1
linux/drivers/scsi/sym53c8xx_2/sym_glue.c
Matthew Wilcox b37df48923 [SCSI] sym2: Allow NVRAM settings to limit speed and width
The NVRAM for both Tekram and Symbios boards allows the user to set the
speed and width for individual targets.  I took that code out in March
2004 when we introduced Domain Validation, but it seems there's still
a legitimate need for it in some configurations.

Signed-off-by: Matthew Wilcox <matthew@wil.cx>
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2005-12-13 18:11:45 -07:00

2244 lines
55 KiB
C

/*
* Device driver for the SYMBIOS/LSILOGIC 53C8XX and 53C1010 family
* of PCI-SCSI IO processors.
*
* Copyright (C) 1999-2001 Gerard Roudier <groudier@free.fr>
* Copyright (c) 2003-2005 Matthew Wilcox <matthew@wil.cx>
*
* This driver is derived from the Linux sym53c8xx driver.
* Copyright (C) 1998-2000 Gerard Roudier
*
* The sym53c8xx driver is derived from the ncr53c8xx driver that had been
* a port of the FreeBSD ncr driver to Linux-1.2.13.
*
* The original ncr driver has been written for 386bsd and FreeBSD by
* Wolfgang Stanglmeier <wolf@cologne.de>
* Stefan Esser <se@mi.Uni-Koeln.de>
* Copyright (C) 1994 Wolfgang Stanglmeier
*
* Other major contributions:
*
* NVRAM detection and reading.
* Copyright (C) 1997 Richard Waltham <dormouse@farsrobt.demon.co.uk>
*
*-----------------------------------------------------------------------------
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/ctype.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/spinlock.h>
#include <scsi/scsi.h>
#include <scsi/scsi_tcq.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_transport.h>
#include "sym_glue.h"
#include "sym_nvram.h"
#define NAME53C "sym53c"
#define NAME53C8XX "sym53c8xx"
/* SPARC just has to be different ... */
#ifdef __sparc__
#define IRQ_FMT "%s"
#define IRQ_PRM(x) __irq_itoa(x)
#else
#define IRQ_FMT "%d"
#define IRQ_PRM(x) (x)
#endif
struct sym_driver_setup sym_driver_setup = SYM_LINUX_DRIVER_SETUP;
unsigned int sym_debug_flags = 0;
static char *excl_string;
static char *safe_string;
module_param_named(cmd_per_lun, sym_driver_setup.max_tag, ushort, 0);
module_param_string(tag_ctrl, sym_driver_setup.tag_ctrl, 100, 0);
module_param_named(burst, sym_driver_setup.burst_order, byte, 0);
module_param_named(led, sym_driver_setup.scsi_led, byte, 0);
module_param_named(diff, sym_driver_setup.scsi_diff, byte, 0);
module_param_named(irqm, sym_driver_setup.irq_mode, byte, 0);
module_param_named(buschk, sym_driver_setup.scsi_bus_check, byte, 0);
module_param_named(hostid, sym_driver_setup.host_id, byte, 0);
module_param_named(verb, sym_driver_setup.verbose, byte, 0);
module_param_named(debug, sym_debug_flags, uint, 0);
module_param_named(settle, sym_driver_setup.settle_delay, byte, 0);
module_param_named(nvram, sym_driver_setup.use_nvram, byte, 0);
module_param_named(excl, excl_string, charp, 0);
module_param_named(safe, safe_string, charp, 0);
MODULE_PARM_DESC(cmd_per_lun, "The maximum number of tags to use by default");
MODULE_PARM_DESC(tag_ctrl, "More detailed control over tags per LUN");
MODULE_PARM_DESC(burst, "Maximum burst. 0 to disable, 255 to read from registers");
MODULE_PARM_DESC(led, "Set to 1 to enable LED support");
MODULE_PARM_DESC(diff, "0 for no differential mode, 1 for BIOS, 2 for always, 3 for not GPIO3");
MODULE_PARM_DESC(irqm, "0 for open drain, 1 to leave alone, 2 for totem pole");
MODULE_PARM_DESC(buschk, "0 to not check, 1 for detach on error, 2 for warn on error");
MODULE_PARM_DESC(hostid, "The SCSI ID to use for the host adapters");
MODULE_PARM_DESC(verb, "0 for minimal verbosity, 1 for normal, 2 for excessive");
MODULE_PARM_DESC(debug, "Set bits to enable debugging");
MODULE_PARM_DESC(settle, "Settle delay in seconds. Default 3");
MODULE_PARM_DESC(nvram, "Option currently not used");
MODULE_PARM_DESC(excl, "List ioport addresses here to prevent controllers from being attached");
MODULE_PARM_DESC(safe, "Set other settings to a \"safe mode\"");
MODULE_LICENSE("GPL");
MODULE_VERSION(SYM_VERSION);
MODULE_AUTHOR("Matthew Wilcox <matthew@wil.cx>");
MODULE_DESCRIPTION("NCR, Symbios and LSI 8xx and 1010 PCI SCSI adapters");
static void sym2_setup_params(void)
{
char *p = excl_string;
int xi = 0;
while (p && (xi < 8)) {
char *next_p;
int val = (int) simple_strtoul(p, &next_p, 0);
sym_driver_setup.excludes[xi++] = val;
p = next_p;
}
if (safe_string) {
if (*safe_string == 'y') {
sym_driver_setup.max_tag = 0;
sym_driver_setup.burst_order = 0;
sym_driver_setup.scsi_led = 0;
sym_driver_setup.scsi_diff = 1;
sym_driver_setup.irq_mode = 0;
sym_driver_setup.scsi_bus_check = 2;
sym_driver_setup.host_id = 7;
sym_driver_setup.verbose = 2;
sym_driver_setup.settle_delay = 10;
sym_driver_setup.use_nvram = 1;
} else if (*safe_string != 'n') {
printk(KERN_WARNING NAME53C8XX "Ignoring parameter %s"
" passed to safe option", safe_string);
}
}
}
/*
* We used to try to deal with 64-bit BARs here, but don't any more.
* There are many parts of this driver which would need to be modified
* to handle a 64-bit base address, including scripts. I'm uncomfortable
* with making those changes when I have no way of testing it, so I'm
* just going to disable it.
*
* Note that some machines (eg HP rx8620 and Superdome) have bus addresses
* below 4GB and physical addresses above 4GB. These will continue to work.
*/
static int __devinit
pci_get_base_address(struct pci_dev *pdev, int index, unsigned long *basep)
{
u32 tmp;
unsigned long base;
#define PCI_BAR_OFFSET(index) (PCI_BASE_ADDRESS_0 + (index<<2))
pci_read_config_dword(pdev, PCI_BAR_OFFSET(index++), &tmp);
base = tmp;
if ((tmp & 0x7) == PCI_BASE_ADDRESS_MEM_TYPE_64) {
pci_read_config_dword(pdev, PCI_BAR_OFFSET(index++), &tmp);
if (tmp > 0) {
dev_err(&pdev->dev,
"BAR %d is 64-bit, disabling\n", index - 1);
base = 0;
}
}
if ((base & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) {
base &= PCI_BASE_ADDRESS_IO_MASK;
} else {
base &= PCI_BASE_ADDRESS_MEM_MASK;
}
*basep = base;
return index;
#undef PCI_BAR_OFFSET
}
static struct scsi_transport_template *sym2_transport_template = NULL;
/*
* Used by the eh thread to wait for command completion.
* It is allocated on the eh thread stack.
*/
struct sym_eh_wait {
struct completion done;
struct timer_list timer;
void (*old_done)(struct scsi_cmnd *);
int to_do;
int timed_out;
};
/*
* Driver private area in the SCSI command structure.
*/
struct sym_ucmd { /* Override the SCSI pointer structure */
dma_addr_t data_mapping;
u_char data_mapped;
struct sym_eh_wait *eh_wait;
};
#define SYM_UCMD_PTR(cmd) ((struct sym_ucmd *)(&(cmd)->SCp))
#define SYM_SOFTC_PTR(cmd) sym_get_hcb(cmd->device->host)
static void __unmap_scsi_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
{
int dma_dir = cmd->sc_data_direction;
switch(SYM_UCMD_PTR(cmd)->data_mapped) {
case 2:
pci_unmap_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir);
break;
case 1:
pci_unmap_single(pdev, SYM_UCMD_PTR(cmd)->data_mapping,
cmd->request_bufflen, dma_dir);
break;
}
SYM_UCMD_PTR(cmd)->data_mapped = 0;
}
static dma_addr_t __map_scsi_single_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
{
dma_addr_t mapping;
int dma_dir = cmd->sc_data_direction;
mapping = pci_map_single(pdev, cmd->request_buffer,
cmd->request_bufflen, dma_dir);
if (mapping) {
SYM_UCMD_PTR(cmd)->data_mapped = 1;
SYM_UCMD_PTR(cmd)->data_mapping = mapping;
}
return mapping;
}
static int __map_scsi_sg_data(struct pci_dev *pdev, struct scsi_cmnd *cmd)
{
int use_sg;
int dma_dir = cmd->sc_data_direction;
use_sg = pci_map_sg(pdev, cmd->buffer, cmd->use_sg, dma_dir);
if (use_sg > 0) {
SYM_UCMD_PTR(cmd)->data_mapped = 2;
SYM_UCMD_PTR(cmd)->data_mapping = use_sg;
}
return use_sg;
}
#define unmap_scsi_data(np, cmd) \
__unmap_scsi_data(np->s.device, cmd)
#define map_scsi_single_data(np, cmd) \
__map_scsi_single_data(np->s.device, cmd)
#define map_scsi_sg_data(np, cmd) \
__map_scsi_sg_data(np->s.device, cmd)
/*
* Complete a pending CAM CCB.
*/
void sym_xpt_done(struct sym_hcb *np, struct scsi_cmnd *cmd)
{
unmap_scsi_data(np, cmd);
cmd->scsi_done(cmd);
}
static void sym_xpt_done2(struct sym_hcb *np, struct scsi_cmnd *cmd, int cam_status)
{
sym_set_cam_status(cmd, cam_status);
sym_xpt_done(np, cmd);
}
/*
* Tell the SCSI layer about a BUS RESET.
*/
void sym_xpt_async_bus_reset(struct sym_hcb *np)
{
printf_notice("%s: SCSI BUS has been reset.\n", sym_name(np));
np->s.settle_time = jiffies + sym_driver_setup.settle_delay * HZ;
np->s.settle_time_valid = 1;
if (sym_verbose >= 2)
printf_info("%s: command processing suspended for %d seconds\n",
sym_name(np), sym_driver_setup.settle_delay);
}
/*
* Tell the SCSI layer about a BUS DEVICE RESET message sent.
*/
void sym_xpt_async_sent_bdr(struct sym_hcb *np, int target)
{
printf_notice("%s: TARGET %d has been reset.\n", sym_name(np), target);
}
/*
* Choose the more appropriate CAM status if
* the IO encountered an extended error.
*/
static int sym_xerr_cam_status(int cam_status, int x_status)
{
if (x_status) {
if (x_status & XE_PARITY_ERR)
cam_status = DID_PARITY;
else if (x_status &(XE_EXTRA_DATA|XE_SODL_UNRUN|XE_SWIDE_OVRUN))
cam_status = DID_ERROR;
else if (x_status & XE_BAD_PHASE)
cam_status = DID_ERROR;
else
cam_status = DID_ERROR;
}
return cam_status;
}
/*
* Build CAM result for a failed or auto-sensed IO.
*/
void sym_set_cam_result_error(struct sym_hcb *np, struct sym_ccb *cp, int resid)
{
struct scsi_cmnd *cmd = cp->cmd;
u_int cam_status, scsi_status, drv_status;
drv_status = 0;
cam_status = DID_OK;
scsi_status = cp->ssss_status;
if (cp->host_flags & HF_SENSE) {
scsi_status = cp->sv_scsi_status;
resid = cp->sv_resid;
if (sym_verbose && cp->sv_xerr_status)
sym_print_xerr(cmd, cp->sv_xerr_status);
if (cp->host_status == HS_COMPLETE &&
cp->ssss_status == S_GOOD &&
cp->xerr_status == 0) {
cam_status = sym_xerr_cam_status(DID_OK,
cp->sv_xerr_status);
drv_status = DRIVER_SENSE;
/*
* Bounce back the sense data to user.
*/
memset(&cmd->sense_buffer, 0, sizeof(cmd->sense_buffer));
memcpy(cmd->sense_buffer, cp->sns_bbuf,
min(sizeof(cmd->sense_buffer),
(size_t)SYM_SNS_BBUF_LEN));
#if 0
/*
* If the device reports a UNIT ATTENTION condition
* due to a RESET condition, we should consider all
* disconnect CCBs for this unit as aborted.
*/
if (1) {
u_char *p;
p = (u_char *) cmd->sense_data;
if (p[0]==0x70 && p[2]==0x6 && p[12]==0x29)
sym_clear_tasks(np, DID_ABORT,
cp->target,cp->lun, -1);
}
#endif
} else {
/*
* Error return from our internal request sense. This
* is bad: we must clear the contingent allegiance
* condition otherwise the device will always return
* BUSY. Use a big stick.
*/
sym_reset_scsi_target(np, cmd->device->id);
cam_status = DID_ERROR;
}
} else if (cp->host_status == HS_COMPLETE) /* Bad SCSI status */
cam_status = DID_OK;
else if (cp->host_status == HS_SEL_TIMEOUT) /* Selection timeout */
cam_status = DID_NO_CONNECT;
else if (cp->host_status == HS_UNEXPECTED) /* Unexpected BUS FREE*/
cam_status = DID_ERROR;
else { /* Extended error */
if (sym_verbose) {
sym_print_addr(cmd, "COMMAND FAILED (%x %x %x).\n",
cp->host_status, cp->ssss_status,
cp->xerr_status);
}
/*
* Set the most appropriate value for CAM status.
*/
cam_status = sym_xerr_cam_status(DID_ERROR, cp->xerr_status);
}
cmd->resid = resid;
cmd->result = (drv_status << 24) + (cam_status << 16) + scsi_status;
}
/*
* Build the scatter/gather array for an I/O.
*/
static int sym_scatter_no_sglist(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
{
struct sym_tblmove *data = &cp->phys.data[SYM_CONF_MAX_SG-1];
int segment;
unsigned int len = cmd->request_bufflen;
if (len) {
dma_addr_t baddr = map_scsi_single_data(np, cmd);
if (baddr) {
if (len & 1) {
struct sym_tcb *tp = &np->target[cp->target];
if (tp->head.wval & EWS) {
len++;
cp->odd_byte_adjustment++;
}
}
cp->data_len = len;
sym_build_sge(np, data, baddr, len);
segment = 1;
} else {
segment = -2;
}
} else {
segment = 0;
}
return segment;
}
static int sym_scatter(struct sym_hcb *np, struct sym_ccb *cp, struct scsi_cmnd *cmd)
{
int segment;
int use_sg = (int) cmd->use_sg;
cp->data_len = 0;
if (!use_sg)
segment = sym_scatter_no_sglist(np, cp, cmd);
else if ((use_sg = map_scsi_sg_data(np, cmd)) > 0) {
struct scatterlist *scatter = (struct scatterlist *)cmd->buffer;
struct sym_tcb *tp = &np->target[cp->target];
struct sym_tblmove *data;
if (use_sg > SYM_CONF_MAX_SG) {
unmap_scsi_data(np, cmd);
return -1;
}
data = &cp->phys.data[SYM_CONF_MAX_SG - use_sg];
for (segment = 0; segment < use_sg; segment++) {
dma_addr_t baddr = sg_dma_address(&scatter[segment]);
unsigned int len = sg_dma_len(&scatter[segment]);
if ((len & 1) && (tp->head.wval & EWS)) {
len++;
cp->odd_byte_adjustment++;
}
sym_build_sge(np, &data[segment], baddr, len);
cp->data_len += len;
}
} else {
segment = -2;
}
return segment;
}
/*
* Queue a SCSI command.
*/
static int sym_queue_command(struct sym_hcb *np, struct scsi_cmnd *cmd)
{
struct scsi_device *sdev = cmd->device;
struct sym_tcb *tp;
struct sym_lcb *lp;
struct sym_ccb *cp;
int order;
/*
* Minimal checkings, so that we will not
* go outside our tables.
*/
if (sdev->id == np->myaddr) {
sym_xpt_done2(np, cmd, DID_NO_CONNECT);
return 0;
}
/*
* Retrieve the target descriptor.
*/
tp = &np->target[sdev->id];
/*
* Select tagged/untagged.
*/
lp = sym_lp(tp, sdev->lun);
order = (lp && lp->s.reqtags) ? M_SIMPLE_TAG : 0;
/*
* Queue the SCSI IO.
*/
cp = sym_get_ccb(np, cmd, order);
if (!cp)
return 1; /* Means resource shortage */
sym_queue_scsiio(np, cmd, cp);
return 0;
}
/*
* Setup buffers and pointers that address the CDB.
*/
static inline int sym_setup_cdb(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
{
memcpy(cp->cdb_buf, cmd->cmnd, cmd->cmd_len);
cp->phys.cmd.addr = CCB_BA(cp, cdb_buf[0]);
cp->phys.cmd.size = cpu_to_scr(cmd->cmd_len);
return 0;
}
/*
* Setup pointers that address the data and start the I/O.
*/
int sym_setup_data_and_start(struct sym_hcb *np, struct scsi_cmnd *cmd, struct sym_ccb *cp)
{
struct sym_tcb *tp = &np->target[cp->target];
struct sym_lcb *lp = sym_lp(tp, cp->lun);
u32 lastp, goalp;
int dir;
/*
* Build the CDB.
*/
if (sym_setup_cdb(np, cmd, cp))
goto out_abort;
/*
* No direction means no data.
*/
dir = cmd->sc_data_direction;
if (dir != DMA_NONE) {
cp->segments = sym_scatter(np, cp, cmd);
if (cp->segments < 0) {
sym_set_cam_status(cmd, DID_ERROR);
goto out_abort;
}
/*
* No segments means no data.
*/
if (!cp->segments)
dir = DMA_NONE;
} else {
cp->data_len = 0;
cp->segments = 0;
}
/*
* Set the data pointer.
*/
switch (dir) {
case DMA_BIDIRECTIONAL:
printk("%s: got DMA_BIDIRECTIONAL command", sym_name(np));
sym_set_cam_status(cmd, DID_ERROR);
goto out_abort;
case DMA_TO_DEVICE:
goalp = SCRIPTA_BA(np, data_out2) + 8;
lastp = goalp - 8 - (cp->segments * (2*4));
break;
case DMA_FROM_DEVICE:
cp->host_flags |= HF_DATA_IN;
goalp = SCRIPTA_BA(np, data_in2) + 8;
lastp = goalp - 8 - (cp->segments * (2*4));
break;
case DMA_NONE:
default:
lastp = goalp = SCRIPTB_BA(np, no_data);
break;
}
/*
* Set all pointers values needed by SCRIPTS.
*/
cp->phys.head.lastp = cpu_to_scr(lastp);
cp->phys.head.savep = cpu_to_scr(lastp);
cp->startp = cp->phys.head.savep;
cp->goalp = cpu_to_scr(goalp);
/*
* When `#ifed 1', the code below makes the driver
* panic on the first attempt to write to a SCSI device.
* It is the first test we want to do after a driver
* change that does not seem obviously safe. :)
*/
#if 0
switch (cp->cdb_buf[0]) {
case 0x0A: case 0x2A: case 0xAA:
panic("XXXXXXXXXXXXX WRITE NOT YET ALLOWED XXXXXXXXXXXXXX\n");
break;
default:
break;
}
#endif
/*
* activate this job.
*/
sym_start_next_ccbs(np, lp, 2);
return 0;
out_abort:
sym_free_ccb(np, cp);
sym_xpt_done(np, cmd);
return 0;
}
/*
* timer daemon.
*
* Misused to keep the driver running when
* interrupts are not configured correctly.
*/
static void sym_timer(struct sym_hcb *np)
{
unsigned long thistime = jiffies;
/*
* Restart the timer.
*/
np->s.timer.expires = thistime + SYM_CONF_TIMER_INTERVAL;
add_timer(&np->s.timer);
/*
* If we are resetting the ncr, wait for settle_time before
* clearing it. Then command processing will be resumed.
*/
if (np->s.settle_time_valid) {
if (time_before_eq(np->s.settle_time, thistime)) {
if (sym_verbose >= 2 )
printk("%s: command processing resumed\n",
sym_name(np));
np->s.settle_time_valid = 0;
}
return;
}
/*
* Nothing to do for now, but that may come.
*/
if (np->s.lasttime + 4*HZ < thistime) {
np->s.lasttime = thistime;
}
#ifdef SYM_CONF_PCIQ_MAY_MISS_COMPLETIONS
/*
* Some way-broken PCI bridges may lead to
* completions being lost when the clearing
* of the INTFLY flag by the CPU occurs
* concurrently with the chip raising this flag.
* If this ever happen, lost completions will
* be reaped here.
*/
sym_wakeup_done(np);
#endif
}
/*
* PCI BUS error handler.
*/
void sym_log_bus_error(struct sym_hcb *np)
{
u_short pci_sts;
pci_read_config_word(np->s.device, PCI_STATUS, &pci_sts);
if (pci_sts & 0xf900) {
pci_write_config_word(np->s.device, PCI_STATUS, pci_sts);
printf("%s: PCI STATUS = 0x%04x\n",
sym_name(np), pci_sts & 0xf900);
}
}
/*
* queuecommand method. Entered with the host adapter lock held and
* interrupts disabled.
*/
static int sym53c8xx_queue_command(struct scsi_cmnd *cmd,
void (*done)(struct scsi_cmnd *))
{
struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
struct sym_ucmd *ucp = SYM_UCMD_PTR(cmd);
int sts = 0;
cmd->scsi_done = done;
memset(ucp, 0, sizeof(*ucp));
/*
* Shorten our settle_time if needed for
* this command not to time out.
*/
if (np->s.settle_time_valid && cmd->timeout_per_command) {
unsigned long tlimit = jiffies + cmd->timeout_per_command;
tlimit -= SYM_CONF_TIMER_INTERVAL*2;
if (time_after(np->s.settle_time, tlimit)) {
np->s.settle_time = tlimit;
}
}
if (np->s.settle_time_valid)
return SCSI_MLQUEUE_HOST_BUSY;
sts = sym_queue_command(np, cmd);
if (sts)
return SCSI_MLQUEUE_HOST_BUSY;
return 0;
}
/*
* Linux entry point of the interrupt handler.
*/
static irqreturn_t sym53c8xx_intr(int irq, void *dev_id, struct pt_regs * regs)
{
unsigned long flags;
struct sym_hcb *np = (struct sym_hcb *)dev_id;
if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("[");
spin_lock_irqsave(np->s.host->host_lock, flags);
sym_interrupt(np);
spin_unlock_irqrestore(np->s.host->host_lock, flags);
if (DEBUG_FLAGS & DEBUG_TINY) printf_debug ("]\n");
return IRQ_HANDLED;
}
/*
* Linux entry point of the timer handler
*/
static void sym53c8xx_timer(unsigned long npref)
{
struct sym_hcb *np = (struct sym_hcb *)npref;
unsigned long flags;
spin_lock_irqsave(np->s.host->host_lock, flags);
sym_timer(np);
spin_unlock_irqrestore(np->s.host->host_lock, flags);
}
/*
* What the eh thread wants us to perform.
*/
#define SYM_EH_ABORT 0
#define SYM_EH_DEVICE_RESET 1
#define SYM_EH_BUS_RESET 2
#define SYM_EH_HOST_RESET 3
/*
* What we will do regarding the involved SCSI command.
*/
#define SYM_EH_DO_IGNORE 0
#define SYM_EH_DO_COMPLETE 1
#define SYM_EH_DO_WAIT 2
/*
* Our general completion handler.
*/
static void __sym_eh_done(struct scsi_cmnd *cmd, int timed_out)
{
struct sym_eh_wait *ep = SYM_UCMD_PTR(cmd)->eh_wait;
if (!ep)
return;
/* Try to avoid a race here (not 100% safe) */
if (!timed_out) {
ep->timed_out = 0;
if (ep->to_do == SYM_EH_DO_WAIT && !del_timer(&ep->timer))
return;
}
/* Revert everything */
SYM_UCMD_PTR(cmd)->eh_wait = NULL;
cmd->scsi_done = ep->old_done;
/* Wake up the eh thread if it wants to sleep */
if (ep->to_do == SYM_EH_DO_WAIT)
complete(&ep->done);
}
/*
* scsi_done() alias when error recovery is in progress.
*/
static void sym_eh_done(struct scsi_cmnd *cmd) { __sym_eh_done(cmd, 0); }
/*
* Some timeout handler to avoid waiting too long.
*/
static void sym_eh_timeout(u_long p) { __sym_eh_done((struct scsi_cmnd *)p, 1); }
/*
* Generic method for our eh processing.
* The 'op' argument tells what we have to do.
*/
static int sym_eh_handler(int op, char *opname, struct scsi_cmnd *cmd)
{
struct sym_hcb *np = SYM_SOFTC_PTR(cmd);
SYM_QUEHEAD *qp;
int to_do = SYM_EH_DO_IGNORE;
int sts = -1;
struct sym_eh_wait eh, *ep = &eh;
dev_warn(&cmd->device->sdev_gendev, "%s operation started.\n", opname);
/* This one is queued in some place -> to wait for completion */
FOR_EACH_QUEUED_ELEMENT(&np->busy_ccbq, qp) {
struct sym_ccb *cp = sym_que_entry(qp, struct sym_ccb, link_ccbq);
if (cp->cmd == cmd) {
to_do = SYM_EH_DO_WAIT;
goto prepare;
}
}
prepare:
/* Prepare stuff to either ignore, complete or wait for completion */
switch(to_do) {
default:
case SYM_EH_DO_IGNORE:
break;
case SYM_EH_DO_WAIT:
init_completion(&ep->done);
/* fall through */
case SYM_EH_DO_COMPLETE:
ep->old_done = cmd->scsi_done;
cmd->scsi_done = sym_eh_done;
SYM_UCMD_PTR(cmd)->eh_wait = ep;
}
/* Try to proceed the operation we have been asked for */
sts = -1;
switch(op) {
case SYM_EH_ABORT:
sts = sym_abort_scsiio(np, cmd, 1);
break;
case SYM_EH_DEVICE_RESET:
sts = sym_reset_scsi_target(np, cmd->device->id);
break;
case SYM_EH_BUS_RESET:
sym_reset_scsi_bus(np, 1);
sts = 0;
break;
case SYM_EH_HOST_RESET:
sym_reset_scsi_bus(np, 0);
sym_start_up (np, 1);
sts = 0;
break;
default:
break;
}
/* On error, restore everything and cross fingers :) */
if (sts) {
SYM_UCMD_PTR(cmd)->eh_wait = NULL;
cmd->scsi_done = ep->old_done;
to_do = SYM_EH_DO_IGNORE;
}
ep->to_do = to_do;
/* Complete the command with locks held as required by the driver */
if (to_do == SYM_EH_DO_COMPLETE)
sym_xpt_done2(np, cmd, DID_ABORT);
/* Wait for completion with locks released, as required by kernel */
if (to_do == SYM_EH_DO_WAIT) {
init_timer(&ep->timer);
ep->timer.expires = jiffies + (5*HZ);
ep->timer.function = sym_eh_timeout;
ep->timer.data = (u_long)cmd;
ep->timed_out = 1; /* Be pessimistic for once :) */
add_timer(&ep->timer);
spin_unlock_irq(np->s.host->host_lock);
wait_for_completion(&ep->done);
spin_lock_irq(np->s.host->host_lock);
if (ep->timed_out)
sts = -2;
}
dev_warn(&cmd->device->sdev_gendev, "%s operation %s.\n", opname,
sts==0 ? "complete" :sts==-2 ? "timed-out" : "failed");
return sts ? SCSI_FAILED : SCSI_SUCCESS;
}
/*
* Error handlers called from the eh thread (one thread per HBA).
*/
static int sym53c8xx_eh_abort_handler(struct scsi_cmnd *cmd)
{
int rc;
spin_lock_irq(cmd->device->host->host_lock);
rc = sym_eh_handler(SYM_EH_ABORT, "ABORT", cmd);
spin_unlock_irq(cmd->device->host->host_lock);
return rc;
}
static int sym53c8xx_eh_device_reset_handler(struct scsi_cmnd *cmd)
{
int rc;
spin_lock_irq(cmd->device->host->host_lock);
rc = sym_eh_handler(SYM_EH_DEVICE_RESET, "DEVICE RESET", cmd);
spin_unlock_irq(cmd->device->host->host_lock);
return rc;
}
static int sym53c8xx_eh_bus_reset_handler(struct scsi_cmnd *cmd)
{
int rc;
spin_lock_irq(cmd->device->host->host_lock);
rc = sym_eh_handler(SYM_EH_BUS_RESET, "BUS RESET", cmd);
spin_unlock_irq(cmd->device->host->host_lock);
return rc;
}
static int sym53c8xx_eh_host_reset_handler(struct scsi_cmnd *cmd)
{
int rc;
spin_lock_irq(cmd->device->host->host_lock);
rc = sym_eh_handler(SYM_EH_HOST_RESET, "HOST RESET", cmd);
spin_unlock_irq(cmd->device->host->host_lock);
return rc;
}
/*
* Tune device queuing depth, according to various limits.
*/
static void sym_tune_dev_queuing(struct sym_tcb *tp, int lun, u_short reqtags)
{
struct sym_lcb *lp = sym_lp(tp, lun);
u_short oldtags;
if (!lp)
return;
oldtags = lp->s.reqtags;
if (reqtags > lp->s.scdev_depth)
reqtags = lp->s.scdev_depth;
lp->started_limit = reqtags ? reqtags : 2;
lp->started_max = 1;
lp->s.reqtags = reqtags;
if (reqtags != oldtags) {
dev_info(&tp->starget->dev,
"tagged command queuing %s, command queue depth %d.\n",
lp->s.reqtags ? "enabled" : "disabled",
lp->started_limit);
}
}
/*
* Linux select queue depths function
*/
#define DEF_DEPTH (sym_driver_setup.max_tag)
#define ALL_TARGETS -2
#define NO_TARGET -1
#define ALL_LUNS -2
#define NO_LUN -1
static int device_queue_depth(struct sym_hcb *np, int target, int lun)
{
int c, h, t, u, v;
char *p = sym_driver_setup.tag_ctrl;
char *ep;
h = -1;
t = NO_TARGET;
u = NO_LUN;
while ((c = *p++) != 0) {
v = simple_strtoul(p, &ep, 0);
switch(c) {
case '/':
++h;
t = ALL_TARGETS;
u = ALL_LUNS;
break;
case 't':
if (t != target)
t = (target == v) ? v : NO_TARGET;
u = ALL_LUNS;
break;
case 'u':
if (u != lun)
u = (lun == v) ? v : NO_LUN;
break;
case 'q':
if (h == np->s.unit &&
(t == ALL_TARGETS || t == target) &&
(u == ALL_LUNS || u == lun))
return v;
break;
case '-':
t = ALL_TARGETS;
u = ALL_LUNS;
break;
default:
break;
}
p = ep;
}
return DEF_DEPTH;
}
static int sym53c8xx_slave_alloc(struct scsi_device *sdev)
{
struct sym_hcb *np = sym_get_hcb(sdev->host);
struct sym_tcb *tp = &np->target[sdev->id];
struct sym_lcb *lp;
if (sdev->id >= SYM_CONF_MAX_TARGET || sdev->lun >= SYM_CONF_MAX_LUN)
return -ENXIO;
/*
* Fail the device init if the device is flagged NOSCAN at BOOT in
* the NVRAM. This may speed up boot and maintain coherency with
* BIOS device numbering. Clearing the flag allows the user to
* rescan skipped devices later. We also return an error for
* devices not flagged for SCAN LUNS in the NVRAM since some single
* lun devices behave badly when asked for a non zero LUN.
*/
if ((tp->usrflags & SYM_SCAN_BOOT_DISABLED) ||
((tp->usrflags & SYM_SCAN_LUNS_DISABLED) && sdev->lun != 0)) {
tp->usrflags &= ~SYM_SCAN_BOOT_DISABLED;
return -ENXIO;
}
lp = sym_alloc_lcb(np, sdev->id, sdev->lun);
if (!lp)
return -ENOMEM;
tp->starget = sdev->sdev_target;
spi_min_period(tp->starget) = tp->usr_period;
spi_max_width(tp->starget) = tp->usr_width;
return 0;
}
/*
* Linux entry point for device queue sizing.
*/
static int sym53c8xx_slave_configure(struct scsi_device *sdev)
{
struct sym_hcb *np = sym_get_hcb(sdev->host);
struct sym_tcb *tp = &np->target[sdev->id];
struct sym_lcb *lp = sym_lp(tp, sdev->lun);
int reqtags, depth_to_use;
/*
* Get user flags.
*/
lp->curr_flags = lp->user_flags;
/*
* Select queue depth from driver setup.
* Donnot use more than configured by user.
* Use at least 2.
* Donnot use more than our maximum.
*/
reqtags = device_queue_depth(np, sdev->id, sdev->lun);
if (reqtags > tp->usrtags)
reqtags = tp->usrtags;
if (!sdev->tagged_supported)
reqtags = 0;
#if 1 /* Avoid to locally queue commands for no good reasons */
if (reqtags > SYM_CONF_MAX_TAG)
reqtags = SYM_CONF_MAX_TAG;
depth_to_use = (reqtags ? reqtags : 2);
#else
depth_to_use = (reqtags ? SYM_CONF_MAX_TAG : 2);
#endif
scsi_adjust_queue_depth(sdev,
(sdev->tagged_supported ?
MSG_SIMPLE_TAG : 0),
depth_to_use);
lp->s.scdev_depth = depth_to_use;
sym_tune_dev_queuing(tp, sdev->lun, reqtags);
if (!spi_initial_dv(sdev->sdev_target))
spi_dv_device(sdev);
return 0;
}
static void sym53c8xx_slave_destroy(struct scsi_device *sdev)
{
struct sym_hcb *np = sym_get_hcb(sdev->host);
struct sym_lcb *lp = sym_lp(&np->target[sdev->id], sdev->lun);
if (lp->itlq_tbl)
sym_mfree_dma(lp->itlq_tbl, SYM_CONF_MAX_TASK * 4, "ITLQ_TBL");
kfree(lp->cb_tags);
sym_mfree_dma(lp, sizeof(*lp), "LCB");
}
/*
* Linux entry point for info() function
*/
static const char *sym53c8xx_info (struct Scsi_Host *host)
{
return SYM_DRIVER_NAME;
}
#ifdef SYM_LINUX_PROC_INFO_SUPPORT
/*
* Proc file system stuff
*
* A read operation returns adapter information.
* A write operation is a control command.
* The string is parsed in the driver code and the command is passed
* to the sym_usercmd() function.
*/
#ifdef SYM_LINUX_USER_COMMAND_SUPPORT
struct sym_usrcmd {
u_long target;
u_long lun;
u_long data;
u_long cmd;
};
#define UC_SETSYNC 10
#define UC_SETTAGS 11
#define UC_SETDEBUG 12
#define UC_SETWIDE 14
#define UC_SETFLAG 15
#define UC_SETVERBOSE 17
#define UC_RESETDEV 18
#define UC_CLEARDEV 19
static void sym_exec_user_command (struct sym_hcb *np, struct sym_usrcmd *uc)
{
struct sym_tcb *tp;
int t, l;
switch (uc->cmd) {
case 0: return;
#ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
case UC_SETDEBUG:
sym_debug_flags = uc->data;
break;
#endif
case UC_SETVERBOSE:
np->verbose = uc->data;
break;
default:
/*
* We assume that other commands apply to targets.
* This should always be the case and avoid the below
* 4 lines to be repeated 6 times.
*/
for (t = 0; t < SYM_CONF_MAX_TARGET; t++) {
if (!((uc->target >> t) & 1))
continue;
tp = &np->target[t];
switch (uc->cmd) {
case UC_SETSYNC:
if (!uc->data || uc->data >= 255) {
tp->tgoal.iu = tp->tgoal.dt =
tp->tgoal.qas = 0;
tp->tgoal.offset = 0;
} else if (uc->data <= 9 && np->minsync_dt) {
if (uc->data < np->minsync_dt)
uc->data = np->minsync_dt;
tp->tgoal.iu = tp->tgoal.dt =
tp->tgoal.qas = 1;
tp->tgoal.width = 1;
tp->tgoal.period = uc->data;
tp->tgoal.offset = np->maxoffs_dt;
} else {
if (uc->data < np->minsync)
uc->data = np->minsync;
tp->tgoal.iu = tp->tgoal.dt =
tp->tgoal.qas = 0;
tp->tgoal.period = uc->data;
tp->tgoal.offset = np->maxoffs;
}
tp->tgoal.check_nego = 1;
break;
case UC_SETWIDE:
tp->tgoal.width = uc->data ? 1 : 0;
tp->tgoal.check_nego = 1;
break;
case UC_SETTAGS:
for (l = 0; l < SYM_CONF_MAX_LUN; l++)
sym_tune_dev_queuing(tp, l, uc->data);
break;
case UC_RESETDEV:
tp->to_reset = 1;
np->istat_sem = SEM;
OUTB(np, nc_istat, SIGP|SEM);
break;
case UC_CLEARDEV:
for (l = 0; l < SYM_CONF_MAX_LUN; l++) {
struct sym_lcb *lp = sym_lp(tp, l);
if (lp) lp->to_clear = 1;
}
np->istat_sem = SEM;
OUTB(np, nc_istat, SIGP|SEM);
break;
case UC_SETFLAG:
tp->usrflags = uc->data;
break;
}
}
break;
}
}
static int skip_spaces(char *ptr, int len)
{
int cnt, c;
for (cnt = len; cnt > 0 && (c = *ptr++) && isspace(c); cnt--);
return (len - cnt);
}
static int get_int_arg(char *ptr, int len, u_long *pv)
{
char *end;
*pv = simple_strtoul(ptr, &end, 10);
return (end - ptr);
}
static int is_keyword(char *ptr, int len, char *verb)
{
int verb_len = strlen(verb);
if (len >= verb_len && !memcmp(verb, ptr, verb_len))
return verb_len;
else
return 0;
}
#define SKIP_SPACES(ptr, len) \
if ((arg_len = skip_spaces(ptr, len)) < 1) \
return -EINVAL; \
ptr += arg_len; len -= arg_len;
#define GET_INT_ARG(ptr, len, v) \
if (!(arg_len = get_int_arg(ptr, len, &(v)))) \
return -EINVAL; \
ptr += arg_len; len -= arg_len;
/*
* Parse a control command
*/
static int sym_user_command(struct sym_hcb *np, char *buffer, int length)
{
char *ptr = buffer;
int len = length;
struct sym_usrcmd cmd, *uc = &cmd;
int arg_len;
u_long target;
memset(uc, 0, sizeof(*uc));
if (len > 0 && ptr[len-1] == '\n')
--len;
if ((arg_len = is_keyword(ptr, len, "setsync")) != 0)
uc->cmd = UC_SETSYNC;
else if ((arg_len = is_keyword(ptr, len, "settags")) != 0)
uc->cmd = UC_SETTAGS;
else if ((arg_len = is_keyword(ptr, len, "setverbose")) != 0)
uc->cmd = UC_SETVERBOSE;
else if ((arg_len = is_keyword(ptr, len, "setwide")) != 0)
uc->cmd = UC_SETWIDE;
#ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
else if ((arg_len = is_keyword(ptr, len, "setdebug")) != 0)
uc->cmd = UC_SETDEBUG;
#endif
else if ((arg_len = is_keyword(ptr, len, "setflag")) != 0)
uc->cmd = UC_SETFLAG;
else if ((arg_len = is_keyword(ptr, len, "resetdev")) != 0)
uc->cmd = UC_RESETDEV;
else if ((arg_len = is_keyword(ptr, len, "cleardev")) != 0)
uc->cmd = UC_CLEARDEV;
else
arg_len = 0;
#ifdef DEBUG_PROC_INFO
printk("sym_user_command: arg_len=%d, cmd=%ld\n", arg_len, uc->cmd);
#endif
if (!arg_len)
return -EINVAL;
ptr += arg_len; len -= arg_len;
switch(uc->cmd) {
case UC_SETSYNC:
case UC_SETTAGS:
case UC_SETWIDE:
case UC_SETFLAG:
case UC_RESETDEV:
case UC_CLEARDEV:
SKIP_SPACES(ptr, len);
if ((arg_len = is_keyword(ptr, len, "all")) != 0) {
ptr += arg_len; len -= arg_len;
uc->target = ~0;
} else {
GET_INT_ARG(ptr, len, target);
uc->target = (1<<target);
#ifdef DEBUG_PROC_INFO
printk("sym_user_command: target=%ld\n", target);
#endif
}
break;
}
switch(uc->cmd) {
case UC_SETVERBOSE:
case UC_SETSYNC:
case UC_SETTAGS:
case UC_SETWIDE:
SKIP_SPACES(ptr, len);
GET_INT_ARG(ptr, len, uc->data);
#ifdef DEBUG_PROC_INFO
printk("sym_user_command: data=%ld\n", uc->data);
#endif
break;
#ifdef SYM_LINUX_DEBUG_CONTROL_SUPPORT
case UC_SETDEBUG:
while (len > 0) {
SKIP_SPACES(ptr, len);
if ((arg_len = is_keyword(ptr, len, "alloc")))
uc->data |= DEBUG_ALLOC;
else if ((arg_len = is_keyword(ptr, len, "phase")))
uc->data |= DEBUG_PHASE;
else if ((arg_len = is_keyword(ptr, len, "queue")))
uc->data |= DEBUG_QUEUE;
else if ((arg_len = is_keyword(ptr, len, "result")))
uc->data |= DEBUG_RESULT;
else if ((arg_len = is_keyword(ptr, len, "scatter")))
uc->data |= DEBUG_SCATTER;
else if ((arg_len = is_keyword(ptr, len, "script")))
uc->data |= DEBUG_SCRIPT;
else if ((arg_len = is_keyword(ptr, len, "tiny")))
uc->data |= DEBUG_TINY;
else if ((arg_len = is_keyword(ptr, len, "timing")))
uc->data |= DEBUG_TIMING;
else if ((arg_len = is_keyword(ptr, len, "nego")))
uc->data |= DEBUG_NEGO;
else if ((arg_len = is_keyword(ptr, len, "tags")))
uc->data |= DEBUG_TAGS;
else if ((arg_len = is_keyword(ptr, len, "pointer")))
uc->data |= DEBUG_POINTER;
else
return -EINVAL;
ptr += arg_len; len -= arg_len;
}
#ifdef DEBUG_PROC_INFO
printk("sym_user_command: data=%ld\n", uc->data);
#endif
break;
#endif /* SYM_LINUX_DEBUG_CONTROL_SUPPORT */
case UC_SETFLAG:
while (len > 0) {
SKIP_SPACES(ptr, len);
if ((arg_len = is_keyword(ptr, len, "no_disc")))
uc->data &= ~SYM_DISC_ENABLED;
else
return -EINVAL;
ptr += arg_len; len -= arg_len;
}
break;
default:
break;
}
if (len)
return -EINVAL;
else {
unsigned long flags;
spin_lock_irqsave(np->s.host->host_lock, flags);
sym_exec_user_command (np, uc);
spin_unlock_irqrestore(np->s.host->host_lock, flags);
}
return length;
}
#endif /* SYM_LINUX_USER_COMMAND_SUPPORT */
#ifdef SYM_LINUX_USER_INFO_SUPPORT
/*
* Informations through the proc file system.
*/
struct info_str {
char *buffer;
int length;
int offset;
int pos;
};
static void copy_mem_info(struct info_str *info, char *data, int len)
{
if (info->pos + len > info->length)
len = info->length - info->pos;
if (info->pos + len < info->offset) {
info->pos += len;
return;
}
if (info->pos < info->offset) {
data += (info->offset - info->pos);
len -= (info->offset - info->pos);
}
if (len > 0) {
memcpy(info->buffer + info->pos, data, len);
info->pos += len;
}
}
static int copy_info(struct info_str *info, char *fmt, ...)
{
va_list args;
char buf[81];
int len;
va_start(args, fmt);
len = vsprintf(buf, fmt, args);
va_end(args);
copy_mem_info(info, buf, len);
return len;
}
/*
* Copy formatted information into the input buffer.
*/
static int sym_host_info(struct sym_hcb *np, char *ptr, off_t offset, int len)
{
struct info_str info;
info.buffer = ptr;
info.length = len;
info.offset = offset;
info.pos = 0;
copy_info(&info, "Chip " NAME53C "%s, device id 0x%x, "
"revision id 0x%x\n",
np->s.chip_name, np->device_id, np->revision_id);
copy_info(&info, "At PCI address %s, IRQ " IRQ_FMT "\n",
pci_name(np->s.device), IRQ_PRM(np->s.irq));
copy_info(&info, "Min. period factor %d, %s SCSI BUS%s\n",
(int) (np->minsync_dt ? np->minsync_dt : np->minsync),
np->maxwide ? "Wide" : "Narrow",
np->minsync_dt ? ", DT capable" : "");
copy_info(&info, "Max. started commands %d, "
"max. commands per LUN %d\n",
SYM_CONF_MAX_START, SYM_CONF_MAX_TAG);
return info.pos > info.offset? info.pos - info.offset : 0;
}
#endif /* SYM_LINUX_USER_INFO_SUPPORT */
/*
* Entry point of the scsi proc fs of the driver.
* - func = 0 means read (returns adapter infos)
* - func = 1 means write (not yet merget from sym53c8xx)
*/
static int sym53c8xx_proc_info(struct Scsi_Host *host, char *buffer,
char **start, off_t offset, int length, int func)
{
struct sym_hcb *np = sym_get_hcb(host);
int retv;
if (func) {
#ifdef SYM_LINUX_USER_COMMAND_SUPPORT
retv = sym_user_command(np, buffer, length);
#else
retv = -EINVAL;
#endif
} else {
if (start)
*start = buffer;
#ifdef SYM_LINUX_USER_INFO_SUPPORT
retv = sym_host_info(np, buffer, offset, length);
#else
retv = -EINVAL;
#endif
}
return retv;
}
#endif /* SYM_LINUX_PROC_INFO_SUPPORT */
/*
* Free controller resources.
*/
static void sym_free_resources(struct sym_hcb *np, struct pci_dev *pdev)
{
/*
* Free O/S specific resources.
*/
if (np->s.irq)
free_irq(np->s.irq, np);
if (np->s.ioaddr)
pci_iounmap(pdev, np->s.ioaddr);
if (np->s.ramaddr)
pci_iounmap(pdev, np->s.ramaddr);
/*
* Free O/S independent resources.
*/
sym_hcb_free(np);
sym_mfree_dma(np, sizeof(*np), "HCB");
}
/*
* Ask/tell the system about DMA addressing.
*/
static int sym_setup_bus_dma_mask(struct sym_hcb *np)
{
#if SYM_CONF_DMA_ADDRESSING_MODE > 0
#if SYM_CONF_DMA_ADDRESSING_MODE == 1
#define DMA_DAC_MASK DMA_40BIT_MASK
#elif SYM_CONF_DMA_ADDRESSING_MODE == 2
#define DMA_DAC_MASK DMA_64BIT_MASK
#endif
if ((np->features & FE_DAC) &&
!pci_set_dma_mask(np->s.device, DMA_DAC_MASK)) {
np->use_dac = 1;
return 0;
}
#endif
if (!pci_set_dma_mask(np->s.device, DMA_32BIT_MASK))
return 0;
printf_warning("%s: No suitable DMA available\n", sym_name(np));
return -1;
}
/*
* Host attach and initialisations.
*
* Allocate host data and ncb structure.
* Remap MMIO region.
* Do chip initialization.
* If all is OK, install interrupt handling and
* start the timer daemon.
*/
static struct Scsi_Host * __devinit sym_attach(struct scsi_host_template *tpnt,
int unit, struct sym_device *dev)
{
struct host_data *host_data;
struct sym_hcb *np = NULL;
struct Scsi_Host *instance = NULL;
struct pci_dev *pdev = dev->pdev;
unsigned long flags;
struct sym_fw *fw;
printk(KERN_INFO
"sym%d: <%s> rev 0x%x at pci %s irq " IRQ_FMT "\n",
unit, dev->chip.name, dev->chip.revision_id,
pci_name(pdev), IRQ_PRM(pdev->irq));
/*
* Get the firmware for this chip.
*/
fw = sym_find_firmware(&dev->chip);
if (!fw)
goto attach_failed;
/*
* Allocate host_data structure
*/
instance = scsi_host_alloc(tpnt, sizeof(*host_data));
if (!instance)
goto attach_failed;
host_data = (struct host_data *) instance->hostdata;
/*
* Allocate immediately the host control block,
* since we are only expecting to succeed. :)
* We keep track in the HCB of all the resources that
* are to be released on error.
*/
np = __sym_calloc_dma(&pdev->dev, sizeof(*np), "HCB");
if (!np)
goto attach_failed;
np->s.device = pdev;
np->bus_dmat = &pdev->dev; /* Result in 1 DMA pool per HBA */
host_data->ncb = np;
np->s.host = instance;
pci_set_drvdata(pdev, np);
/*
* Copy some useful infos to the HCB.
*/
np->hcb_ba = vtobus(np);
np->verbose = sym_driver_setup.verbose;
np->s.device = pdev;
np->s.unit = unit;
np->device_id = dev->chip.device_id;
np->revision_id = dev->chip.revision_id;
np->features = dev->chip.features;
np->clock_divn = dev->chip.nr_divisor;
np->maxoffs = dev->chip.offset_max;
np->maxburst = dev->chip.burst_max;
np->myaddr = dev->host_id;
/*
* Edit its name.
*/
strlcpy(np->s.chip_name, dev->chip.name, sizeof(np->s.chip_name));
sprintf(np->s.inst_name, "sym%d", np->s.unit);
if (sym_setup_bus_dma_mask(np))
goto attach_failed;
/*
* Try to map the controller chip to
* virtual and physical memory.
*/
np->mmio_ba = (u32)dev->mmio_base;
np->s.ioaddr = dev->s.ioaddr;
np->s.ramaddr = dev->s.ramaddr;
np->s.io_ws = (np->features & FE_IO256) ? 256 : 128;
/*
* Map on-chip RAM if present and supported.
*/
if (!(np->features & FE_RAM))
dev->ram_base = 0;
if (dev->ram_base) {
np->ram_ba = (u32)dev->ram_base;
np->ram_ws = (np->features & FE_RAM8K) ? 8192 : 4096;
}
if (sym_hcb_attach(instance, fw, dev->nvram))
goto attach_failed;
/*
* Install the interrupt handler.
* If we synchonize the C code with SCRIPTS on interrupt,
* we do not want to share the INTR line at all.
*/
if (request_irq(pdev->irq, sym53c8xx_intr, SA_SHIRQ, NAME53C8XX, np)) {
printf_err("%s: request irq %d failure\n",
sym_name(np), pdev->irq);
goto attach_failed;
}
np->s.irq = pdev->irq;
/*
* After SCSI devices have been opened, we cannot
* reset the bus safely, so we do it here.
*/
spin_lock_irqsave(instance->host_lock, flags);
if (sym_reset_scsi_bus(np, 0))
goto reset_failed;
/*
* Start the SCRIPTS.
*/
sym_start_up (np, 1);
/*
* Start the timer daemon
*/
init_timer(&np->s.timer);
np->s.timer.data = (unsigned long) np;
np->s.timer.function = sym53c8xx_timer;
np->s.lasttime=0;
sym_timer (np);
/*
* Fill Linux host instance structure
* and return success.
*/
instance->max_channel = 0;
instance->this_id = np->myaddr;
instance->max_id = np->maxwide ? 16 : 8;
instance->max_lun = SYM_CONF_MAX_LUN;
instance->unique_id = pci_resource_start(pdev, 0);
instance->cmd_per_lun = SYM_CONF_MAX_TAG;
instance->can_queue = (SYM_CONF_MAX_START-2);
instance->sg_tablesize = SYM_CONF_MAX_SG;
instance->max_cmd_len = 16;
BUG_ON(sym2_transport_template == NULL);
instance->transportt = sym2_transport_template;
spin_unlock_irqrestore(instance->host_lock, flags);
return instance;
reset_failed:
printf_err("%s: FATAL ERROR: CHECK SCSI BUS - CABLES, "
"TERMINATION, DEVICE POWER etc.!\n", sym_name(np));
spin_unlock_irqrestore(instance->host_lock, flags);
attach_failed:
if (!instance)
return NULL;
printf_info("%s: giving up ...\n", sym_name(np));
if (np)
sym_free_resources(np, pdev);
scsi_host_put(instance);
return NULL;
}
/*
* Detect and try to read SYMBIOS and TEKRAM NVRAM.
*/
#if SYM_CONF_NVRAM_SUPPORT
static void __devinit sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
{
devp->nvram = nvp;
devp->device_id = devp->chip.device_id;
nvp->type = 0;
sym_read_nvram(devp, nvp);
}
#else
static inline void sym_get_nvram(struct sym_device *devp, struct sym_nvram *nvp)
{
}
#endif /* SYM_CONF_NVRAM_SUPPORT */
static int __devinit sym_check_supported(struct sym_device *device)
{
struct sym_chip *chip;
struct pci_dev *pdev = device->pdev;
u_char revision;
unsigned long io_port = pci_resource_start(pdev, 0);
int i;
/*
* If user excluded this chip, do not initialize it.
* I hate this code so much. Must kill it.
*/
if (io_port) {
for (i = 0 ; i < 8 ; i++) {
if (sym_driver_setup.excludes[i] == io_port)
return -ENODEV;
}
}
/*
* Check if the chip is supported. Then copy the chip description
* to our device structure so we can make it match the actual device
* and options.
*/
pci_read_config_byte(pdev, PCI_CLASS_REVISION, &revision);
chip = sym_lookup_chip_table(pdev->device, revision);
if (!chip) {
dev_info(&pdev->dev, "device not supported\n");
return -ENODEV;
}
memcpy(&device->chip, chip, sizeof(device->chip));
device->chip.revision_id = revision;
return 0;
}
/*
* Ignore Symbios chips controlled by various RAID controllers.
* These controllers set value 0x52414944 at RAM end - 16.
*/
static int __devinit sym_check_raid(struct sym_device *device)
{
unsigned int ram_size, ram_val;
if (!device->s.ramaddr)
return 0;
if (device->chip.features & FE_RAM8K)
ram_size = 8192;
else
ram_size = 4096;
ram_val = readl(device->s.ramaddr + ram_size - 16);
if (ram_val != 0x52414944)
return 0;
dev_info(&device->pdev->dev,
"not initializing, driven by RAID controller.\n");
return -ENODEV;
}
static int __devinit sym_set_workarounds(struct sym_device *device)
{
struct sym_chip *chip = &device->chip;
struct pci_dev *pdev = device->pdev;
u_short status_reg;
/*
* (ITEM 12 of a DEL about the 896 I haven't yet).
* We must ensure the chip will use WRITE AND INVALIDATE.
* The revision number limit is for now arbitrary.
*/
if (pdev->device == PCI_DEVICE_ID_NCR_53C896 && chip->revision_id < 0x4) {
chip->features |= (FE_WRIE | FE_CLSE);
}
/* If the chip can do Memory Write Invalidate, enable it */
if (chip->features & FE_WRIE) {
if (pci_set_mwi(pdev))
return -ENODEV;
}
/*
* Work around for errant bit in 895A. The 66Mhz
* capable bit is set erroneously. Clear this bit.
* (Item 1 DEL 533)
*
* Make sure Config space and Features agree.
*
* Recall: writes are not normal to status register -
* write a 1 to clear and a 0 to leave unchanged.
* Can only reset bits.
*/
pci_read_config_word(pdev, PCI_STATUS, &status_reg);
if (chip->features & FE_66MHZ) {
if (!(status_reg & PCI_STATUS_66MHZ))
chip->features &= ~FE_66MHZ;
} else {
if (status_reg & PCI_STATUS_66MHZ) {
status_reg = PCI_STATUS_66MHZ;
pci_write_config_word(pdev, PCI_STATUS, status_reg);
pci_read_config_word(pdev, PCI_STATUS, &status_reg);
}
}
return 0;
}
/*
* Read and check the PCI configuration for any detected NCR
* boards and save data for attaching after all boards have
* been detected.
*/
static void __devinit
sym_init_device(struct pci_dev *pdev, struct sym_device *device)
{
int i;
device->host_id = SYM_SETUP_HOST_ID;
device->pdev = pdev;
i = pci_get_base_address(pdev, 1, &device->mmio_base);
pci_get_base_address(pdev, i, &device->ram_base);
#ifndef CONFIG_SCSI_SYM53C8XX_IOMAPPED
if (device->mmio_base)
device->s.ioaddr = pci_iomap(pdev, 1,
pci_resource_len(pdev, 1));
#endif
if (!device->s.ioaddr)
device->s.ioaddr = pci_iomap(pdev, 0,
pci_resource_len(pdev, 0));
if (device->ram_base)
device->s.ramaddr = pci_iomap(pdev, i,
pci_resource_len(pdev, i));
}
/*
* The NCR PQS and PDS cards are constructed as a DEC bridge
* behind which sits a proprietary NCR memory controller and
* either four or two 53c875s as separate devices. We can tell
* if an 875 is part of a PQS/PDS or not since if it is, it will
* be on the same bus as the memory controller. In its usual
* mode of operation, the 875s are slaved to the memory
* controller for all transfers. To operate with the Linux
* driver, the memory controller is disabled and the 875s
* freed to function independently. The only wrinkle is that
* the preset SCSI ID (which may be zero) must be read in from
* a special configuration space register of the 875.
*/
static void sym_config_pqs(struct pci_dev *pdev, struct sym_device *sym_dev)
{
int slot;
u8 tmp;
for (slot = 0; slot < 256; slot++) {
struct pci_dev *memc = pci_get_slot(pdev->bus, slot);
if (!memc || memc->vendor != 0x101a || memc->device == 0x0009) {
pci_dev_put(memc);
continue;
}
/* bit 1: allow individual 875 configuration */
pci_read_config_byte(memc, 0x44, &tmp);
if ((tmp & 0x2) == 0) {
tmp |= 0x2;
pci_write_config_byte(memc, 0x44, tmp);
}
/* bit 2: drive individual 875 interrupts to the bus */
pci_read_config_byte(memc, 0x45, &tmp);
if ((tmp & 0x4) == 0) {
tmp |= 0x4;
pci_write_config_byte(memc, 0x45, tmp);
}
pci_dev_put(memc);
break;
}
pci_read_config_byte(pdev, 0x84, &tmp);
sym_dev->host_id = tmp;
}
/*
* Called before unloading the module.
* Detach the host.
* We have to free resources and halt the NCR chip.
*/
static int sym_detach(struct sym_hcb *np, struct pci_dev *pdev)
{
printk("%s: detaching ...\n", sym_name(np));
del_timer_sync(&np->s.timer);
/*
* Reset NCR chip.
* We should use sym_soft_reset(), but we don't want to do
* so, since we may not be safe if interrupts occur.
*/
printk("%s: resetting chip\n", sym_name(np));
OUTB(np, nc_istat, SRST);
INB(np, nc_mbox1);
udelay(10);
OUTB(np, nc_istat, 0);
sym_free_resources(np, pdev);
return 1;
}
/*
* Driver host template.
*/
static struct scsi_host_template sym2_template = {
.module = THIS_MODULE,
.name = "sym53c8xx",
.info = sym53c8xx_info,
.queuecommand = sym53c8xx_queue_command,
.slave_alloc = sym53c8xx_slave_alloc,
.slave_configure = sym53c8xx_slave_configure,
.slave_destroy = sym53c8xx_slave_destroy,
.eh_abort_handler = sym53c8xx_eh_abort_handler,
.eh_device_reset_handler = sym53c8xx_eh_device_reset_handler,
.eh_bus_reset_handler = sym53c8xx_eh_bus_reset_handler,
.eh_host_reset_handler = sym53c8xx_eh_host_reset_handler,
.this_id = 7,
.use_clustering = DISABLE_CLUSTERING,
#ifdef SYM_LINUX_PROC_INFO_SUPPORT
.proc_info = sym53c8xx_proc_info,
.proc_name = NAME53C8XX,
#endif
};
static int attach_count;
static int __devinit sym2_probe(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
struct sym_device sym_dev;
struct sym_nvram nvram;
struct Scsi_Host *instance;
memset(&sym_dev, 0, sizeof(sym_dev));
memset(&nvram, 0, sizeof(nvram));
if (pci_enable_device(pdev))
goto leave;
pci_set_master(pdev);
if (pci_request_regions(pdev, NAME53C8XX))
goto disable;
sym_init_device(pdev, &sym_dev);
if (sym_check_supported(&sym_dev))
goto free;
if (sym_check_raid(&sym_dev))
goto leave; /* Don't disable the device */
if (sym_set_workarounds(&sym_dev))
goto free;
sym_config_pqs(pdev, &sym_dev);
sym_get_nvram(&sym_dev, &nvram);
instance = sym_attach(&sym2_template, attach_count, &sym_dev);
if (!instance)
goto free;
if (scsi_add_host(instance, &pdev->dev))
goto detach;
scsi_scan_host(instance);
attach_count++;
return 0;
detach:
sym_detach(pci_get_drvdata(pdev), pdev);
free:
pci_release_regions(pdev);
disable:
pci_disable_device(pdev);
leave:
return -ENODEV;
}
static void __devexit sym2_remove(struct pci_dev *pdev)
{
struct sym_hcb *np = pci_get_drvdata(pdev);
struct Scsi_Host *host = np->s.host;
scsi_remove_host(host);
scsi_host_put(host);
sym_detach(np, pdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
attach_count--;
}
static void sym2_get_signalling(struct Scsi_Host *shost)
{
struct sym_hcb *np = sym_get_hcb(shost);
enum spi_signal_type type;
switch (np->scsi_mode) {
case SMODE_SE:
type = SPI_SIGNAL_SE;
break;
case SMODE_LVD:
type = SPI_SIGNAL_LVD;
break;
case SMODE_HVD:
type = SPI_SIGNAL_HVD;
break;
default:
type = SPI_SIGNAL_UNKNOWN;
break;
}
spi_signalling(shost) = type;
}
static void sym2_set_offset(struct scsi_target *starget, int offset)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct sym_hcb *np = sym_get_hcb(shost);
struct sym_tcb *tp = &np->target[starget->id];
tp->tgoal.offset = offset;
tp->tgoal.check_nego = 1;
}
static void sym2_set_period(struct scsi_target *starget, int period)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct sym_hcb *np = sym_get_hcb(shost);
struct sym_tcb *tp = &np->target[starget->id];
/* have to have DT for these transfers, but DT will also
* set width, so check that this is allowed */
if (period <= np->minsync && spi_width(starget))
tp->tgoal.dt = 1;
tp->tgoal.period = period;
tp->tgoal.check_nego = 1;
}
static void sym2_set_width(struct scsi_target *starget, int width)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct sym_hcb *np = sym_get_hcb(shost);
struct sym_tcb *tp = &np->target[starget->id];
/* It is illegal to have DT set on narrow transfers. If DT is
* clear, we must also clear IU and QAS. */
if (width == 0)
tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
tp->tgoal.width = width;
tp->tgoal.check_nego = 1;
}
static void sym2_set_dt(struct scsi_target *starget, int dt)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct sym_hcb *np = sym_get_hcb(shost);
struct sym_tcb *tp = &np->target[starget->id];
/* We must clear QAS and IU if DT is clear */
if (dt)
tp->tgoal.dt = 1;
else
tp->tgoal.iu = tp->tgoal.dt = tp->tgoal.qas = 0;
tp->tgoal.check_nego = 1;
}
#if 0
static void sym2_set_iu(struct scsi_target *starget, int iu)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct sym_hcb *np = sym_get_hcb(shost);
struct sym_tcb *tp = &np->target[starget->id];
if (iu)
tp->tgoal.iu = tp->tgoal.dt = 1;
else
tp->tgoal.iu = 0;
tp->tgoal.check_nego = 1;
}
static void sym2_set_qas(struct scsi_target *starget, int qas)
{
struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
struct sym_hcb *np = sym_get_hcb(shost);
struct sym_tcb *tp = &np->target[starget->id];
if (qas)
tp->tgoal.dt = tp->tgoal.qas = 1;
else
tp->tgoal.qas = 0;
tp->tgoal.check_nego = 1;
}
#endif
static struct spi_function_template sym2_transport_functions = {
.set_offset = sym2_set_offset,
.show_offset = 1,
.set_period = sym2_set_period,
.show_period = 1,
.set_width = sym2_set_width,
.show_width = 1,
.set_dt = sym2_set_dt,
.show_dt = 1,
#if 0
.set_iu = sym2_set_iu,
.show_iu = 1,
.set_qas = sym2_set_qas,
.show_qas = 1,
#endif
.get_signalling = sym2_get_signalling,
};
static struct pci_device_id sym2_id_table[] __devinitdata = {
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C810,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C820,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C825,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C815,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C810AP,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C860,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1510,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C896,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C895,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C885,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C1510,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, /* new */
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C895A,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C875A,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_33,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_53C1010_66,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_NCR_53C875J,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, sym2_id_table);
static struct pci_driver sym2_driver = {
.name = NAME53C8XX,
.id_table = sym2_id_table,
.probe = sym2_probe,
.remove = __devexit_p(sym2_remove),
};
static int __init sym2_init(void)
{
int error;
sym2_setup_params();
sym2_transport_template = spi_attach_transport(&sym2_transport_functions);
if (!sym2_transport_template)
return -ENODEV;
error = pci_register_driver(&sym2_driver);
if (error)
spi_release_transport(sym2_transport_template);
return error;
}
static void __exit sym2_exit(void)
{
pci_unregister_driver(&sym2_driver);
spi_release_transport(sym2_transport_template);
}
module_init(sym2_init);
module_exit(sym2_exit);