@indt.org.br>
*
* Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
*
* A new process specific entry (smaps) included in /proc. It shows the
* size of rss for each memory area. The maps entry lacks information
* about physical memory size (rss) for each mapped file, i.e.,
* rss information for executables and library files.
* This additional information is useful for any tools that need to know
* about physical memory consumption for a process specific library.
*
* Changelog:
* 21-Feb-2005
* Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
* Pud inclusion in the page table walking.
*
* ChangeLog:
* 10-Mar-2005
* 10LE Instituto Nokia de Tecnologia - INdT:
* A better way to walks through the page table as suggested by Hugh Dickins.
*
* Simo Piiroinen <simo.piiroinen@nokia.com>:
* Smaps information related to shared, private, clean and dirty pages.
*
* Paul Mundt <paul.mundt@nokia.com>:
* Overall revision about smaps.
*/
#include <asm/uaccess.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/capability.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/string.h>
#include <linux/seq_file.h>
#include <linux/namei.h>
#include <linux/mnt_namespace.h>
#include <linux/mm.h>
#include <linux/rcupdate.h>
#include <linux/kallsyms.h>
#include <linux/resource.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/ptrace.h>
#include <linux/cgroup.h>
#include <linux/cpuset.h>
#include <linux/audit.h>
#include <linux/poll.h>
#include <linux/nsproxy.h>
#include <linux/oom.h>
#include <linux/elf.h>
#include <linux/pid_namespace.h>
#include "internal.h"
/* NOTE:
* Implementing inode permission operations in /proc is almost
* certainly an error. Permission checks need to happen during
* each system call not at open time. The reason is that most of
* what we wish to check for permissions in /proc varies at runtime.
*
* The classic example of a problem is opening file descriptors
* in /proc for a task before it execs a suid executable.
*/
struct pid_entry {
char *name;
int len;
mode_t mode;
const struct inode_operations *iop;
const struct file_operations *fop;
union proc_op op;
};
#define NOD(NAME, MODE, IOP, FOP, OP) { \
.name = (NAME), \
.len = sizeof(NAME) - 1, \
.mode = MODE, \
.iop = IOP, \
.fop = FOP, \
.op = OP, \
}
#define DIR(NAME, MODE, OTYPE) \
NOD(NAME, (S_IFDIR|(MODE)), \
&proc_##OTYPE##_inode_operations, &proc_##OTYPE##_operations, \
{} )
#define LNK(NAME, OTYPE) \
NOD(NAME, (S_IFLNK|S_IRWXUGO), \
&proc_pid_link_inode_operations, NULL, \
{ .proc_get_link = &proc_##OTYPE##_link } )
#define REG(NAME, MODE, OTYPE) \
NOD(NAME, (S_IFREG|(MODE)), NULL, \
&proc_##OTYPE##_operations, {})
#define INF(NAME, MODE, OTYPE) \
NOD(NAME, (S_IFREG|(MODE)), \
NULL, &proc_info_file_operations, \
{ .proc_read = &proc_##OTYPE } )
#define ONE(NAME, MODE, OTYPE) \
NOD(NAME, (S_IFREG|(MODE)), \
NULL, &proc_single_file_operations, \
{ .proc_show = &proc_##OTYPE } )
/*
* Count the number of hardlinks for the pid_entry table, excluding the .
* and .. links.
*/
static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
unsigned int n)
{
unsigned int i;
unsigned int count;
count = 0;
for (i = 0; i < n; ++i) {
if (S_ISDIR(entries[i].mode))
++count;
}
return count;
}
int maps_protect;
EXPORT_SYMBOL(maps_protect);
static struct fs_struct *get_fs_struct(struct task_struct *task)
{
struct fs_struct *fs;
task_lock(task);
fs = task->fs;
if(fs)
atomic_inc(&fs->count);
task_unlock(task);
return fs;
}
static int get_nr_threads(struct task_struct *tsk)
{
/* Must be called with the rcu_read_lock held */
unsigned long flags;
int count = 0;
if (lock_task_sighand(tsk, &flags)) {
count = atomic_read(&tsk->signal->count);
unlock_task_sighand(tsk, &flags);
}
return count;
}
static int proc_cwd_link(struct inode *inode, struct path *path)
{
struct task_struct *task = get_proc_task(inode);
struct fs_struct *fs = NULL;
int result = -ENOENT;
if (task) {
fs = get_fs_struct(task);
put_task_struct(task);
}
if (fs) {
read_lock(&fs->lock);
*path = fs->pwd;
path_get(&fs->pwd);
read_unlock(&fs->lock);
result = 0;
put_fs_struct(fs);
}
return result;
}
static int proc_root_link(struct inode *inode, struct path *path)
{
struct task_struct *task = get_proc_task(inode);
struct fs_struct *fs = NULL;
int result = -ENOENT;
if (task) {
fs = get_fs_struct(task);
put_task_struct(task);
}
if (fs) {
read_lock(&fs->lock);
*path = fs->root;
path_get(&fs->root);
read_unlock(&fs->lock);
result = 0;
put_fs_struct(fs);
}
return result;
}
/*
* Return zero if current may access user memory in @task, -error if not.
*/
static int check_mem_permission(struct task_struct *task)
{
/*
* A task can always look at itself, in case it chooses
* to use system calls instead of load instructions.
*/
if (task == current)
return 0;
/*
* If current is actively ptrace'ing, and would also be
* permitted to freshly attach with ptrace now, permit it.
*/
if (task->parent == current && (task->ptrace & PT_PTRACED) &&
task_is_stopped_or_traced(task) &&
ptrace_may_access(task, PTRACE_MODE_ATTACH))
return 0;
/*
* Noone else is allowed.
*/
return -EPERM;
}
struct mm_struct *mm_for_maps(struct task_struct *task)
{
struct mm_struct *mm = get_task_mm(task);
if (!mm)
return NULL;
down_read(&mm->mmap_sem);
task_lock(task);
if (task->mm != mm)
goto out;
if (task->mm != current->mm &&
__ptrace_may_access(task, PTRACE_MODE_READ) < 0)
goto out;
task_unlock(task);
return mm;
out:
task_unlock(task);
up_read(&mm->mmap_sem);
mmput(mm);
return NULL;
}
static int proc_pid_cmdline(struct task_struct *task, char * buffer)
{
int res = 0;
unsigned int len;
struct mm_struct *mm = get_task_mm(task);
if (!mm)
goto out;
if (!mm->arg_end)
goto out_mm; /* Shh! No looking before we're done */
len = mm->arg_end - mm->arg_start;
if (len > PAGE_SIZE)
len = PAGE_SIZE;
res = access_process_vm(task, mm->arg_start, buffer, len, 0);
// If the nul at the end of args has been overwritten, then
// assume application is using setproctitle(3).
if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
len = strnlen(buffer, res);
if (len < res) {
res = len;
} else {
len = mm->env_end - mm->env_start;
if (len > PAGE_SIZE - res)
len = PAGE_SIZE - res;
res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
res = strnlen(buffer, res);
}
}
out_mm:
mmput(mm);
out:
return res;
}
static int proc_pid_auxv(struct task_struct *task, char *buffer)
{
int res = 0;
struct mm_struct *mm = get_task_mm(task);
if (mm) {
unsigned int nwords = 0;
do
nwords += 2;
while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
res = nwords * sizeof(mm->saved_auxv[0]);
if (res > PAGE_SIZE)
res = PAGE_SIZE;
memcpy(buffer, mm->saved_auxv, res);
mmput(mm);
}
return res;
}
#ifdef CONFIG_KALLSYMS
/*
* Provides a wchan file via kallsyms in a proper one-value-per-file format.
* Returns the resolved symbol. If that fails, simply return the address.
*/
static int proc_pid_wchan(struct task_struct *task, char *buffer)
{
unsigned long wchan;
char symname[KSYM_NAME_LEN];
wchan = get_wchan(task);
if (lookup_symbol_name(wchan, symname) < 0)
return sprintf(buffer, "%lu", wchan);
else
return sprintf(buffer, "%s", symname);
}
#endif /* CONFIG_KALLSYMS */
#ifdef CONFIG_SCHEDSTATS
/*
* Provides /proc/PID/schedstat
*/
static int proc_pid_schedstat(struct task_struct *task, char *buffer)
{
return sprintf(buffer, "%llu %llu %lu\n",
task->sched_info.cpu_time,
task->sched_info.run_delay,
task->sched_info.pcount);
}
#endif
#ifdef CONFIG_LATENCYTOP
static int lstats_show_proc(struct seq_file *m, void *v)
{
int i;
struct inode *inode = m->private;
struct task_struct *task = get_proc_task(inode);
if (!task)
return -ESRCH;
seq_puts(m, "Latency Top version : v0.1\n");
for (i = 0; i < 32; i++) {
if (task->latency_record[i].backtrace[0]) {
int q;
seq_printf(m, "%i %li %li ",
task->latency_record[i].count,
task->latency_record[i].time,
task->latency_record[i].max);
for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
char sym[KSYM_NAME_LEN];
char *c;
if (!task->latency_record[i].backtrace[q])
break;
if (task->latency_record[i].backtrace[q] == ULONG_MAX)
break;
sprint_symbol(sym, task->latency_record[i].backtrace[q]);
c = strchr(sym, '+');
if (c)
*c = 0;
seq_printf(m, "%s ", sym);
}
seq_printf(m, "\n");
}
}
put_task_struct(task);
return 0;
}
static int lstats_open(struct inode *inode, struct file *file)
{
return single_open(file, lstats_show_proc, inode);
}
static ssize_t lstats_write(struct file *file, const char __user *buf,
size_t count, loff_t *offs)
{
struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
if (!task)
return -ESRCH;
clear_all_latency_tracing(task);
put_task_struct(task);
return count;
}
static const struct file_operations proc_lstats_operations = {
.open = lstats_open,
.read = seq_read,
.write = lstats_write,
.llseek = seq_lseek,
.release = single_release,
};
#endif
/* The badness from the OOM killer */
unsigned long badness(struct task_struct *p, unsigned long uptime);
static int proc_oom_score(struct task_struct *task, char *buffer)
{
unsigned long points;
struct timespec uptime;
do_posix_clock_monotonic_gettime(&uptime);
read_lock(&tasklist_lock);
points = badness(task, uptime.tv_sec);
read_unlock(&tasklist_lock);
return sprintf(buffer, "%lu\n", points);
}
struct limit_names {
char *name;
char *unit;
};
static const struct limit_names lnames[RLIM_NLIMITS] = {
[RLIMIT_CPU] = {"Max cpu time", "ms"},
[RLIMIT_FSIZE] = {"Max file size", "bytes"},
[RLIMIT_DATA] = {"Max data size", "bytes"},
[RLIMIT_STACK] = {"Max stack size", "bytes"},
[RLIMIT_CORE] = {"Max core file size", "bytes"},
[RLIMIT_RSS] = {"Max resident set", "bytes"},
[RLIMIT_NPROC] = {"Max processes", "processes"},
[RLIMIT_NOFILE] = {"Max open files", "files"},
[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
[RLIMIT_AS] = {"Max address space", "bytes"},
[RLIMIT_LOCKS] = {"Max file locks", "locks"},
[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
[RLIMIT_NICE] = {"Max nice priority", NULL},
[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
};
/* Display limits for a process */
static int proc_pid_limits(struct task_struct *task, char *buffer)
{
unsigned int i;
int count = 0;
unsigned long flags;
char *bufptr = buffer;
struct rlimit rlim[RLIM_NLIMITS];
rcu_read_lock();
if (!lock_task_sighand(task,&flags)) {
rcu_read_unlock();
return 0;
}
memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
unlock_task_sighand(task, &flags);
rcu_read_unlock();
/*
* print the file header
*/
count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
"Limit", "Soft Limit", "Hard Limit", "Units");
for (i = 0; i < RLIM_NLIMITS; i++) {
if (rlim[i].rlim_cur == RLIM_INFINITY)
count += sprintf(&bufptr[count], "%-25s %-20s ",
lnames[i].name, "unlimited");
else
count += sprintf(&bufptr[count], "%-25s %-20lu ",
lnames[i].name, rlim[i].rlim_cur);
if (rlim[i].rlim_max == RLIM_INFINITY)
count += sprintf(&bufptr[count], "%-20s ", "unlimited");
else
count += sprintf(&bufptr[count], "%-20lu ",
rlim[i].rlim_max);
if (lnames[i].unit)
count += sprintf(&bufptr[count], "%-10s\n",
lnames[i].unit);
else
count += sprintf(&bufptr[count], "\n");
}
return count;
}
/************************************************************************/
/* Here the fs part begins */
/************************************************************************/
/* permission checks */
static int proc_fd_access_allowed(struct inode *inode)
{
struct task_struct *task;
int allowed = 0;
/* Allow access to a task's file descriptors if it is us or we
* may use ptrace attach to the process and find out that
* information.
*/
task = get_proc_task(inode);
if (task) {
allowed = ptrace_may_access(task, PTRACE_MODE_READ);
put_task_struct(task);
}
return allowed;
}
static int proc_setattr(struct dentry *dentry, struct iattr *attr)
{
int error;
struct inode *inode = dentry->d_inode;
if (attr->ia_valid & ATTR_MODE)
return -EPERM;
error = inode_change_ok(inode, attr);
if (!error)
error = inode_setattr(inode, attr);
return error;
}
static const struct inode_operations proc_def_inode_operations = {
.setattr = proc_setattr,
};
static int mounts_open_common(struct inode *inode, struct file *file,
const struct seq_operations *op)
{
struct task_struct *task = get_proc_task(inode);
struct nsproxy *nsp;
struct mnt_namespace *ns = NULL;
struct fs_struct *fs = NULL;
struct path root;
struct proc_mounts *p;
int ret = -EINVAL;
if (task) {
rcu_read_lock();
nsp = task_nsproxy(task);
if (nsp) {
ns = nsp->mnt_ns;
if (ns)
get_mnt_ns(ns);
}
rcu_read_unlock();
if (ns)
fs = get_fs_struct(task);
put_task_struct(task);
}
if (!ns)
goto err;
if (!fs)
goto err_put_ns;
read_lock(&fs->lock);
root = fs->root;
path_get(&root);
read_unlock(&fs->lock);
put_fs_struct(fs);
ret = -ENOMEM;
p = kmalloc(sizeof(struct proc_mounts), GFP_KERNEL);
if (!p)
goto err_put_path;
file->private_data = &p->m;
ret = seq_open(file, op);
if (ret)
goto err_free;
p->m.private = p;
p->ns = ns;
p->root = root;
p->event = ns->event;
return 0;
err_free:
kfree(p);
err_put_path:
path_put(&root);
err_put_ns:
put_mnt_ns(ns);
err:
return ret;
}
static int mounts_release(struct inode *inode, struct file *file)
{
struct proc_mounts *p = file->private_data;
path_put(&p->root);
put_mnt_ns(p->ns);
return seq_release(inode, file);
}
static unsigned mounts_poll(struct file *file, poll_table *wait)
{
struct proc_mounts *p = file->private_data;
struct mnt_namespace *ns = p->ns;
unsigned res = 0;
poll_wait(file, &ns->poll, wait);
spin_lock(&vfsmount_lock);
if (p->event != ns->event) {
p->event = ns->event;
res = POLLERR;
}
spin_unlock(&vfsmount_lock);
return res;
}
static int mounts_open(struct inode *inode, struct file *file)
{
return mounts_open_common(inode, file, &mounts_op);
}
static const struct file_operations proc_mounts_operations = {
.open = mounts_open,
.read = seq_read,
.llseek = seq_lseek,
.release = mounts_release,
.poll = mounts_poll,
};
static int mountinfo_open(struct inode *inode, struct file *file)
{
return mounts_open_common(inode, file, &mountinfo_op);
}
static const struct file_operations proc_mountinfo_operations = {
.open = mountinfo_open,
.read = seq_read,
.llseek = seq_lseek,
.release = mounts_release,
.poll = mounts_poll,
};
static int mountstats_open(struct inode *inode, struct file *file)
{
return mounts_open_common(inode, file, &mountstats_op);
}
static const struct file_operations proc_mountstats_operations = {
.open = mountstats_open,
.read = seq_read,
.llseek = seq_lseek,
.release = mounts_release,
};
#define PROC_BLOCK_SIZE (3*1024) /* 4K page size but our output routines use some slack for overruns */
static ssize_t proc_info_read(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file->f_path.dentry->d_inode;
unsigned long page;
ssize_t length;
struct task_struct *task = get_proc_task(inode);
length = -ESRCH;
if (!task)
goto out_no_task;
if (count > PROC_BLOCK_SIZE)
count = PROC_BLOCK_SIZE;
length = -ENOMEM;
if (!(page = __get_free_page(GFP_TEMPORARY)))
goto out;
length = PROC_I(inode)->op.proc_read(task, (char*)page);
if (length >= 0)
length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
free_page(page);
out:
put_task_struct(task);
out_no_task:
return length;
}
static const struct file_operations proc_info_file_operations = {
.read = proc_info_read,
};
static int proc_single_show(struct seq_file *m, void *v)
{
struct inode *inode = m->private;
struct pid_namespace *ns;
struct pid *pid;
struct task_struct *task;
int ret;
ns = inode->i_sb->s_fs_info;
pid = proc_pid(inode);
task = get_pid_task(pid, PIDTYPE_PID);
if (!task)
return -ESRCH;
ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
put_task_struct(task);
return ret;
}
static int proc_single_open(struct inode *inode, struct file *filp)
{
int ret;
ret = single_open(filp, proc_single_show, NULL);
if (!ret) {
struct seq_file *m = filp->private_data;
m->private = inode;
}
return ret;
}
static const struct file_operations proc_single_file_operations = {
.open = proc_single_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int mem_open(struct inode* inode, struct file* file)
{
file->private_data = (void*)((long)current->self_exec_id);
return 0;
}
static ssize_t mem_read(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
char *page;
unsigned long src = *ppos;
int ret = -ESRCH;
struct mm_struct *mm;
if (!task)
goto out_no_task;
if (check_mem_permission(task))
goto out;
ret = -ENOMEM;
page = (char *)__get_free_page(GFP_TEMPORARY);
if (!page)
goto out;
ret = 0;
mm = get_task_mm(task);
if (!mm)
goto out_free;
ret = -EIO;
if (file->private_data != (void*)((long)current->self_exec_id))
goto out_put;
ret = 0;
while (count > 0) {
int this_len, retval;
this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
retval = access_process_vm(task, src, page, this_len, 0);
if (!retval || check_mem_permission(task)) {
if (!ret)
ret = -EIO;
break;
}
if (copy_to_user(buf, page, retval)) {
ret = -EFAULT;
break;
}
ret += retval;
src += retval;
buf += retval;
count -= retval;
}
*ppos = src;
out_put:
mmput(mm);
out_free:
free_page((unsigned long) page);
out:
put_task_struct(task);
out_no_task:
return ret;
}
#define mem_write NULL
#ifndef mem_write
/* This is a security hazard */
static ssize_t mem_write(struct file * file, const char __user *buf,
size_t count, loff_t *ppos)
{
int copied;
char *page;
struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
unsigned long dst = *ppos;
copied = -ESRCH;
if (!task)
goto out_no_task;
if (check_mem_permission(task))
goto out;
copied = -ENOMEM;
page = (char *)__get_free_page(GFP_TEMPORARY);
if (!page)
goto out;
copied = 0;
while (count > 0) {
int this_len, retval;
this_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
if (copy_from_user(page, buf, this_len)) {
copied = -EFAULT;
break;
}
retval = access_process_vm(task, dst, page, this_len, 1);
if (!retval) {
if (!copied)
copied = -EIO;
break;
}
copied += retval;
buf += retval;
dst += retval;
count -= retval;
}
*ppos = dst;
free_page((unsigned long) page);
out:
put_task_struct(task);
out_no_task:
return copied;
}
#endif
loff_t mem_lseek(struct file *file, loff_t offset, int orig)
{
switch (orig) {
case 0:
file->f_pos = offset;
break;
case 1:
file->f_pos += offset;
break;
default:
return -EINVAL;
}
force_successful_syscall_return();
return file->f_pos;
}
static const struct file_operations proc_mem_operations = {
.llseek = mem_lseek,
.read = mem_read,
.write = mem_write,
.open = mem_open,
};
static ssize_t environ_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
char *page;
unsigned long src = *ppos;
int ret = -ESRCH;
struct mm_struct *mm;
if (!task)
goto out_no_task;
if (!ptrace_may_access(task, PTRACE_MODE_READ))
goto out;
ret = -ENOMEM;
page = (char *)__get_free_page(GFP_TEMPORARY);
if (!page)
goto out;
ret = 0;
mm = get_task_mm(task);
if (!mm)
goto out_free;
while (count > 0) {
int this_len, retval, max_len;
this_len = mm->env_end - (mm->env_start + src);
if (this_len <= 0)
break;
max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
this_len = (this_len > max_len) ? max_len : this_len;
retval = access_process_vm(task, (mm->env_start + src),
page, this_len, 0);
if (retval <= 0) {
ret = retval;
break;
}
if (copy_to_user(buf, page, retval)) {
ret = -EFAULT;
break;
}
ret += retval;
src += retval;
buf += retval;
count -= retval;
}
*ppos = src;
mmput(mm);
out_free:
free_page((unsigned long) page);
out:
put_task_struct(task);
out_no_task:
return ret;
}
static const struct file_operations proc_environ_operations = {
.read = environ_read,
};
static ssize_t oom_adjust_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
char buffer[PROC_NUMBUF];
size_t len;
int oom_adjust;
if (!task)
return -ESRCH;
oom_adjust = task->oomkilladj;
put_task_struct(task);
len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
return simple_read_from_buffer(buf, count, ppos, buffer, len);
}
static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task;
char buffer[PROC_NUMBUF], *end;
int oom_adjust;
memset(buffer, 0, sizeof(buffer));
if (count > sizeof(buffer) - 1)
count = sizeof(buffer) - 1;
if (copy_from_user(buffer, buf, count))
return -EFAULT;
oom_adjust = simple_strtol(buffer, &end, 0);
if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
oom_adjust != OOM_DISABLE)
return -EINVAL;
if (*end == '\n')
end++;
task = get_proc_task(file->f_path.dentry->d_inode);
if (!task)
return -ESRCH;
if (oom_adjust < task->oomkilladj && !capable(CAP_SYS_RESOURCE)) {
put_task_struct(task);
return -EACCES;
}
task->oomkilladj = oom_adjust;
put_task_struct(task);
if (end - buffer == 0)
return -EIO;
return end - buffer;
}
static const struct file_operations proc_oom_adjust_operations = {
.read = oom_adjust_read,
.write = oom_adjust_write,
};
#ifdef CONFIG_AUDITSYSCALL
#define TMPBUFLEN 21
static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file->f_path.dentry->d_inode;
struct task_struct *task = get_proc_task(inode);
ssize_t length;
char tmpbuf[TMPBUFLEN];
if (!task)
return -ESRCH;
length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
audit_get_loginuid(task));
put_task_struct(task);
return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
}
static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file->f_path.dentry->d_inode;
char *page, *tmp;
ssize_t length;
uid_t loginuid;
if (!capable(CAP_AUDIT_CONTROL))
return -EPERM;
if (current != pid_task(proc_pid(inode), PIDTYPE_PID))
return -EPERM;
if (count >= PAGE_SIZE)
count = PAGE_SIZE - 1;
if (*ppos != 0) {
/* No partial writes. */
return -EINVAL;
}
page = (char*)__get_free_page(GFP_TEMPORARY);
if (!page)
return -ENOMEM;
length = -EFAULT;
if (copy_from_user(page, buf, count))
goto out_free_page;
page[count] = '\0';
loginuid = simple_strtoul(page, &tmp, 10);
if (tmp == page) {
length = -EINVAL;
goto out_free_page;
}
length = audit_set_loginuid(current, loginuid);
if (likely(length == 0))
length = count;
out_free_page:
free_page((unsigned long) page);
return length;
}
static const struct file_operations proc_loginuid_operations = {
.read = proc_loginuid_read,
.write = proc_loginuid_write,
};
static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file->f_path.dentry->d_inode;
struct task_struct *task = get_proc_task(inode);
ssize_t length;
char tmpbuf[TMPBUFLEN];
if (!task)
return -ESRCH;
length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
audit_get_sessionid(task));
put_task_struct(task);
return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
}
static const struct file_operations proc_sessionid_operations = {
.read = proc_sessionid_read,
};
#endif
#ifdef CONFIG_FAULT_INJECTION
static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
char buffer[PROC_NUMBUF];
size_t len;
int make_it_fail;
if (!task)
return -ESRCH;
make_it_fail = task->make_it_fail;
put_task_struct(task);
len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
return simple_read_from_buffer(buf, count, ppos, buffer, len);
}
static ssize_t proc_fault_inject_write(struct file * file,
const char __user * buf, size_t count, loff_t *ppos)
{
struct task_struct *task;
char buffer[PROC_NUMBUF], *end;
int make_it_fail;
if (!capable(CAP_SYS_RESOURCE))
return -EPERM;
memset(buffer, 0, sizeof(buffer));
if (count > sizeof(buffer) - 1)
count = sizeof(buffer) - 1;
if (copy_from_user(buffer, buf, count))
return -EFAULT;
make_it_fail = simple_strtol(buffer, &end, 0);
if (*end == '\n')
end++;
task = get_proc_task(file->f_dentry->d_inode);
if (!task)
return -ESRCH;
task->make_it_fail = make_it_fail;
put_task_struct(task);
if (end - buffer == 0)
return -EIO;
return end - buffer;
}
static const struct file_operations proc_fault_inject_operations = {
.read = proc_fault_inject_read,
.write = proc_fault_inject_write,
};
#endif
#ifdef CONFIG_SCHED_DEBUG
/*
* Print out various scheduling related per-task fields:
*/
static int sched_show(struct seq_file *m, void *v)
{
struct inode *inode = m->private;
struct task_struct *p;
WARN_ON(!inode);
p = get_proc_task(inode);
if (!p)
return -ESRCH;
proc_sched_show_task(p, m);
put_task_struct(p);
return 0;
}
static ssize_t
sched_write(struct file *file, const char __user *buf,
size_t count, loff_t *offset)
{
struct inode *inode = file->f_path.dentry->d_inode;
struct task_struct *p;
WARN_ON(!inode);
p = get_proc_task(inode);
if (!p)
return -ESRCH;
proc_sched_set_task(p);
put_task_struct(p);
return count;
}
static int sched_open(struct inode *inode, struct file *filp)
{
int ret;
ret = single_open(filp, sched_show, NULL);
if (!ret) {
struct seq_file *m = filp->private_data;
m->private = inode;
}
return ret;
}
static const struct file_operations proc_pid_sched_operations = {
.open = sched_open,
.read = seq_read,
.write = sched_write,
.llseek = seq_lseek,
.release = single_release,
};
#endif
/*
* We added or removed a vma mapping the executable. The vmas are only mapped
* during exec and are not mapped with the mmap system call.
* Callers must hold down_write() on the mm's mmap_sem for these
*/
void added_exe_file_vma(struct mm_struct *mm)
{
mm->num_exe_file_vmas++;
}
void removed_exe_file_vma(struct mm_struct *mm)
{
mm->num_exe_file_vmas--;
if ((mm->num_exe_file_vmas == 0) && mm->exe_file){
fput(mm->exe_file);
mm->exe_file = NULL;
}
}
void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
{
if (new_exe_file)
get_file(new_exe_file);
if (mm->exe_file)
fput(mm->exe_file);
mm->exe_file = new_exe_file;
mm->num_exe_file_vmas = 0;
}
struct file *get_mm_exe_file(struct mm_struct *mm)
{
struct file *exe_file;
/* We need mmap_sem to protect against races with removal of
* VM_EXECUTABLE vmas */
down_read(&mm->mmap_sem);
exe_file = mm->exe_file;
if (exe_file)
get_file(exe_file);
up_read(&mm->mmap_sem);
return exe_file;
}
void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
{
/* It's safe to write the exe_file pointer without exe_file_lock because
* this is called during fork when the task is not yet in /proc */
newmm->exe_file = get_mm_exe_file(oldmm);
}
static int proc_exe_link(struct inode *inode, struct path *exe_path)
{
struct task_struct *task;
struct mm_struct *mm;
struct file *exe_file;
task = get_proc_task(inode);
if (!task)
return -ENOENT;
mm = get_task_mm(task);
put_task_struct(task);
if (!mm)
return -ENOENT;
exe_file = get_mm_exe_file(mm);
mmput(mm);
if (exe_file) {
*exe_path = exe_file->f_path;
path_get(&exe_file->f_path);
fput(exe_file);
return 0;
} else
return -ENOENT;
}
static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
{
struct inode *inode = dentry->d_inode;
int error = -EACCES;
/* We don't need a base pointer in the /proc filesystem */
path_put(&nd->path);
/* Are we allowed to snoop on the tasks file descriptors? */
if (!proc_fd_access_allowed(inode))
goto out;
error = PROC_I(inode)->op.proc_get_link(inode, &nd->path);
nd->last_type = LAST_BIND;
out:
return ERR_PTR(error);
}
static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
{
char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
char *pathname;
int len;
if (!tmp)
return -ENOMEM;
pathname = d_path(path, tmp, PAGE_SIZE);
len = PTR_ERR(pathname);
if (IS_ERR(pathname))
goto out;
len = tmp + PAGE_SIZE - 1 - pathname;
if (len > buflen)
len = buflen;
if (copy_to_user(buffer, pathname, len))
len = -EFAULT;
out:
free_page((unsigned long)tmp);
return len;
}
static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
{
int error = -EACCES;
struct inode *inode = dentry->d_inode;
struct path path;
/* Are we allowed to snoop on the tasks file descriptors? */
if (!proc_fd_access_allowed(inode))
goto out;
error = PROC_I(inode)->op.proc_get_link(inode, &path);
if (error)
goto out;
error = do_proc_readlink(&path, buffer, buflen);
path_put(&path);
out:
return error;
}
static const struct inode_operations proc_pid_link_inode_operations = {
.readlink = proc_pid_readlink,
.follow_link = proc_pid_follow_link,
.setattr = proc_setattr,
};
/* building an inode */
static int task_dumpable(struct task_struct *task)
{
int dumpable = 0;
struct mm_struct *mm;
task_lock(task);
mm = task->mm;
if (mm)
dumpable = get_dumpable(mm);
task_unlock(task);
if(dumpable == 1)
return 1;
return 0;
}
static struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
{
struct inode * inode;
struct proc_inode *ei;
/* We need a new inode */
inode = new_inode(sb);
if (!inode)
goto out;
/* Common stuff */
ei = PROC_I(inode);
inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
inode->i_op = &proc_def_inode_operations;
/*
* grab the reference to task.
*/
ei->pid = get_task_pid(task, PIDTYPE_PID);
if (!ei->pid)
goto out_unlock;
inode->i_uid = 0;
inode->i_gid = 0;
if (task_dumpable(task)) {
inode->i_uid = task->euid;
inode->i_gid = task->egid;
}
security_task_to_inode(task, inode);
out:
return inode;
out_unlock:
iput(inode);
return NULL;
}
static int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
{
struct inode *inode = dentry->d_inode;
struct task_struct *task;
generic_fillattr(inode, stat);
rcu_read_lock();
stat->uid = 0;
stat->gid = 0;
task = pid_task(proc_pid(inode), PIDTYPE_PID);
if (task) {
if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
task_dumpable(task)) {
stat->uid = task->euid;
stat->gid = task->egid;
}
}
rcu_read_unlock();
return 0;
}
/* dentry stuff */
/*
* Exceptional case: normally we are not allowed to unhash a busy
* directory. In this case, however, we can do it - no aliasing problems
* due to the way we treat inodes.
*
* Rewrite the inode's ownerships here because the owning task may have
* performed a setuid(), etc.
*
* Before the /proc/pid/status file was created the only way to read
* the effective uid of a /process was to stat /proc/pid. Reading
* /proc/pid/status is slow enough that procps and other packages
* kept stating /proc/pid. To keep the rules in /proc simple I have
* made this apply to all per process world readable and executable
* directories.
*/
static int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
{
struct inode *inode = dentry->d_inode;
struct task_struct *task = get_proc_task(inode);
if (task) {
if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
task_dumpable(task)) {
inode->i_uid = task->euid;
inode->i_gid = task->egid;
} else {
inode->i_uid = 0;
inode->i_gid = 0;
}
inode->i_mode &= ~(S_ISUID | S_ISGID);
security_task_to_inode(task, inode);
put_task_struct(task);
return 1;
}
d_drop(dentry);
return 0;
}
static int pid_delete_dentry(struct dentry * dentry)
{
/* Is the task we represent dead?
* If so, then don't put the dentry on the lru list,
* kill it immediately.
*/
return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
}
static struct dentry_operations pid_dentry_operations =
{
.d_revalidate = pid_revalidate,
.d_delete = pid_delete_dentry,
};
/* Lookups */
typedef struct dentry *instantiate_t(struct inode *, struct dentry *,
struct task_struct *, const void *);
/*
* Fill a directory entry.
*
* If possible create the dcache entry and derive our inode number and
* file type from dcache entry.
*
* Since all of the proc inode numbers are dynamically generated, the inode
* numbers do not exist until the inode is cache. This means creating the
* the dcache entry in readdir is necessary to keep the inode numbers
* reported by readdir in sync with the inode numbers reported
* by stat.
*/
static int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
char *name, int len,
instantiate_t instantiate, struct task_struct *task, const void *ptr)
{
struct dentry *child, *dir = filp->f_path.dentry;
struct inode *inode;
struct qstr qname;
ino_t ino = 0;
unsigned type = DT_UNKNOWN;
qname.name = name;
qname.len = len;
qname.hash = full_name_hash(name, len);
child = d_lookup(dir, &qname);
if (!child) {
struct dentry *new;
new = d_alloc(dir, &qname);
if (new) {
child = instantiate(dir->d_inode, new, task, ptr);
if (child)
dput(new);
else
child = new;
}
}
if (!child || IS_ERR(child) || !child->d_inode)
goto end_instantiate;
inode = child->d_inode;
if (inode) {
ino = inode->i_ino;
type = inode->i_mode >> 12;
}
dput(child);
end_instantiate:
if (!ino)
ino = find_inode_number(dir, &qname);
if (!ino)
ino = 1;
return filldir(dirent, name, len, filp->f_pos, ino, type);
}
static unsigned name_to_int(struct dentry *dentry)
{
const char *name = dentry->d_name.name;
int len = dentry->d_name.len;
unsigned n = 0;
if (len > 1 && *name == '0')
goto out;
while (len-- > 0) {
unsigned c = *name++ - '0';
if (c > 9)
goto out;
if (n >= (~0U-9)/10)
goto out;
n *= 10;
n += c;
}
return n;
out:
return ~0U;
}
#define PROC_FDINFO_MAX 64
static int proc_fd_info(struct inode *inode, struct path *path, char *info)
{
struct task_struct *task = get_proc_task(inode);
struct files_struct *files = NULL;
struct file *file;
int fd = proc_fd(inode);
if (task) {
files = get_files_struct(task);
put_task_struct(task);
}
if (files) {
/*
* We are not taking a ref to the file structure, so we must
* hold ->file_lock.
*/
spin_lock(&files->file_lock);
file = fcheck_files(files, fd);
if (file) {
if (path) {
*path = file->f_path;
path_get(&file->f_path);
}
if (info)
snprintf(info, PROC_FDINFO_MAX,
"pos:\t%lli\n"
"flags:\t0%o\n",
(long long) file->f_pos,
file->f_flags);
spin_unlock(&files->file_lock);
put_files_struct(files);
return 0;
}
spin_unlock(&files->file_lock);
put_files_struct(files);
}
return -ENOENT;
}
static int proc_fd_link(struct inode *inode, struct path *path)
{
return proc_fd_info(inode, path, NULL);
}
static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
{
struct inode *inode = dentry->d_inode;
struct task_struct *task = get_proc_task(inode);
int fd = proc_fd(inode);
struct files_struct *files;
if (task) {
files = get_files_struct(task);
if (files) {
rcu_read_lock();
if (fcheck_files(files, fd)) {
rcu_read_unlock();
put_files_struct(files);
if (task_dumpable(task)) {
inode->i_uid = task->euid;
inode->i_gid = task->egid;
} else {
inode->i_uid = 0;
inode->i_gid = 0;
}
inode->i_mode &= ~(S_ISUID | S_ISGID);
security_task_to_inode(task, inode);
put_task_struct(task);
return 1;
}
rcu_read_unlock();
put_files_struct(files);
}
put_task_struct(task);
}
d_drop(dentry);
return 0;
}
static struct dentry_operations tid_fd_dentry_operations =
{
.d_revalidate = tid_fd_revalidate,
.d_delete = pid_delete_dentry,
};
static struct dentry *proc_fd_instantiate(struct inode *dir,
struct dentry *dentry, struct task_struct *task, const void *ptr)
{
unsigned fd = *(const unsigned *)ptr;
struct file *file;
struct files_struct *files;
struct inode *inode;
struct proc_inode *ei;
struct dentry *error = ERR_PTR(-ENOENT);
inode = proc_pid_make_inode(dir->i_sb, task);
if (!inode)
goto out;
ei = PROC_I(inode);
ei->fd = fd;
files = get_files_struct(task);
if (!files)
goto out_iput;
inode->i_mode = S_IFLNK;
/*
* We are not taking a ref to the file structure, so we must
* hold ->file_lock.
*/
spin_lock(&files->file_lock);
file = fcheck_files(files, fd);
if (!file)
goto out_unlock;
if (file->f_mode & 1)
inode->i_mode |= S_IRUSR | S_IXUSR;
if (file->f_mode & 2)
inode->i_mode |= S_IWUSR | S_IXUSR;
spin_unlock(&files->file_lock);
put_files_struct(files);
inode->i_op = &proc_pid_link_inode_operations;
inode->i_size = 64;
ei->op.proc_get_link = proc_fd_link;
dentry->d_op = &tid_fd_dentry_operations;
d_add(dentry, inode);
/* Close the race of the process dying before we return the dentry */
if (tid_fd_revalidate(dentry, NULL))
error = NULL;
out:
return error;
out_unlock:
spin_unlock(&files->file_lock);
put_files_struct(files);
out_iput:
iput(inode);
goto out;
}
static struct dentry *proc_lookupfd_common(struct inode *dir,
struct dentry *dentry,
instantiate_t instantiate)
{
struct task_struct *task = get_proc_task(dir);
unsigned fd = name_to_int(dentry);
struct dentry *result = ERR_PTR(-ENOENT);
if (!task)
goto out_no_task;
if (fd == ~0U)
goto out;
result = instantiate(dir, dentry, task, &fd);
out:
put_task_struct(task);
out_no_task:
return result;
}
static int proc_readfd_common(struct file * filp, void * dirent,
filldir_t filldir, instantiate_t instantiate)
{
struct dentry *dentry = filp->f_path.dentry;
struct inode *inode = dentry->d_inode;
struct task_struct *p = get_proc_task(inode);
unsigned int fd, ino;
int retval;
struct files_struct * files;
retval = -ENOENT;
if (!p)
goto out_no_task;
retval = 0;
fd = filp->f_pos;
switch (fd) {
case 0:
if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
goto out;
filp->f_pos++;
case 1:
ino = parent_ino(dentry);
if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
goto out;
filp->f_pos++;
default:
files = get_files_struct(p);
if (!files)
goto out;
rcu_read_lock();
for (fd = filp->f_pos-2;
fd < files_fdtable(files)->max_fds;
fd++, filp->f_pos++) {
char name[PROC_NUMBUF];
int len;
if (!fcheck_files(files, fd))
continue;
rcu_read_unlock();
len = snprintf(name, sizeof(name), "%d", fd);
if (proc_fill_cache(filp, dirent, filldir,
name, len, instantiate,
p, &fd) < 0) {
rcu_read_lock();
break;
}
rcu_read_lock();
}
rcu_read_unlock();
put_files_struct(files);
}
out:
put_task_struct(p);
out_no_task:
return retval;
}
static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
struct nameidata *nd)
{
return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
}
static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
{
return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
}
static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
size_t len, loff_t *ppos)
{
char tmp[PROC_FDINFO_MAX];
int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
if (!err)
err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
return err;
}
static const struct file_operations proc_fdinfo_file_operations = {
.open = nonseekable_open,
.read = proc_fdinfo_read,
};
static const struct file_operations proc_fd_operations = {
.read = generic_read_dir,
.readdir = proc_readfd,
};
/*
* /proc/pid/fd needs a special permission handler so that a process can still
* access /proc/self/fd after it has executed a setuid().
*/
static int proc_fd_permission(struct inode *inode, int mask,
struct nameidata *nd)
{
int rv;
rv = generic_permission(inode, mask, NULL);
if (rv == 0)
return 0;
if (task_pid(current) == proc_pid(inode))
rv = 0;
return rv;
}
/*
* proc directories can do almost nothing..
*/
static const struct inode_operations proc_fd_inode_operations = {
.lookup = proc_lookupfd,
.permission = proc_fd_permission,
.setattr = proc_setattr,
};
static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
struct dentry *dentry, struct task_struct *task, const void *ptr)
{
unsigned fd = *(unsigned *)ptr;
struct inode *inode;
struct proc_inode *ei;
struct dentry *error = ERR_PTR(-ENOENT);
inode = proc_pid_make_inode(dir->i_sb, task);
if (!inode)
goto out;
ei = PROC_I(inode);
ei->fd = fd;
inode->i_mode = S_IFREG | S_IRUSR;
inode->i_fop = &proc_fdinfo_file_operations;
dentry->d_op = &tid_fd_dentry_operations;
d_add(dentry, inode);
/* Close the race of the process dying before we return the dentry */
if (tid_fd_revalidate(dentry, NULL))
error = NULL;
out:
return error;
}
static struct dentry *proc_lookupfdinfo(struct inode *dir,
struct dentry *dentry,
struct nameidata *nd)
{
return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
}
static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
{
return proc_readfd_common(filp, dirent, filldir,
proc_fdinfo_instantiate);
}
static const struct file_operations proc_fdinfo_operations = {
.read = generic_read_dir,
.readdir = proc_readfdinfo,
};
/*
* proc directories can do almost nothing..
*/
static const struct inode_operations proc_fdinfo_inode_operations = {
.lookup = proc_lookupfdinfo,
.setattr = proc_setattr,
};
static struct dentry *proc_pident_instantiate(struct inode *dir,
struct dentry *dentry, struct task_struct *task, const void *ptr)
{
const struct pid_entry *p = ptr;
struct inode *inode;
struct proc_inode *ei;
struct dentry *error = ERR_PTR(-EINVAL);
inode = proc_pid_make_inode(dir->i_sb, task);
if (!inode)
goto out;
ei = PROC_I(inode);
inode->i_mode = p->mode;
if (S_ISDIR(inode->i_mode))
inode->i_nlink = 2; /* Use getattr to fix if necessary */
if (p->iop)
inode->i_op = p->iop;
if (p->fop)
inode->i_fop = p->fop;
ei->op = p->op;
dentry->d_op = &pid_dentry_operations;
d_add(dentry, inode);
/* Close the race of the process dying before we return the dentry */
if (pid_revalidate(dentry, NULL))
error = NULL;
out:
return error;
}
static struct dentry *proc_pident_lookup(struct inode *dir,
struct dentry *dentry,
const struct pid_entry *ents,
unsigned int nents)
{
struct inode *inode;
struct dentry *error;
struct task_struct *task = get_proc_task(dir);
const struct pid_entry *p, *last;
error = ERR_PTR(-ENOENT);
inode = NULL;
if (!task)
goto out_no_task;
/*
* Yes, it does not scale. And it should not. Don't add
* new entries into /proc/<tgid>/ without very good reasons.
*/
last = &ents[nents - 1];
for (p = ents; p <= last; p++) {
if (p->len != dentry->d_name.len)
continue;
if (!memcmp(dentry->d_name.name, p->name, p->len))
break;
}
if (p > last)
goto out;
error = proc_pident_instantiate(dir, dentry, task, p);
out:
put_task_struct(task);
out_no_task:
return error;
}
static int proc_pident_fill_cache(struct file *filp, void *dirent,
filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
{
return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
proc_pident_instantiate, task, p);
}
static int proc_pident_readdir(struct file *filp,
void *dirent, filldir_t filldir,
const struct pid_entry *ents, unsigned int nents)
{
int i;
struct dentry *dentry = filp->f_path.dentry;
struct inode *inode = dentry->d_inode;
struct task_struct *task = get_proc_task(inode);
const struct pid_entry *p, *last;
ino_t ino;
int ret;
ret = -ENOENT;
if (!task)
goto out_no_task;
ret = 0;
i = filp->f_pos;
switch (i) {
case 0:
ino = inode->i_ino;
if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
goto out;
i++;
filp->f_pos++;
/* fall through */
case 1:
ino = parent_ino(dentry);
if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
goto out;
i++;
filp->f_pos++;
/* fall through */
default:
i -= 2;
if (i >= nents) {
ret = 1;
goto out;
}
p = ents + i;
last = &ents[nents - 1];
while (p <= last) {
if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
goto out;
filp->f_pos++;
p++;
}
}
ret = 1;
out:
put_task_struct(task);
out_no_task:
return ret;
}
#ifdef CONFIG_SECURITY
static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file->f_path.dentry->d_inode;
char *p = NULL;
ssize_t length;
struct task_struct *task = get_proc_task(inode);
if (!task)
return -ESRCH;
length = security_getprocattr(task,
(char*)file->f_path.dentry->d_name.name,
&p);
put_task_struct(task);
if (length > 0)
length = simple_read_from_buffer(buf, count, ppos, p, length);
kfree(p);
return length;
}
static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
size_t count, loff_t *ppos)
{
struct inode * inode = file->f_path.dentry->d_inode;
char *page;
ssize_t length;
struct task_struct *task = get_proc_task(inode);
length = -ESRCH;
if (!task)
goto out_no_task;
if (count > PAGE_SIZE)
count = PAGE_SIZE;
/* No partial writes. */
length = -EINVAL;
if (*ppos != 0)
goto out;
length = -ENOMEM;
page = (char*)__get_free_page(GFP_TEMPORARY);
if (!page)
goto out;
length = -EFAULT;
if (copy_from_user(page, buf, count))
goto out_free;
length = security_setprocattr(task,
(char*)file->f_path.dentry->d_name.name,
(void*)page, count);
out_free:
free_page((unsigned long) page);
out:
put_task_struct(task);
out_no_task:
return length;
}
static const struct file_operations proc_pid_attr_operations = {
.read = proc_pid_attr_read,
.write = proc_pid_attr_write,
};
static const struct pid_entry attr_dir_stuff[] = {
REG("current", S_IRUGO|S_IWUGO, pid_attr),
REG("prev", S_IRUGO, pid_attr),
REG("exec", S_IRUGO|S_IWUGO, pid_attr),
REG("fscreate", S_IRUGO|S_IWUGO, pid_attr),
REG("keycreate", S_IRUGO|S_IWUGO, pid_attr),
REG("sockcreate", S_IRUGO|S_IWUGO, pid_attr),
};
static int proc_attr_dir_readdir(struct file * filp,
void * dirent, filldir_t filldir)
{
return proc_pident_readdir(filp,dirent,filldir,
attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
}
static const struct file_operations proc_attr_dir_operations = {
.read = generic_read_dir,
.readdir = proc_attr_dir_readdir,
};
static struct dentry *proc_attr_dir_lookup(struct inode *dir,
struct dentry *dentry, struct nameidata *nd)
{
return proc_pident_lookup(dir, dentry,
attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
}
static const struct inode_operations proc_attr_dir_inode_operations = {
.lookup = proc_attr_dir_lookup,
.getattr = pid_getattr,
.setattr = proc_setattr,
};
#endif
#if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
size_t count, loff_t *ppos)
{
struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
struct mm_struct *mm;
char buffer[PROC_NUMBUF];
size_t len;
int ret;
if (!task)
return -ESRCH;
ret = 0;
mm = get_task_mm(task);
if (mm) {
len = snprintf(buffer, sizeof(buffer), "%08lx\n",
((mm->flags & MMF_DUMP_FILTER_MASK) >>
MMF_DUMP_FILTER_SHIFT));
mmput(mm);
ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
}
put_task_struct(task);
return ret;
}
static ssize_t proc_coredump_filter_write(struct file *file,
const char __user *buf,
size_t count,
loff_t *ppos)
{
struct task_struct *task;
struct mm_struct *mm;
char buffer[PROC_NUMBUF], *end;
unsigned int val;
int ret;
int i;
unsigned long mask;
ret = -EFAULT;
memset(buffer, 0, sizeof(buffer));
if (count > sizeof(buffer) - 1)
count = sizeof(buffer) - 1;
if (copy_from_user(buffer, buf, count))
goto out_no_task;
ret = -EINVAL;
val = (unsigned int)simple_strtoul(buffer, &end, 0);
if (*end == '\n')
end++;
if (end - buffer == 0)
goto out_no_task;
ret = -ESRCH;
task = get_proc_task(file->f_dentry->d_inode);
if (!task)
goto out_no_task;
ret = end - buffer;
mm = get_task_mm(task);
if (!mm)
goto out_no_mm;
for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
if (val & mask)
set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
else
clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
}
mmput(mm);
out_no_mm:
put_task_struct(task);
out_no_task:
return ret;
}
static const struct file_operations proc_coredump_filter_operations = {
.read = proc_coredump_filter_read,
.write = proc_coredump_filter_write,
};
#endif
/*
* /proc/self:
*/
static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
int buflen)
{
struct pid_namespace *ns = dentry->d_sb->s_fs_info;
pid_t tgid = task_tgid_nr_ns(current, ns);
char tmp[PROC_NUMBUF];
if (!tgid)
return -ENOENT;
sprintf(tmp, "%d", tgid);
return vfs_readlink(dentry,buffer,buflen,tmp);
}
static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
{
struct pid_namespace *ns = dentry->d_sb->s_fs_info;
pid_t tgid = task_tgid_nr_ns(current, ns);
char tmp[PROC_NUMBUF];
if (!tgid)
return ERR_PTR(-ENOENT);
sprintf(tmp, "%d", task_tgid_nr_ns(current, ns));
return ERR_PTR(vfs_follow_link(nd,tmp));
}
static const struct inode_operations proc_self_inode_operations = {
.readlink = proc_self_readlink,
.follow_link = proc_self_follow_link,
};
/*
* proc base
*
* These are the directory entries in the root directory of /proc
* that properly belong to the /proc filesystem, as they describe
* describe something that is process related.
*/
static const struct pid_entry proc_base_stuff[] = {
NOD("self", S_IFLNK|S_IRWXUGO,
&proc_self_inode_operations, NULL, {}),
};
/*
* Exceptional case: normally we are not allowed to unhash a busy
* directory. In this case, however, we can do it - no aliasing problems
* due to the way we treat inodes.
*/
static int proc_base_revalidate(struct dentry *dentry, struct nameidata *nd)
{
struct inode *inode = dentry->d_inode;
struct task_struct *task = get_proc_task(inode);
if (task) {
put_task_struct(task);
return 1;
}
d_drop(dentry);
return 0;
}
static struct dentry_operations proc_base_dentry_operations =
{
.d_revalidate = proc_base_revalidate,
.d_delete = pid_delete_dentry,
};
static struct dentry *proc_base_instantiate(struct inode *dir,
struct dentry *dentry, struct task_struct *task, const void *ptr)
{
const struct pid_entry *p = ptr;
struct inode *inode;
struct proc_inode *ei;
struct dentry *error = ERR_PTR(-EINVAL);
/* Allocate the inode */
error = ERR_PTR(-ENOMEM);
inode = new_inode(dir->i_sb);
if (!inode)
goto out;
/* Initialize the inode */
ei = PROC_I(inode);
inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
/*
* grab the reference to the task.
*/
ei->pid = get_task_pid(task, PIDTYPE_PID);
if (!ei->pid)
goto out_iput;
inode->i_uid = 0;
inode->i_gid = 0;
inode->i_mode = p->mode;
if (S_ISDIR(inode->i_mode))
inode->i_nlink = 2;
if (S_ISLNK(inode->i_mode))
inode->i_size = 64;
if (p->iop)
inode->i_op = p->iop;
if (p->fop)
inode->i_fop = p->fop;
ei->op = p->op;
dentry->d_op = &proc_base_dentry_operations;
d_add(dentry, inode);
error = NULL;
out:
return error;
out_iput:
iput(inode);
goto out;
}
static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
{
struct dentry *error;
struct task_struct *task = get_proc_task(dir);
const struct pid_entry *p, *last;
error = ERR_PTR(-ENOENT);
if (!task)
goto out_no_task;
/* Lookup the directory entry */
last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
for (p = proc_base_stuff; p <= last; p++) {
if (p->len != dentry->d_name.len)
continue;
if (!memcmp(dentry->d_name.name, p->name, p->len))
break;
}
if (p > last)
goto out;
error = proc_base_instantiate(dir, dentry, task, p);
out:
put_task_struct(task);
out_no_task:
return error;
}
static int proc_base_fill_cache(struct file *filp, void *dirent,
filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
{
return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
proc_base_instantiate, task, p);
}
#ifdef CONFIG_TASK_IO_ACCOUNTING
static int proc_pid_io_accounting(struct task_struct *task, char *buffer)
{
return sprintf(buffer,
#ifdef CONFIG_TASK_XACCT
"rchar: %llu\n"
"wchar: %llu\n"
"syscr: %llu\n"
"syscw: %llu\n"
#endif
"read_bytes: %llu\n"
"write_bytes: %llu\n"
"cancelled_write_bytes: %llu\n",
#ifdef CONFIG_TASK_XACCT
(unsigned long long)task->rchar,
(unsigned long long)task->wchar,
(unsigned long long)task->syscr,
(unsigned long long)task->syscw,
#endif
(unsigned long long)task->ioac.read_bytes,
(unsigned long long)task->ioac.write_bytes,
(unsigned long long)task->ioac.cancelled_write_bytes);
}
#endif
/*
* Thread groups
*/
static const struct file_operations proc_task_operations;
static const struct inode_operations proc_task_inode_operations;
static const struct pid_entry tgid_base_stuff[] = {
DIR("task", S_IRUGO|S_IXUGO, task),
DIR("fd", S_IRUSR|S_IXUSR, fd),
DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo),
#ifdef CONFIG_NET
DIR("net", S_IRUGO|S_IXUGO, net),
#endif
REG("environ", S_IRUSR, environ),
INF("auxv", S_IRUSR, pid_auxv),
ONE("status", S_IRUGO, pid_status),
INF("limits", S_IRUSR, pid_limits),
#ifdef CONFIG_SCHED_DEBUG
REG("sched", S_IRUGO|S_IWUSR, pid_sched),
#endif
INF("cmdline", S_IRUGO, pid_cmdline),
ONE("stat", S_IRUGO, tgid_stat),
ONE("statm", S_IRUGO, pid_statm),
REG("maps", S_IRUGO, maps),
#ifdef CONFIG_NUMA
REG("numa_maps", S_IRUGO, numa_maps),
#endif
REG("mem", S_IRUSR|S_IWUSR, mem),
LNK("cwd", cwd),
LNK("root", root),
LNK("exe", exe),
REG("mounts", S_IRUGO, mounts),
REG("mountinfo", S_IRUGO, mountinfo),
REG("mountstats", S_IRUSR, mountstats),
#ifdef CONFIG_PROC_PAGE_MONITOR
REG("clear_refs", S_IWUSR, clear_refs),
REG("smaps", S_IRUGO, smaps),
REG("pagemap", S_IRUSR, pagemap),
#endif
#ifdef CONFIG_SECURITY
DIR("attr", S_IRUGO|S_IXUGO, attr_dir),
#endif
#ifdef CONFIG_KALLSYMS
INF("wchan", S_IRUGO, pid_wchan),
#endif
#ifdef CONFIG_SCHEDSTATS
INF("schedstat", S_IRUGO, pid_schedstat),
#endif
#ifdef CONFIG_LATENCYTOP
REG("latency", S_IRUGO, lstats),
#endif
#ifdef CONFIG_PROC_PID_CPUSET
REG("cpuset", S_IRUGO, cpuset),
#endif
#ifdef CONFIG_CGROUPS
REG("cgroup", S_IRUGO, cgroup),
#endif
INF("oom_score", S_IRUGO, oom_score),
REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust),
#ifdef CONFIG_AUDITSYSCALL
REG("loginuid", S_IWUSR|S_IRUGO, loginuid),
REG("sessionid", S_IRUGO, sessionid),
#endif
#ifdef CONFIG_FAULT_INJECTION
REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
#endif
#if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE)
REG("coredump_filter", S_IRUGO|S_IWUSR, coredump_filter),
#endif
#ifdef CONFIG_TASK_IO_ACCOUNTING
INF("io", S_IRUGO, pid_io_accounting),
#endif
};
static int proc_tgid_base_readdir(struct file * filp,
void * dirent, filldir_t filldir)
{
return proc_pident_readdir(filp,dirent,filldir,
tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
}
static const struct file_operations proc_tgid_base_operations = {
.read = generic_read_dir,
.readdir = proc_tgid_base_readdir,
};
static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
return proc_pident_lookup(dir, dentry,
tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
}
static const struct inode_operations proc_tgid_base_inode_operations = {
.lookup = proc_tgid_base_lookup,
.getattr = pid_getattr,
.setattr = proc_setattr,
};
static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
{
struct dentry *dentry, *leader, *dir;
char buf[PROC_NUMBUF];
struct qstr name;
name.name = buf;
name.len = snprintf(buf, sizeof(buf), "%d", pid);
dentry = d_hash_and_lookup(mnt->mnt_root, &name);
if (dentry) {
if (!(current->flags & PF_EXITING))
shrink_dcache_parent(dentry);
d_drop(dentry);
dput(dentry);
}
if (tgid == 0)
goto out;
name.name = buf;
name.len = snprintf(buf, sizeof(buf), "%d", tgid);
leader = d_hash_and_lookup(mnt->mnt_root, &name);
if (!leader)
goto out;
name.name = "task";
name.len = strlen(name.name);
dir = d_hash_and_lookup(leader, &name);
if (!dir)
goto out_put_leader;
name.name = buf;
name.len = snprintf(buf, sizeof(buf), "%d", pid);
dentry = d_hash_and_lookup(dir, &name);
if (dentry) {
shrink_dcache_parent(dentry);
d_drop(dentry);
dput(dentry);
}
dput(dir);
out_put_leader:
dput(leader);
out:
return;
}
/**
* proc_flush_task - Remove dcache entries for @task from the /proc dcache.
* @task: task that should be flushed.
*
* When flushing dentries from proc, one needs to flush them from global
* proc (proc_mnt) and from all the namespaces' procs this task was seen
* in. This call is supposed to do all of this job.
*
* Looks in the dcache for
* /proc/@pid
* /proc/@tgid/task/@pid
* if either directory is present flushes it and all of it'ts children
* from the dcache.
*
* It is safe and reasonable to cache /proc entries for a task until
* that task exits. After that they just clog up the dcache with
* useless entries, possibly causing useful dcache entries to be
* flushed instead. This routine is proved to flush those useless
* dcache entries at process exit time.
*
* NOTE: This routine is just an optimization so it does not guarantee
* that no dcache entries will exist at process exit time it
* just makes it very unlikely that any will persist.
*/
void proc_flush_task(struct task_struct *task)
{
int i;
struct pid *pid, *tgid = NULL;
struct upid *upid;
pid = task_pid(task);
if (thread_group_leader(task))
tgid = task_tgid(task);
for (i = 0; i <= pid->level; i++) {
upid = &pid->numbers[i];
proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
tgid ? tgid->numbers[i].nr : 0);
}
upid = &pid->numbers[pid->level];
if (upid->nr == 1)
pid_ns_release_proc(upid->ns);
}
static struct dentry *proc_pid_instantiate(struct inode *dir,
struct dentry * dentry,
struct task_struct *task, const void *ptr)
{
struct dentry *error = ERR_PTR(-ENOENT);
struct inode *inode;
inode = proc_pid_make_inode(dir->i_sb, task);
if (!inode)
goto out;
inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
inode->i_op = &proc_tgid_base_inode_operations;
inode->i_fop = &proc_tgid_base_operations;
inode->i_flags|=S_IMMUTABLE;
inode->i_nlink = 2 + pid_entry_count_dirs(tgid_base_stuff,
ARRAY_SIZE(tgid_base_stuff));
dentry->d_op = &pid_dentry_operations;
d_add(dentry, inode);
/* Close the race of the process dying before we return the dentry */
if (pid_revalidate(dentry, NULL))
error = NULL;
out:
return error;
}
struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
{
struct dentry *result = ERR_PTR(-ENOENT);
struct task_struct *task;
unsigned tgid;
struct pid_namespace *ns;
result = proc_base_lookup(dir, dentry);
if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
goto out;
tgid = name_to_int(dentry);
if (tgid == ~0U)
goto out;
ns = dentry->d_sb->s_fs_info;
rcu_read_lock();
task = find_task_by_pid_ns(tgid, ns);
if (task)
get_task_struct(task);
rcu_read_unlock();
if (!task)
goto out;
result = proc_pid_instantiate(dir, dentry, task, NULL);
put_task_struct(task);
out:
return result;
}
/*
* Find the first task with tgid >= tgid
*
*/
struct tgid_iter {
unsigned int tgid;
struct task_struct *task;
};
static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
{
struct pid *pid;
if (iter.task)
put_task_struct(iter.task);
rcu_read_lock();
retry:
iter.task = NULL;
pid = find_ge_pid(iter.tgid, ns);
if (pid) {
iter.tgid = pid_nr_ns(pid, ns);
iter.task = pid_task(pid, PIDTYPE_PID);
/* What we to know is if the pid we have find is the
* pid of a thread_group_leader. Testing for task
* being a thread_group_leader is the obvious thing
* todo but there is a window when it fails, due to
* the pid transfer logic in de_thread.
*
* So we perform the straight forward test of seeing
* if the pid we have found is the pid of a thread
* group leader, and don't worry if the task we have
* found doesn't happen to be a thread group leader.
* As we don't care in the case of readdir.
*/
if (!iter.task || !has_group_leader_pid(iter.task)) {
iter.tgid += 1;
goto retry;
}
get_task_struct(iter.task);
}
rcu_read_unlock();
return iter;
}
#define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
struct tgid_iter iter)
{
char name[PROC_NUMBUF];
int len = snprintf(name, sizeof(name), "%d", iter.tgid);
return proc_fill_cache(filp, dirent, filldir, name, len,
proc_pid_instantiate, iter.task, NULL);
}
/* for the /proc/ directory itself, after non-process stuff has been done */
int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
{
unsigned int nr = filp->f_pos - FIRST_PROCESS_ENTRY;
struct task_struct *reaper = get_proc_task(filp->f_path.dentry->d_inode);
struct tgid_iter iter;
struct pid_namespace *ns;
if (!reaper)
goto out_no_task;
for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
const struct pid_entry *p = &proc_base_stuff[nr];
if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
goto out;
}
ns = filp->f_dentry->d_sb->s_fs_info;
iter.task = NULL;
iter.tgid = filp->f_pos - TGID_OFFSET;
for (iter = next_tgid(ns, iter);
iter.task;
iter.tgid += 1, iter = next_tgid(ns, iter)) {
filp->f_pos = iter.tgid + TGID_OFFSET;
if (proc_pid_fill_cache(filp, dirent, filldir, iter) < 0) {
put_task_struct(iter.task);
goto out;
}
}
filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
out:
put_task_struct(reaper);
out_no_task:
return 0;
}
/*
* Tasks
*/
static const struct pid_entry tid_base_stuff[] = {
DIR("fd", S_IRUSR|S_IXUSR, fd),
DIR("fdinfo", S_IRUSR|S_IXUSR, fdinfo),
REG("environ", S_IRUSR, environ),
INF("auxv", S_IRUSR, pid_auxv),
ONE("status", S_IRUGO, pid_status),
INF("limits", S_IRUSR, pid_limits),
#ifdef CONFIG_SCHED_DEBUG
REG("sched", S_IRUGO|S_IWUSR, pid_sched),
#endif
INF("cmdline", S_IRUGO, pid_cmdline),
ONE("stat", S_IRUGO, tid_stat),
ONE("statm", S_IRUGO, pid_statm),
REG("maps", S_IRUGO, maps),
#ifdef CONFIG_NUMA
REG("numa_maps", S_IRUGO, numa_maps),
#endif
REG("mem", S_IRUSR|S_IWUSR, mem),
LNK("cwd", cwd),
LNK("root", root),
LNK("exe", exe),
REG("mounts", S_IRUGO, mounts),
REG("mountinfo", S_IRUGO, mountinfo),
#ifdef CONFIG_PROC_PAGE_MONITOR
REG("clear_refs", S_IWUSR, clear_refs),
REG("smaps", S_IRUGO, smaps),
REG("pagemap", S_IRUSR, pagemap),
#endif
#ifdef CONFIG_SECURITY
DIR("attr", S_IRUGO|S_IXUGO, attr_dir),
#endif
#ifdef CONFIG_KALLSYMS
INF("wchan", S_IRUGO, pid_wchan),
#endif
#ifdef CONFIG_SCHEDSTATS
INF("schedstat", S_IRUGO, pid_schedstat),
#endif
#ifdef CONFIG_LATENCYTOP
REG("latency", S_IRUGO, lstats),
#endif
#ifdef CONFIG_PROC_PID_CPUSET
REG("cpuset", S_IRUGO, cpuset),
#endif
#ifdef CONFIG_CGROUPS
REG("cgroup", S_IRUGO, cgroup),
#endif
INF("oom_score", S_IRUGO, oom_score),
REG("oom_adj", S_IRUGO|S_IWUSR, oom_adjust),
#ifdef CONFIG_AUDITSYSCALL
REG("loginuid", S_IWUSR|S_IRUGO, loginuid),
REG("sessionid", S_IRUSR, sessionid),
#endif
#ifdef CONFIG_FAULT_INJECTION
REG("make-it-fail", S_IRUGO|S_IWUSR, fault_inject),
#endif
};
static int proc_tid_base_readdir(struct file * filp,
void * dirent, filldir_t filldir)
{
return proc_pident_readdir(filp,dirent,filldir,
tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
}
static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
return proc_pident_lookup(dir, dentry,
tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
}
static const struct file_operations proc_tid_base_operations = {
.read = generic_read_dir,
.readdir = proc_tid_base_readdir,
};
static const struct inode_operations proc_tid_base_inode_operations = {
.lookup = proc_tid_base_lookup,
.getattr = pid_getattr,
.setattr = proc_setattr,
};
static struct dentry *proc_task_instantiate(struct inode *dir,
struct dentry *dentry, struct task_struct *task, const void *ptr)
{
struct dentry *error = ERR_PTR(-ENOENT);
struct inode *inode;
inode = proc_pid_make_inode(dir->i_sb, task);
if (!inode)
goto out;
inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
inode->i_op = &proc_tid_base_inode_operations;
inode->i_fop = &proc_tid_base_operations;
inode->i_flags|=S_IMMUTABLE;
inode->i_nlink = 2 + pid_entry_count_dirs(tid_base_stuff,
ARRAY_SIZE(tid_base_stuff));
dentry->d_op = &pid_dentry_operations;
d_add(dentry, inode);
/* Close the race of the process dying before we return the dentry */
if (pid_revalidate(dentry, NULL))
error = NULL;
out:
return error;
}
static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
{
struct dentry *result = ERR_PTR(-ENOENT);
struct task_struct *task;
struct task_struct *leader = get_proc_task(dir);
unsigned tid;
struct pid_namespace *ns;
if (!leader)
goto out_no_task;
tid = name_to_int(dentry);
if (tid == ~0U)
goto out;
ns = dentry->d_sb->s_fs_info;
rcu_read_lock();
task = find_task_by_pid_ns(tid, ns);
if (task)
get_task_struct(task);
rcu_read_unlock();
if (!task)
goto out;
if (!same_thread_group(leader, task))
goto out_drop_task;
result = proc_task_instantiate(dir, dentry, task, NULL);
out_drop_task:
put_task_struct(task);
out:
put_task_struct(leader);
out_no_task:
return result;
}
/*
* Find the first tid of a thread group to return to user space.
*
* Usually this is just the thread group leader, but if the users
* buffer was too small or there was a seek into the middle of the
* directory we have more work todo.
*
* In the case of a short read we start with find_task_by_pid.
*
* In the case of a seek we start with the leader and walk nr
* threads past it.
*/
static struct task_struct *first_tid(struct task_struct *leader,
int tid, int nr, struct pid_namespace *ns)
{
struct task_struct *pos;
rcu_read_lock();
/* Attempt to start with the pid of a thread */
if (tid && (nr > 0)) {
pos = find_task_by_pid_ns(tid, ns);
if (pos && (pos->group_leader == leader))
goto found;
}
/* If nr exceeds the number of threads there is nothing todo */
pos = NULL;
if (nr && nr >= get_nr_threads(leader))
goto out;
/* If we haven't found our starting place yet start
* with the leader and walk nr threads forward.
*/
for (pos = leader; nr > 0; --nr) {
pos = next_thread(pos);
if (pos == leader) {
pos = NULL;
goto out;
}
}
found:
get_task_struct(pos);
out:
rcu_read_unlock();
return pos;
}
/*
* Find the next thread in the thread list.
* Return NULL if there is an error or no next thread.
*
* The reference to the input task_struct is released.
*/
static struct task_struct *next_tid(struct task_struct *start)
{
struct task_struct *pos = NULL;
rcu_read_lock();
if (pid_alive(start)) {
pos = next_thread(start);
if (thread_group_leader(pos))
pos = NULL;
else
get_task_struct(pos);
}
rcu_read_unlock();
put_task_struct(start);
return pos;
}
static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
struct task_struct *task, int tid)
{
char name[PROC_NUMBUF];
int len = snprintf(name, sizeof(name), "%d", tid);
return proc_fill_cache(filp, dirent, filldir, name, len,
proc_task_instantiate, task, NULL);
}
/* for the /proc/TGID/task/ directories */
static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
{
struct dentry *dentry = filp->f_path.dentry;
struct inode *inode = dentry->d_inode;
struct task_struct *leader = NULL;
struct task_struct *task;
int retval = -ENOENT;
ino_t ino;
int tid;
unsigned long pos = filp->f_pos; /* avoiding "long long" filp->f_pos */
struct pid_namespace *ns;
task = get_proc_task(inode);
if (!task)
goto out_no_task;
rcu_read_lock();
if (pid_alive(task)) {
leader = task->group_leader;
get_task_struct(leader);
}
rcu_read_unlock();
put_task_struct(task);
if (!leader)
goto out_no_task;
retval = 0;
switch (pos) {
case 0:
ino = inode->i_ino;
if (filldir(dirent, ".", 1, pos, ino, DT_DIR) < 0)
goto out;
pos++;
/* fall through */
case 1:
ino = parent_ino(dentry);
if (filldir(dirent, "..", 2, pos, ino, DT_DIR) < 0)
goto out;
pos++;
/* fall through */
}
/* f_version caches the tgid value that the last readdir call couldn't
* return. lseek aka telldir automagically resets f_version to 0.
*/
ns = filp->f_dentry->d_sb->s_fs_info;
tid = (int)filp->f_version;
filp->f_version = 0;
for (task = first_tid(leader, tid, pos - 2, ns);
task;
task = next_tid(task), pos++) {
tid = task_pid_nr_ns(task, ns);
if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
/* returning this tgid failed, save it as the first
* pid for the next readir call */
filp->f_version = (u64)tid;
put_task_struct(task);
break;
}
}
out:
filp->f_pos = pos;
put_task_struct(leader);
out_no_task:
return retval;
}
static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
{
struct inode *inode = dentry->d_inode;
struct task_struct *p = get_proc_task(inode);
generic_fillattr(inode, stat);
if (p) {
rcu_read_lock();
stat->nlink += get_nr_threads(p);
rcu_read_unlock();
put_task_struct(p);
}
return 0;
}
static const struct inode_operations proc_task_inode_operations = {
.lookup = proc_task_lookup,
.getattr = proc_task_getattr,
.setattr = proc_setattr,
};
static const struct file_operations proc_task_operations = {
.read = generic_read_dir,
.readdir = proc_task_readdir,
};