1
linux/Documentation/filesystems/9p.txt
Justin P. Mattock 0ea6e61122 Documentation: update broken web addresses.
Below you will find an updated version from the original series bunching all patches into one big patch
updating broken web addresses that are located in Documentation/*
Some of the addresses date as far far back as 1995 etc... so searching became a bit difficult,
the best way to deal with these is to use web.archive.org to locate these addresses that are outdated.
Now there are also some addresses pointing to .spec files some are located, but some(after searching
on the companies site)where still no where to be found. In this case I just changed the address
to the company site this way the users can contact the company and they can locate them for the users.

Signed-off-by: Justin P. Mattock <justinmattock@gmail.com>
Signed-off-by: Thomas Weber <weber@corscience.de>
Signed-off-by: Mike Frysinger <vapier.adi@gmail.com>
Cc: Paulo Marques <pmarques@grupopie.com>
Cc: Randy Dunlap <rdunlap@xenotime.net>
Cc: Michael Neuling <mikey@neuling.org>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2010-08-04 15:21:40 +02:00

174 lines
6.2 KiB
Plaintext

v9fs: Plan 9 Resource Sharing for Linux
=======================================
ABOUT
=====
v9fs is a Unix implementation of the Plan 9 9p remote filesystem protocol.
This software was originally developed by Ron Minnich <rminnich@sandia.gov>
and Maya Gokhale. Additional development by Greg Watson
<gwatson@lanl.gov> and most recently Eric Van Hensbergen
<ericvh@gmail.com>, Latchesar Ionkov <lucho@ionkov.net> and Russ Cox
<rsc@swtch.com>.
The best detailed explanation of the Linux implementation and applications of
the 9p client is available in the form of a USENIX paper:
http://www.usenix.org/events/usenix05/tech/freenix/hensbergen.html
Other applications are described in the following papers:
* XCPU & Clustering
http://xcpu.org/papers/xcpu-talk.pdf
* KVMFS: control file system for KVM
http://xcpu.org/papers/kvmfs.pdf
* CellFS: A New Programming Model for the Cell BE
http://xcpu.org/papers/cellfs-talk.pdf
* PROSE I/O: Using 9p to enable Application Partitions
http://plan9.escet.urjc.es/iwp9/cready/PROSE_iwp9_2006.pdf
USAGE
=====
For remote file server:
mount -t 9p 10.10.1.2 /mnt/9
For Plan 9 From User Space applications (http://swtch.com/plan9)
mount -t 9p `namespace`/acme /mnt/9 -o trans=unix,uname=$USER
For server running on QEMU host with virtio transport:
mount -t 9p -o trans=virtio <mount_tag> /mnt/9
where mount_tag is the tag associated by the server to each of the exported
mount points. Each 9P export is seen by the client as a virtio device with an
associated "mount_tag" property. Available mount tags can be
seen by reading /sys/bus/virtio/drivers/9pnet_virtio/virtio<n>/mount_tag files.
OPTIONS
=======
trans=name select an alternative transport. Valid options are
currently:
unix - specifying a named pipe mount point
tcp - specifying a normal TCP/IP connection
fd - used passed file descriptors for connection
(see rfdno and wfdno)
virtio - connect to the next virtio channel available
(from QEMU with trans_virtio module)
rdma - connect to a specified RDMA channel
uname=name user name to attempt mount as on the remote server. The
server may override or ignore this value. Certain user
names may require authentication.
aname=name aname specifies the file tree to access when the server is
offering several exported file systems.
cache=mode specifies a caching policy. By default, no caches are used.
loose = no attempts are made at consistency,
intended for exclusive, read-only mounts
fscache = use FS-Cache for a persistent, read-only
cache backend.
debug=n specifies debug level. The debug level is a bitmask.
0x01 = display verbose error messages
0x02 = developer debug (DEBUG_CURRENT)
0x04 = display 9p trace
0x08 = display VFS trace
0x10 = display Marshalling debug
0x20 = display RPC debug
0x40 = display transport debug
0x80 = display allocation debug
0x100 = display protocol message debug
0x200 = display Fid debug
0x400 = display packet debug
0x800 = display fscache tracing debug
rfdno=n the file descriptor for reading with trans=fd
wfdno=n the file descriptor for writing with trans=fd
maxdata=n the number of bytes to use for 9p packet payload (msize)
port=n port to connect to on the remote server
noextend force legacy mode (no 9p2000.u or 9p2000.L semantics)
version=name Select 9P protocol version. Valid options are:
9p2000 - Legacy mode (same as noextend)
9p2000.u - Use 9P2000.u protocol
9p2000.L - Use 9P2000.L protocol
dfltuid attempt to mount as a particular uid
dfltgid attempt to mount with a particular gid
afid security channel - used by Plan 9 authentication protocols
nodevmap do not map special files - represent them as normal files.
This can be used to share devices/named pipes/sockets between
hosts. This functionality will be expanded in later versions.
access there are three access modes.
user = if a user tries to access a file on v9fs
filesystem for the first time, v9fs sends an
attach command (Tattach) for that user.
This is the default mode.
<uid> = allows only user with uid=<uid> to access
the files on the mounted filesystem
any = v9fs does single attach and performs all
operations as one user
cachetag cache tag to use the specified persistent cache.
cache tags for existing cache sessions can be listed at
/sys/fs/9p/caches. (applies only to cache=fscache)
RESOURCES
=========
Our current recommendation is to use Inferno (http://www.vitanuova.com/nferno/index.html)
as the 9p server. You can start a 9p server under Inferno by issuing the
following command:
; styxlisten -A tcp!*!564 export '#U*'
The -A specifies an unauthenticated export. The 564 is the port # (you may
have to choose a higher port number if running as a normal user). The '#U*'
specifies exporting the root of the Linux name space. You may specify a
subset of the namespace by extending the path: '#U*'/tmp would just export
/tmp. For more information, see the Inferno manual pages covering styxlisten
and export.
A Linux version of the 9p server is now maintained under the npfs project
on sourceforge (http://sourceforge.net/projects/npfs). The currently
maintained version is the single-threaded version of the server (named spfs)
available from the same SVN repository.
There are user and developer mailing lists available through the v9fs project
on sourceforge (http://sourceforge.net/projects/v9fs).
A stand-alone version of the module (which should build for any 2.6 kernel)
is available via (http://github.com/ericvh/9p-sac/tree/master)
News and other information is maintained on SWiK (http://swik.net/v9fs)
and the Wiki (http://sf.net/apps/mediawiki/v9fs/index.php).
Bug reports may be issued through the kernel.org bugzilla
(http://bugzilla.kernel.org)
For more information on the Plan 9 Operating System check out
http://plan9.bell-labs.com/plan9
For information on Plan 9 from User Space (Plan 9 applications and libraries
ported to Linux/BSD/OSX/etc) check out http://swtch.com/plan9
STATUS
======
The 2.6 kernel support is working on PPC and x86.
PLEASE USE THE KERNEL BUGZILLA TO REPORT PROBLEMS. (http://bugzilla.kernel.org)