1
linux/drivers/crypto/nx/nx-sha256.c
Kent Yoder 528e396231 powerpc/crypto: SHA256 hash routines for nx encryption
These routines add support for SHA-256 hashing on the Power7+ CPU's
in-Nest accelerator driver.

Signed-off-by: Kent Yoder <key@linux.vnet.ibm.com>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2012-05-16 15:05:44 +10:00

247 lines
7.4 KiB
C

/**
* SHA-256 routines supporting the Power 7+ Nest Accelerators driver
*
* Copyright (C) 2011-2012 International Business Machines Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 only.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Author: Kent Yoder <yoder1@us.ibm.com>
*/
#include <crypto/internal/hash.h>
#include <crypto/sha.h>
#include <linux/module.h>
#include <asm/vio.h>
#include "nx_csbcpb.h"
#include "nx.h"
static int nx_sha256_init(struct shash_desc *desc)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_sg *out_sg;
nx_ctx_init(nx_ctx, HCOP_FC_SHA);
memset(sctx, 0, sizeof *sctx);
nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256];
NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256);
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
SHA256_DIGEST_SIZE, nx_ctx->ap->sglen);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
return 0;
}
static int nx_sha256_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *in_sg;
u64 to_process, leftover;
int rc = 0;
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
/* we've hit the nx chip previously and we're updating again,
* so copy over the partial digest */
memcpy(csbcpb->cpb.sha256.input_partial_digest,
csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
}
/* 2 cases for total data len:
* 1: <= SHA256_BLOCK_SIZE: copy into state, return 0
* 2: > SHA256_BLOCK_SIZE: process X blocks, copy in leftover
*/
if (len + sctx->count <= SHA256_BLOCK_SIZE) {
memcpy(sctx->buf + sctx->count, data, len);
sctx->count += len;
goto out;
}
/* to_process: the SHA256_BLOCK_SIZE data chunk to process in this
* update */
to_process = (sctx->count + len) & ~(SHA256_BLOCK_SIZE - 1);
leftover = (sctx->count + len) & (SHA256_BLOCK_SIZE - 1);
if (sctx->count) {
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf,
sctx->count, nx_ctx->ap->sglen);
in_sg = nx_build_sg_list(in_sg, (u8 *)data,
to_process - sctx->count,
nx_ctx->ap->sglen);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
sizeof(struct nx_sg);
} else {
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)data,
to_process, nx_ctx->ap->sglen);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) *
sizeof(struct nx_sg);
}
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->sha256_ops));
/* copy the leftover back into the state struct */
memcpy(sctx->buf, data + len - leftover, leftover);
sctx->count = leftover;
csbcpb->cpb.sha256.message_bit_length += (u64)
(csbcpb->cpb.sha256.spbc * 8);
/* everything after the first update is continuation */
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
out:
return rc;
}
static int nx_sha256_final(struct shash_desc *desc, u8 *out)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *in_sg, *out_sg;
int rc;
if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) {
/* we've hit the nx chip previously, now we're finalizing,
* so copy over the partial digest */
memcpy(csbcpb->cpb.sha256.input_partial_digest,
csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
}
/* final is represented by continuing the operation and indicating that
* this is not an intermediate operation */
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
csbcpb->cpb.sha256.message_bit_length += (u64)(sctx->count * 8);
in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf,
sctx->count, nx_ctx->ap->sglen);
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA256_DIGEST_SIZE,
nx_ctx->ap->sglen);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
if (!nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->sha256_ops));
atomic64_add(csbcpb->cpb.sha256.message_bit_length,
&(nx_ctx->stats->sha256_bytes));
memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE);
out:
return rc;
}
static int nx_sha256_export(struct shash_desc *desc, void *out)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct sha256_state *octx = out;
octx->count = sctx->count +
(csbcpb->cpb.sha256.message_bit_length / 8);
memcpy(octx->buf, sctx->buf, sizeof(octx->buf));
/* if no data has been processed yet, we need to export SHA256's
* initial data, in case this context gets imported into a software
* context */
if (csbcpb->cpb.sha256.message_bit_length)
memcpy(octx->state, csbcpb->cpb.sha256.message_digest,
SHA256_DIGEST_SIZE);
else {
octx->state[0] = SHA256_H0;
octx->state[1] = SHA256_H1;
octx->state[2] = SHA256_H2;
octx->state[3] = SHA256_H3;
octx->state[4] = SHA256_H4;
octx->state[5] = SHA256_H5;
octx->state[6] = SHA256_H6;
octx->state[7] = SHA256_H7;
}
return 0;
}
static int nx_sha256_import(struct shash_desc *desc, const void *in)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
const struct sha256_state *ictx = in;
memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf));
sctx->count = ictx->count & 0x3f;
csbcpb->cpb.sha256.message_bit_length = (ictx->count & ~0x3f) * 8;
if (csbcpb->cpb.sha256.message_bit_length) {
memcpy(csbcpb->cpb.sha256.message_digest, ictx->state,
SHA256_DIGEST_SIZE);
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
}
return 0;
}
struct shash_alg nx_shash_sha256_alg = {
.digestsize = SHA256_DIGEST_SIZE,
.init = nx_sha256_init,
.update = nx_sha256_update,
.final = nx_sha256_final,
.export = nx_sha256_export,
.import = nx_sha256_import,
.descsize = sizeof(struct sha256_state),
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-nx",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct nx_crypto_ctx),
.cra_init = nx_crypto_ctx_sha_init,
.cra_exit = nx_crypto_ctx_exit,
}
};