1
linux/fs/proc/array.c
Tejun Heo 5a0e3ad6af include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files.  percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.

percpu.h -> slab.h dependency is about to be removed.  Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability.  As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.

  http://userweb.kernel.org/~tj/misc/slabh-sweep.py

The script does the followings.

* Scan files for gfp and slab usages and update includes such that
  only the necessary includes are there.  ie. if only gfp is used,
  gfp.h, if slab is used, slab.h.

* When the script inserts a new include, it looks at the include
  blocks and try to put the new include such that its order conforms
  to its surrounding.  It's put in the include block which contains
  core kernel includes, in the same order that the rest are ordered -
  alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
  doesn't seem to be any matching order.

* If the script can't find a place to put a new include (mostly
  because the file doesn't have fitting include block), it prints out
  an error message indicating which .h file needs to be added to the
  file.

The conversion was done in the following steps.

1. The initial automatic conversion of all .c files updated slightly
   over 4000 files, deleting around 700 includes and adding ~480 gfp.h
   and ~3000 slab.h inclusions.  The script emitted errors for ~400
   files.

2. Each error was manually checked.  Some didn't need the inclusion,
   some needed manual addition while adding it to implementation .h or
   embedding .c file was more appropriate for others.  This step added
   inclusions to around 150 files.

3. The script was run again and the output was compared to the edits
   from #2 to make sure no file was left behind.

4. Several build tests were done and a couple of problems were fixed.
   e.g. lib/decompress_*.c used malloc/free() wrappers around slab
   APIs requiring slab.h to be added manually.

5. The script was run on all .h files but without automatically
   editing them as sprinkling gfp.h and slab.h inclusions around .h
   files could easily lead to inclusion dependency hell.  Most gfp.h
   inclusion directives were ignored as stuff from gfp.h was usually
   wildly available and often used in preprocessor macros.  Each
   slab.h inclusion directive was examined and added manually as
   necessary.

6. percpu.h was updated not to include slab.h.

7. Build test were done on the following configurations and failures
   were fixed.  CONFIG_GCOV_KERNEL was turned off for all tests (as my
   distributed build env didn't work with gcov compiles) and a few
   more options had to be turned off depending on archs to make things
   build (like ipr on powerpc/64 which failed due to missing writeq).

   * x86 and x86_64 UP and SMP allmodconfig and a custom test config.
   * powerpc and powerpc64 SMP allmodconfig
   * sparc and sparc64 SMP allmodconfig
   * ia64 SMP allmodconfig
   * s390 SMP allmodconfig
   * alpha SMP allmodconfig
   * um on x86_64 SMP allmodconfig

8. percpu.h modifications were reverted so that it could be applied as
   a separate patch and serve as bisection point.

Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.

Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-30 22:02:32 +09:00

551 lines
13 KiB
C

/*
* linux/fs/proc/array.c
*
* Copyright (C) 1992 by Linus Torvalds
* based on ideas by Darren Senn
*
* Fixes:
* Michael. K. Johnson: stat,statm extensions.
* <johnsonm@stolaf.edu>
*
* Pauline Middelink : Made cmdline,envline only break at '\0's, to
* make sure SET_PROCTITLE works. Also removed
* bad '!' which forced address recalculation for
* EVERY character on the current page.
* <middelin@polyware.iaf.nl>
*
* Danny ter Haar : added cpuinfo
* <dth@cistron.nl>
*
* Alessandro Rubini : profile extension.
* <rubini@ipvvis.unipv.it>
*
* Jeff Tranter : added BogoMips field to cpuinfo
* <Jeff_Tranter@Mitel.COM>
*
* Bruno Haible : remove 4K limit for the maps file
* <haible@ma2s2.mathematik.uni-karlsruhe.de>
*
* Yves Arrouye : remove removal of trailing spaces in get_array.
* <Yves.Arrouye@marin.fdn.fr>
*
* Jerome Forissier : added per-CPU time information to /proc/stat
* and /proc/<pid>/cpu extension
* <forissier@isia.cma.fr>
* - Incorporation and non-SMP safe operation
* of forissier patch in 2.1.78 by
* Hans Marcus <crowbar@concepts.nl>
*
* aeb@cwi.nl : /proc/partitions
*
*
* Alan Cox : security fixes.
* <alan@lxorguk.ukuu.org.uk>
*
* Al Viro : safe handling of mm_struct
*
* Gerhard Wichert : added BIGMEM support
* Siemens AG <Gerhard.Wichert@pdb.siemens.de>
*
* Al Viro & Jeff Garzik : moved most of the thing into base.c and
* : proc_misc.c. The rest may eventually go into
* : base.c too.
*/
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/time.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/tty.h>
#include <linux/string.h>
#include <linux/mman.h>
#include <linux/proc_fs.h>
#include <linux/ioport.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/signal.h>
#include <linux/highmem.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/times.h>
#include <linux/cpuset.h>
#include <linux/rcupdate.h>
#include <linux/delayacct.h>
#include <linux/seq_file.h>
#include <linux/pid_namespace.h>
#include <linux/ptrace.h>
#include <linux/tracehook.h>
#include <linux/swapops.h>
#include <asm/pgtable.h>
#include <asm/processor.h>
#include "internal.h"
static inline void task_name(struct seq_file *m, struct task_struct *p)
{
int i;
char *buf, *end;
char *name;
char tcomm[sizeof(p->comm)];
get_task_comm(tcomm, p);
seq_printf(m, "Name:\t");
end = m->buf + m->size;
buf = m->buf + m->count;
name = tcomm;
i = sizeof(tcomm);
while (i && (buf < end)) {
unsigned char c = *name;
name++;
i--;
*buf = c;
if (!c)
break;
if (c == '\\') {
buf++;
if (buf < end)
*buf++ = c;
continue;
}
if (c == '\n') {
*buf++ = '\\';
if (buf < end)
*buf++ = 'n';
continue;
}
buf++;
}
m->count = buf - m->buf;
seq_printf(m, "\n");
}
/*
* The task state array is a strange "bitmap" of
* reasons to sleep. Thus "running" is zero, and
* you can test for combinations of others with
* simple bit tests.
*/
static const char *task_state_array[] = {
"R (running)", /* 0 */
"S (sleeping)", /* 1 */
"D (disk sleep)", /* 2 */
"T (stopped)", /* 4 */
"t (tracing stop)", /* 8 */
"Z (zombie)", /* 16 */
"X (dead)", /* 32 */
"x (dead)", /* 64 */
"K (wakekill)", /* 128 */
"W (waking)", /* 256 */
};
static inline const char *get_task_state(struct task_struct *tsk)
{
unsigned int state = (tsk->state & TASK_REPORT) | tsk->exit_state;
const char **p = &task_state_array[0];
BUILD_BUG_ON(1 + ilog2(TASK_STATE_MAX) != ARRAY_SIZE(task_state_array));
while (state) {
p++;
state >>= 1;
}
return *p;
}
static inline void task_state(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *p)
{
struct group_info *group_info;
int g;
struct fdtable *fdt = NULL;
const struct cred *cred;
pid_t ppid, tpid;
rcu_read_lock();
ppid = pid_alive(p) ?
task_tgid_nr_ns(rcu_dereference(p->real_parent), ns) : 0;
tpid = 0;
if (pid_alive(p)) {
struct task_struct *tracer = tracehook_tracer_task(p);
if (tracer)
tpid = task_pid_nr_ns(tracer, ns);
}
cred = get_cred((struct cred *) __task_cred(p));
seq_printf(m,
"State:\t%s\n"
"Tgid:\t%d\n"
"Pid:\t%d\n"
"PPid:\t%d\n"
"TracerPid:\t%d\n"
"Uid:\t%d\t%d\t%d\t%d\n"
"Gid:\t%d\t%d\t%d\t%d\n",
get_task_state(p),
task_tgid_nr_ns(p, ns),
pid_nr_ns(pid, ns),
ppid, tpid,
cred->uid, cred->euid, cred->suid, cred->fsuid,
cred->gid, cred->egid, cred->sgid, cred->fsgid);
task_lock(p);
if (p->files)
fdt = files_fdtable(p->files);
seq_printf(m,
"FDSize:\t%d\n"
"Groups:\t",
fdt ? fdt->max_fds : 0);
rcu_read_unlock();
group_info = cred->group_info;
task_unlock(p);
for (g = 0; g < min(group_info->ngroups, NGROUPS_SMALL); g++)
seq_printf(m, "%d ", GROUP_AT(group_info, g));
put_cred(cred);
seq_printf(m, "\n");
}
static void render_sigset_t(struct seq_file *m, const char *header,
sigset_t *set)
{
int i;
seq_printf(m, "%s", header);
i = _NSIG;
do {
int x = 0;
i -= 4;
if (sigismember(set, i+1)) x |= 1;
if (sigismember(set, i+2)) x |= 2;
if (sigismember(set, i+3)) x |= 4;
if (sigismember(set, i+4)) x |= 8;
seq_printf(m, "%x", x);
} while (i >= 4);
seq_printf(m, "\n");
}
static void collect_sigign_sigcatch(struct task_struct *p, sigset_t *ign,
sigset_t *catch)
{
struct k_sigaction *k;
int i;
k = p->sighand->action;
for (i = 1; i <= _NSIG; ++i, ++k) {
if (k->sa.sa_handler == SIG_IGN)
sigaddset(ign, i);
else if (k->sa.sa_handler != SIG_DFL)
sigaddset(catch, i);
}
}
static inline void task_sig(struct seq_file *m, struct task_struct *p)
{
unsigned long flags;
sigset_t pending, shpending, blocked, ignored, caught;
int num_threads = 0;
unsigned long qsize = 0;
unsigned long qlim = 0;
sigemptyset(&pending);
sigemptyset(&shpending);
sigemptyset(&blocked);
sigemptyset(&ignored);
sigemptyset(&caught);
if (lock_task_sighand(p, &flags)) {
pending = p->pending.signal;
shpending = p->signal->shared_pending.signal;
blocked = p->blocked;
collect_sigign_sigcatch(p, &ignored, &caught);
num_threads = atomic_read(&p->signal->count);
rcu_read_lock(); /* FIXME: is this correct? */
qsize = atomic_read(&__task_cred(p)->user->sigpending);
rcu_read_unlock();
qlim = task_rlimit(p, RLIMIT_SIGPENDING);
unlock_task_sighand(p, &flags);
}
seq_printf(m, "Threads:\t%d\n", num_threads);
seq_printf(m, "SigQ:\t%lu/%lu\n", qsize, qlim);
/* render them all */
render_sigset_t(m, "SigPnd:\t", &pending);
render_sigset_t(m, "ShdPnd:\t", &shpending);
render_sigset_t(m, "SigBlk:\t", &blocked);
render_sigset_t(m, "SigIgn:\t", &ignored);
render_sigset_t(m, "SigCgt:\t", &caught);
}
static void render_cap_t(struct seq_file *m, const char *header,
kernel_cap_t *a)
{
unsigned __capi;
seq_printf(m, "%s", header);
CAP_FOR_EACH_U32(__capi) {
seq_printf(m, "%08x",
a->cap[(_KERNEL_CAPABILITY_U32S-1) - __capi]);
}
seq_printf(m, "\n");
}
static inline void task_cap(struct seq_file *m, struct task_struct *p)
{
const struct cred *cred;
kernel_cap_t cap_inheritable, cap_permitted, cap_effective, cap_bset;
rcu_read_lock();
cred = __task_cred(p);
cap_inheritable = cred->cap_inheritable;
cap_permitted = cred->cap_permitted;
cap_effective = cred->cap_effective;
cap_bset = cred->cap_bset;
rcu_read_unlock();
render_cap_t(m, "CapInh:\t", &cap_inheritable);
render_cap_t(m, "CapPrm:\t", &cap_permitted);
render_cap_t(m, "CapEff:\t", &cap_effective);
render_cap_t(m, "CapBnd:\t", &cap_bset);
}
static inline void task_context_switch_counts(struct seq_file *m,
struct task_struct *p)
{
seq_printf(m, "voluntary_ctxt_switches:\t%lu\n"
"nonvoluntary_ctxt_switches:\t%lu\n",
p->nvcsw,
p->nivcsw);
}
static void task_cpus_allowed(struct seq_file *m, struct task_struct *task)
{
seq_printf(m, "Cpus_allowed:\t");
seq_cpumask(m, &task->cpus_allowed);
seq_printf(m, "\n");
seq_printf(m, "Cpus_allowed_list:\t");
seq_cpumask_list(m, &task->cpus_allowed);
seq_printf(m, "\n");
}
int proc_pid_status(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
struct mm_struct *mm = get_task_mm(task);
task_name(m, task);
task_state(m, ns, pid, task);
if (mm) {
task_mem(m, mm);
mmput(mm);
}
task_sig(m, task);
task_cap(m, task);
task_cpus_allowed(m, task);
cpuset_task_status_allowed(m, task);
#if defined(CONFIG_S390)
task_show_regs(m, task);
#endif
task_context_switch_counts(m, task);
return 0;
}
static int do_task_stat(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task, int whole)
{
unsigned long vsize, eip, esp, wchan = ~0UL;
long priority, nice;
int tty_pgrp = -1, tty_nr = 0;
sigset_t sigign, sigcatch;
char state;
pid_t ppid = 0, pgid = -1, sid = -1;
int num_threads = 0;
int permitted;
struct mm_struct *mm;
unsigned long long start_time;
unsigned long cmin_flt = 0, cmaj_flt = 0;
unsigned long min_flt = 0, maj_flt = 0;
cputime_t cutime, cstime, utime, stime;
cputime_t cgtime, gtime;
unsigned long rsslim = 0;
char tcomm[sizeof(task->comm)];
unsigned long flags;
state = *get_task_state(task);
vsize = eip = esp = 0;
permitted = ptrace_may_access(task, PTRACE_MODE_READ);
mm = get_task_mm(task);
if (mm) {
vsize = task_vsize(mm);
if (permitted) {
eip = KSTK_EIP(task);
esp = KSTK_ESP(task);
}
}
get_task_comm(tcomm, task);
sigemptyset(&sigign);
sigemptyset(&sigcatch);
cutime = cstime = utime = stime = cputime_zero;
cgtime = gtime = cputime_zero;
if (lock_task_sighand(task, &flags)) {
struct signal_struct *sig = task->signal;
if (sig->tty) {
struct pid *pgrp = tty_get_pgrp(sig->tty);
tty_pgrp = pid_nr_ns(pgrp, ns);
put_pid(pgrp);
tty_nr = new_encode_dev(tty_devnum(sig->tty));
}
num_threads = atomic_read(&sig->count);
collect_sigign_sigcatch(task, &sigign, &sigcatch);
cmin_flt = sig->cmin_flt;
cmaj_flt = sig->cmaj_flt;
cutime = sig->cutime;
cstime = sig->cstime;
cgtime = sig->cgtime;
rsslim = ACCESS_ONCE(sig->rlim[RLIMIT_RSS].rlim_cur);
/* add up live thread stats at the group level */
if (whole) {
struct task_struct *t = task;
do {
min_flt += t->min_flt;
maj_flt += t->maj_flt;
gtime = cputime_add(gtime, t->gtime);
t = next_thread(t);
} while (t != task);
min_flt += sig->min_flt;
maj_flt += sig->maj_flt;
thread_group_times(task, &utime, &stime);
gtime = cputime_add(gtime, sig->gtime);
}
sid = task_session_nr_ns(task, ns);
ppid = task_tgid_nr_ns(task->real_parent, ns);
pgid = task_pgrp_nr_ns(task, ns);
unlock_task_sighand(task, &flags);
}
if (permitted && (!whole || num_threads < 2))
wchan = get_wchan(task);
if (!whole) {
min_flt = task->min_flt;
maj_flt = task->maj_flt;
task_times(task, &utime, &stime);
gtime = task->gtime;
}
/* scale priority and nice values from timeslices to -20..20 */
/* to make it look like a "normal" Unix priority/nice value */
priority = task_prio(task);
nice = task_nice(task);
/* Temporary variable needed for gcc-2.96 */
/* convert timespec -> nsec*/
start_time =
(unsigned long long)task->real_start_time.tv_sec * NSEC_PER_SEC
+ task->real_start_time.tv_nsec;
/* convert nsec -> ticks */
start_time = nsec_to_clock_t(start_time);
seq_printf(m, "%d (%s) %c %d %d %d %d %d %u %lu \
%lu %lu %lu %lu %lu %ld %ld %ld %ld %d 0 %llu %lu %ld %lu %lu %lu %lu %lu \
%lu %lu %lu %lu %lu %lu %lu %lu %d %d %u %u %llu %lu %ld\n",
pid_nr_ns(pid, ns),
tcomm,
state,
ppid,
pgid,
sid,
tty_nr,
tty_pgrp,
task->flags,
min_flt,
cmin_flt,
maj_flt,
cmaj_flt,
cputime_to_clock_t(utime),
cputime_to_clock_t(stime),
cputime_to_clock_t(cutime),
cputime_to_clock_t(cstime),
priority,
nice,
num_threads,
start_time,
vsize,
mm ? get_mm_rss(mm) : 0,
rsslim,
mm ? mm->start_code : 0,
mm ? mm->end_code : 0,
(permitted && mm) ? task->stack_start : 0,
esp,
eip,
/* The signal information here is obsolete.
* It must be decimal for Linux 2.0 compatibility.
* Use /proc/#/status for real-time signals.
*/
task->pending.signal.sig[0] & 0x7fffffffUL,
task->blocked.sig[0] & 0x7fffffffUL,
sigign .sig[0] & 0x7fffffffUL,
sigcatch .sig[0] & 0x7fffffffUL,
wchan,
0UL,
0UL,
task->exit_signal,
task_cpu(task),
task->rt_priority,
task->policy,
(unsigned long long)delayacct_blkio_ticks(task),
cputime_to_clock_t(gtime),
cputime_to_clock_t(cgtime));
if (mm)
mmput(mm);
return 0;
}
int proc_tid_stat(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
return do_task_stat(m, ns, pid, task, 0);
}
int proc_tgid_stat(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
return do_task_stat(m, ns, pid, task, 1);
}
int proc_pid_statm(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *task)
{
int size = 0, resident = 0, shared = 0, text = 0, lib = 0, data = 0;
struct mm_struct *mm = get_task_mm(task);
if (mm) {
size = task_statm(mm, &shared, &text, &data, &resident);
mmput(mm);
}
seq_printf(m, "%d %d %d %d %d %d %d\n",
size, resident, shared, text, lib, data, 0);
return 0;
}