1
linux/arch/x86_64/kernel/smp.c
Andi Kleen 8c131af1db [PATCH] x86-64: Fix vgetcpu when CONFIG_HOTPLUG_CPU is disabled
The vgetcpu per CPU initialization previously relied on CPU hotplug
events for all CPUs to initialize the per CPU state. That only
worked only on kernels with CONFIG_HOTPLUG_CPU enabled.  On the
others some CPUs didn't get their state initialized properly
and vgetcpu wouldn't work.

Change the initialization sequence to instead run in a normal
initcall (which runs after the normal CPU bootup) and initialize
all running CPUs there. Later hotplug CPUs are still handled
with an hotplug notifier.

This actually simplifies the code somewhat.

Signed-off-by: Andi Kleen <ak@suse.de>
2006-11-14 16:57:46 +01:00

524 lines
12 KiB
C

/*
* Intel SMP support routines.
*
* (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
* (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
* (c) 2002,2003 Andi Kleen, SuSE Labs.
*
* This code is released under the GNU General Public License version 2 or
* later.
*/
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/smp_lock.h>
#include <linux/smp.h>
#include <linux/kernel_stat.h>
#include <linux/mc146818rtc.h>
#include <linux/interrupt.h>
#include <asm/mtrr.h>
#include <asm/pgalloc.h>
#include <asm/tlbflush.h>
#include <asm/mach_apic.h>
#include <asm/mmu_context.h>
#include <asm/proto.h>
#include <asm/apicdef.h>
#include <asm/idle.h>
/*
* Smarter SMP flushing macros.
* c/o Linus Torvalds.
*
* These mean you can really definitely utterly forget about
* writing to user space from interrupts. (Its not allowed anyway).
*
* Optimizations Manfred Spraul <manfred@colorfullife.com>
*
* More scalable flush, from Andi Kleen
*
* To avoid global state use 8 different call vectors.
* Each CPU uses a specific vector to trigger flushes on other
* CPUs. Depending on the received vector the target CPUs look into
* the right per cpu variable for the flush data.
*
* With more than 8 CPUs they are hashed to the 8 available
* vectors. The limited global vector space forces us to this right now.
* In future when interrupts are split into per CPU domains this could be
* fixed, at the cost of triggering multiple IPIs in some cases.
*/
union smp_flush_state {
struct {
cpumask_t flush_cpumask;
struct mm_struct *flush_mm;
unsigned long flush_va;
#define FLUSH_ALL -1ULL
spinlock_t tlbstate_lock;
};
char pad[SMP_CACHE_BYTES];
} ____cacheline_aligned;
/* State is put into the per CPU data section, but padded
to a full cache line because other CPUs can access it and we don't
want false sharing in the per cpu data segment. */
static DEFINE_PER_CPU(union smp_flush_state, flush_state);
/*
* We cannot call mmdrop() because we are in interrupt context,
* instead update mm->cpu_vm_mask.
*/
static inline void leave_mm(int cpu)
{
if (read_pda(mmu_state) == TLBSTATE_OK)
BUG();
cpu_clear(cpu, read_pda(active_mm)->cpu_vm_mask);
load_cr3(swapper_pg_dir);
}
/*
*
* The flush IPI assumes that a thread switch happens in this order:
* [cpu0: the cpu that switches]
* 1) switch_mm() either 1a) or 1b)
* 1a) thread switch to a different mm
* 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
* Stop ipi delivery for the old mm. This is not synchronized with
* the other cpus, but smp_invalidate_interrupt ignore flush ipis
* for the wrong mm, and in the worst case we perform a superfluous
* tlb flush.
* 1a2) set cpu mmu_state to TLBSTATE_OK
* Now the smp_invalidate_interrupt won't call leave_mm if cpu0
* was in lazy tlb mode.
* 1a3) update cpu active_mm
* Now cpu0 accepts tlb flushes for the new mm.
* 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
* Now the other cpus will send tlb flush ipis.
* 1a4) change cr3.
* 1b) thread switch without mm change
* cpu active_mm is correct, cpu0 already handles
* flush ipis.
* 1b1) set cpu mmu_state to TLBSTATE_OK
* 1b2) test_and_set the cpu bit in cpu_vm_mask.
* Atomically set the bit [other cpus will start sending flush ipis],
* and test the bit.
* 1b3) if the bit was 0: leave_mm was called, flush the tlb.
* 2) switch %%esp, ie current
*
* The interrupt must handle 2 special cases:
* - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
* - the cpu performs speculative tlb reads, i.e. even if the cpu only
* runs in kernel space, the cpu could load tlb entries for user space
* pages.
*
* The good news is that cpu mmu_state is local to each cpu, no
* write/read ordering problems.
*/
/*
* TLB flush IPI:
*
* 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
* 2) Leave the mm if we are in the lazy tlb mode.
*
* Interrupts are disabled.
*/
asmlinkage void smp_invalidate_interrupt(struct pt_regs *regs)
{
int cpu;
int sender;
union smp_flush_state *f;
cpu = smp_processor_id();
/*
* orig_rax contains the negated interrupt vector.
* Use that to determine where the sender put the data.
*/
sender = ~regs->orig_rax - INVALIDATE_TLB_VECTOR_START;
f = &per_cpu(flush_state, sender);
if (!cpu_isset(cpu, f->flush_cpumask))
goto out;
/*
* This was a BUG() but until someone can quote me the
* line from the intel manual that guarantees an IPI to
* multiple CPUs is retried _only_ on the erroring CPUs
* its staying as a return
*
* BUG();
*/
if (f->flush_mm == read_pda(active_mm)) {
if (read_pda(mmu_state) == TLBSTATE_OK) {
if (f->flush_va == FLUSH_ALL)
local_flush_tlb();
else
__flush_tlb_one(f->flush_va);
} else
leave_mm(cpu);
}
out:
ack_APIC_irq();
cpu_clear(cpu, f->flush_cpumask);
}
static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
unsigned long va)
{
int sender;
union smp_flush_state *f;
/* Caller has disabled preemption */
sender = smp_processor_id() % NUM_INVALIDATE_TLB_VECTORS;
f = &per_cpu(flush_state, sender);
/* Could avoid this lock when
num_online_cpus() <= NUM_INVALIDATE_TLB_VECTORS, but it is
probably not worth checking this for a cache-hot lock. */
spin_lock(&f->tlbstate_lock);
f->flush_mm = mm;
f->flush_va = va;
cpus_or(f->flush_cpumask, cpumask, f->flush_cpumask);
/*
* We have to send the IPI only to
* CPUs affected.
*/
send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR_START + sender);
while (!cpus_empty(f->flush_cpumask))
cpu_relax();
f->flush_mm = NULL;
f->flush_va = 0;
spin_unlock(&f->tlbstate_lock);
}
int __cpuinit init_smp_flush(void)
{
int i;
for_each_cpu_mask(i, cpu_possible_map) {
spin_lock_init(&per_cpu(flush_state, i).tlbstate_lock);
}
return 0;
}
core_initcall(init_smp_flush);
void flush_tlb_current_task(void)
{
struct mm_struct *mm = current->mm;
cpumask_t cpu_mask;
preempt_disable();
cpu_mask = mm->cpu_vm_mask;
cpu_clear(smp_processor_id(), cpu_mask);
local_flush_tlb();
if (!cpus_empty(cpu_mask))
flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
preempt_enable();
}
EXPORT_SYMBOL(flush_tlb_current_task);
void flush_tlb_mm (struct mm_struct * mm)
{
cpumask_t cpu_mask;
preempt_disable();
cpu_mask = mm->cpu_vm_mask;
cpu_clear(smp_processor_id(), cpu_mask);
if (current->active_mm == mm) {
if (current->mm)
local_flush_tlb();
else
leave_mm(smp_processor_id());
}
if (!cpus_empty(cpu_mask))
flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
preempt_enable();
}
EXPORT_SYMBOL(flush_tlb_mm);
void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
{
struct mm_struct *mm = vma->vm_mm;
cpumask_t cpu_mask;
preempt_disable();
cpu_mask = mm->cpu_vm_mask;
cpu_clear(smp_processor_id(), cpu_mask);
if (current->active_mm == mm) {
if(current->mm)
__flush_tlb_one(va);
else
leave_mm(smp_processor_id());
}
if (!cpus_empty(cpu_mask))
flush_tlb_others(cpu_mask, mm, va);
preempt_enable();
}
EXPORT_SYMBOL(flush_tlb_page);
static void do_flush_tlb_all(void* info)
{
unsigned long cpu = smp_processor_id();
__flush_tlb_all();
if (read_pda(mmu_state) == TLBSTATE_LAZY)
leave_mm(cpu);
}
void flush_tlb_all(void)
{
on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
}
/*
* this function sends a 'reschedule' IPI to another CPU.
* it goes straight through and wastes no time serializing
* anything. Worst case is that we lose a reschedule ...
*/
void smp_send_reschedule(int cpu)
{
send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
}
/*
* Structure and data for smp_call_function(). This is designed to minimise
* static memory requirements. It also looks cleaner.
*/
static DEFINE_SPINLOCK(call_lock);
struct call_data_struct {
void (*func) (void *info);
void *info;
atomic_t started;
atomic_t finished;
int wait;
};
static struct call_data_struct * call_data;
void lock_ipi_call_lock(void)
{
spin_lock_irq(&call_lock);
}
void unlock_ipi_call_lock(void)
{
spin_unlock_irq(&call_lock);
}
/*
* this function sends a 'generic call function' IPI to one other CPU
* in the system.
*
* cpu is a standard Linux logical CPU number.
*/
static void
__smp_call_function_single(int cpu, void (*func) (void *info), void *info,
int nonatomic, int wait)
{
struct call_data_struct data;
int cpus = 1;
data.func = func;
data.info = info;
atomic_set(&data.started, 0);
data.wait = wait;
if (wait)
atomic_set(&data.finished, 0);
call_data = &data;
wmb();
/* Send a message to all other CPUs and wait for them to respond */
send_IPI_mask(cpumask_of_cpu(cpu), CALL_FUNCTION_VECTOR);
/* Wait for response */
while (atomic_read(&data.started) != cpus)
cpu_relax();
if (!wait)
return;
while (atomic_read(&data.finished) != cpus)
cpu_relax();
}
/*
* smp_call_function_single - Run a function on another CPU
* @func: The function to run. This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to the function.
* @nonatomic: Currently unused.
* @wait: If true, wait until function has completed on other CPUs.
*
* Retrurns 0 on success, else a negative status code.
*
* Does not return until the remote CPU is nearly ready to execute <func>
* or is or has executed.
*/
int smp_call_function_single (int cpu, void (*func) (void *info), void *info,
int nonatomic, int wait)
{
/* prevent preemption and reschedule on another processor */
int me = get_cpu();
if (cpu == me) {
put_cpu();
return 0;
}
spin_lock_bh(&call_lock);
__smp_call_function_single(cpu, func, info, nonatomic, wait);
spin_unlock_bh(&call_lock);
put_cpu();
return 0;
}
/*
* this function sends a 'generic call function' IPI to all other CPUs
* in the system.
*/
static void __smp_call_function (void (*func) (void *info), void *info,
int nonatomic, int wait)
{
struct call_data_struct data;
int cpus = num_online_cpus()-1;
if (!cpus)
return;
data.func = func;
data.info = info;
atomic_set(&data.started, 0);
data.wait = wait;
if (wait)
atomic_set(&data.finished, 0);
call_data = &data;
wmb();
/* Send a message to all other CPUs and wait for them to respond */
send_IPI_allbutself(CALL_FUNCTION_VECTOR);
/* Wait for response */
while (atomic_read(&data.started) != cpus)
cpu_relax();
if (!wait)
return;
while (atomic_read(&data.finished) != cpus)
cpu_relax();
}
/*
* smp_call_function - run a function on all other CPUs.
* @func: The function to run. This must be fast and non-blocking.
* @info: An arbitrary pointer to pass to the function.
* @nonatomic: currently unused.
* @wait: If true, wait (atomically) until function has completed on other
* CPUs.
*
* Returns 0 on success, else a negative status code. Does not return until
* remote CPUs are nearly ready to execute func or are or have executed.
*
* You must not call this function with disabled interrupts or from a
* hardware interrupt handler or from a bottom half handler.
* Actually there are a few legal cases, like panic.
*/
int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
int wait)
{
spin_lock(&call_lock);
__smp_call_function(func,info,nonatomic,wait);
spin_unlock(&call_lock);
return 0;
}
EXPORT_SYMBOL(smp_call_function);
void smp_stop_cpu(void)
{
unsigned long flags;
/*
* Remove this CPU:
*/
cpu_clear(smp_processor_id(), cpu_online_map);
local_irq_save(flags);
disable_local_APIC();
local_irq_restore(flags);
}
static void smp_really_stop_cpu(void *dummy)
{
smp_stop_cpu();
for (;;)
halt();
}
void smp_send_stop(void)
{
int nolock = 0;
if (reboot_force)
return;
/* Don't deadlock on the call lock in panic */
if (!spin_trylock(&call_lock)) {
/* ignore locking because we have panicked anyways */
nolock = 1;
}
__smp_call_function(smp_really_stop_cpu, NULL, 0, 0);
if (!nolock)
spin_unlock(&call_lock);
local_irq_disable();
disable_local_APIC();
local_irq_enable();
}
/*
* Reschedule call back. Nothing to do,
* all the work is done automatically when
* we return from the interrupt.
*/
asmlinkage void smp_reschedule_interrupt(void)
{
ack_APIC_irq();
}
asmlinkage void smp_call_function_interrupt(void)
{
void (*func) (void *info) = call_data->func;
void *info = call_data->info;
int wait = call_data->wait;
ack_APIC_irq();
/*
* Notify initiating CPU that I've grabbed the data and am
* about to execute the function
*/
mb();
atomic_inc(&call_data->started);
/*
* At this point the info structure may be out of scope unless wait==1
*/
exit_idle();
irq_enter();
(*func)(info);
irq_exit();
if (wait) {
mb();
atomic_inc(&call_data->finished);
}
}