1
linux/security/security.c
KOSAKI Motohiro b0ae198113 security: remove unused parameter from security_task_setscheduler()
All security modules shouldn't change sched_param parameter of
security_task_setscheduler().  This is not only meaningless, but also
make a harmful result if caller pass a static variable.

This patch remove policy and sched_param parameter from
security_task_setscheduler() becuase none of security module is
using it.

Cc: James Morris <jmorris@namei.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: James Morris <jmorris@namei.org>
2010-10-21 10:12:44 +11:00

1289 lines
32 KiB
C

/*
* Security plug functions
*
* Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
* Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
* Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/capability.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/security.h>
#include <linux/ima.h>
/* Boot-time LSM user choice */
static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
CONFIG_DEFAULT_SECURITY;
/* things that live in capability.c */
extern void __init security_fixup_ops(struct security_operations *ops);
static struct security_operations *security_ops;
static struct security_operations default_security_ops = {
.name = "default",
};
static inline int __init verify(struct security_operations *ops)
{
/* verify the security_operations structure exists */
if (!ops)
return -EINVAL;
security_fixup_ops(ops);
return 0;
}
static void __init do_security_initcalls(void)
{
initcall_t *call;
call = __security_initcall_start;
while (call < __security_initcall_end) {
(*call) ();
call++;
}
}
/**
* security_init - initializes the security framework
*
* This should be called early in the kernel initialization sequence.
*/
int __init security_init(void)
{
printk(KERN_INFO "Security Framework initialized\n");
security_fixup_ops(&default_security_ops);
security_ops = &default_security_ops;
do_security_initcalls();
return 0;
}
void reset_security_ops(void)
{
security_ops = &default_security_ops;
}
/* Save user chosen LSM */
static int __init choose_lsm(char *str)
{
strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
return 1;
}
__setup("security=", choose_lsm);
/**
* security_module_enable - Load given security module on boot ?
* @ops: a pointer to the struct security_operations that is to be checked.
*
* Each LSM must pass this method before registering its own operations
* to avoid security registration races. This method may also be used
* to check if your LSM is currently loaded during kernel initialization.
*
* Return true if:
* -The passed LSM is the one chosen by user at boot time,
* -or the passed LSM is configured as the default and the user did not
* choose an alternate LSM at boot time.
* Otherwise, return false.
*/
int __init security_module_enable(struct security_operations *ops)
{
return !strcmp(ops->name, chosen_lsm);
}
/**
* register_security - registers a security framework with the kernel
* @ops: a pointer to the struct security_options that is to be registered
*
* This function allows a security module to register itself with the
* kernel security subsystem. Some rudimentary checking is done on the @ops
* value passed to this function. You'll need to check first if your LSM
* is allowed to register its @ops by calling security_module_enable(@ops).
*
* If there is already a security module registered with the kernel,
* an error will be returned. Otherwise %0 is returned on success.
*/
int __init register_security(struct security_operations *ops)
{
if (verify(ops)) {
printk(KERN_DEBUG "%s could not verify "
"security_operations structure.\n", __func__);
return -EINVAL;
}
if (security_ops != &default_security_ops)
return -EAGAIN;
security_ops = ops;
return 0;
}
/* Security operations */
int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
{
return security_ops->ptrace_access_check(child, mode);
}
int security_ptrace_traceme(struct task_struct *parent)
{
return security_ops->ptrace_traceme(parent);
}
int security_capget(struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
return security_ops->capget(target, effective, inheritable, permitted);
}
int security_capset(struct cred *new, const struct cred *old,
const kernel_cap_t *effective,
const kernel_cap_t *inheritable,
const kernel_cap_t *permitted)
{
return security_ops->capset(new, old,
effective, inheritable, permitted);
}
int security_capable(int cap)
{
return security_ops->capable(current, current_cred(), cap,
SECURITY_CAP_AUDIT);
}
int security_real_capable(struct task_struct *tsk, int cap)
{
const struct cred *cred;
int ret;
cred = get_task_cred(tsk);
ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
put_cred(cred);
return ret;
}
int security_real_capable_noaudit(struct task_struct *tsk, int cap)
{
const struct cred *cred;
int ret;
cred = get_task_cred(tsk);
ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
put_cred(cred);
return ret;
}
int security_sysctl(struct ctl_table *table, int op)
{
return security_ops->sysctl(table, op);
}
int security_quotactl(int cmds, int type, int id, struct super_block *sb)
{
return security_ops->quotactl(cmds, type, id, sb);
}
int security_quota_on(struct dentry *dentry)
{
return security_ops->quota_on(dentry);
}
int security_syslog(int type, bool from_file)
{
return security_ops->syslog(type, from_file);
}
int security_settime(struct timespec *ts, struct timezone *tz)
{
return security_ops->settime(ts, tz);
}
int security_vm_enough_memory(long pages)
{
WARN_ON(current->mm == NULL);
return security_ops->vm_enough_memory(current->mm, pages);
}
int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
{
WARN_ON(mm == NULL);
return security_ops->vm_enough_memory(mm, pages);
}
int security_vm_enough_memory_kern(long pages)
{
/* If current->mm is a kernel thread then we will pass NULL,
for this specific case that is fine */
return security_ops->vm_enough_memory(current->mm, pages);
}
int security_bprm_set_creds(struct linux_binprm *bprm)
{
return security_ops->bprm_set_creds(bprm);
}
int security_bprm_check(struct linux_binprm *bprm)
{
int ret;
ret = security_ops->bprm_check_security(bprm);
if (ret)
return ret;
return ima_bprm_check(bprm);
}
void security_bprm_committing_creds(struct linux_binprm *bprm)
{
security_ops->bprm_committing_creds(bprm);
}
void security_bprm_committed_creds(struct linux_binprm *bprm)
{
security_ops->bprm_committed_creds(bprm);
}
int security_bprm_secureexec(struct linux_binprm *bprm)
{
return security_ops->bprm_secureexec(bprm);
}
int security_sb_alloc(struct super_block *sb)
{
return security_ops->sb_alloc_security(sb);
}
void security_sb_free(struct super_block *sb)
{
security_ops->sb_free_security(sb);
}
int security_sb_copy_data(char *orig, char *copy)
{
return security_ops->sb_copy_data(orig, copy);
}
EXPORT_SYMBOL(security_sb_copy_data);
int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
{
return security_ops->sb_kern_mount(sb, flags, data);
}
int security_sb_show_options(struct seq_file *m, struct super_block *sb)
{
return security_ops->sb_show_options(m, sb);
}
int security_sb_statfs(struct dentry *dentry)
{
return security_ops->sb_statfs(dentry);
}
int security_sb_mount(char *dev_name, struct path *path,
char *type, unsigned long flags, void *data)
{
return security_ops->sb_mount(dev_name, path, type, flags, data);
}
int security_sb_umount(struct vfsmount *mnt, int flags)
{
return security_ops->sb_umount(mnt, flags);
}
int security_sb_pivotroot(struct path *old_path, struct path *new_path)
{
return security_ops->sb_pivotroot(old_path, new_path);
}
int security_sb_set_mnt_opts(struct super_block *sb,
struct security_mnt_opts *opts)
{
return security_ops->sb_set_mnt_opts(sb, opts);
}
EXPORT_SYMBOL(security_sb_set_mnt_opts);
void security_sb_clone_mnt_opts(const struct super_block *oldsb,
struct super_block *newsb)
{
security_ops->sb_clone_mnt_opts(oldsb, newsb);
}
EXPORT_SYMBOL(security_sb_clone_mnt_opts);
int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
{
return security_ops->sb_parse_opts_str(options, opts);
}
EXPORT_SYMBOL(security_sb_parse_opts_str);
int security_inode_alloc(struct inode *inode)
{
int ret;
inode->i_security = NULL;
ret = security_ops->inode_alloc_security(inode);
if (ret)
return ret;
ret = ima_inode_alloc(inode);
if (ret)
security_inode_free(inode);
return ret;
}
void security_inode_free(struct inode *inode)
{
ima_inode_free(inode);
security_ops->inode_free_security(inode);
}
int security_inode_init_security(struct inode *inode, struct inode *dir,
char **name, void **value, size_t *len)
{
if (unlikely(IS_PRIVATE(inode)))
return -EOPNOTSUPP;
return security_ops->inode_init_security(inode, dir, name, value, len);
}
EXPORT_SYMBOL(security_inode_init_security);
#ifdef CONFIG_SECURITY_PATH
int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
unsigned int dev)
{
if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
return 0;
return security_ops->path_mknod(dir, dentry, mode, dev);
}
EXPORT_SYMBOL(security_path_mknod);
int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
{
if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
return 0;
return security_ops->path_mkdir(dir, dentry, mode);
}
int security_path_rmdir(struct path *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
return 0;
return security_ops->path_rmdir(dir, dentry);
}
int security_path_unlink(struct path *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
return 0;
return security_ops->path_unlink(dir, dentry);
}
int security_path_symlink(struct path *dir, struct dentry *dentry,
const char *old_name)
{
if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
return 0;
return security_ops->path_symlink(dir, dentry, old_name);
}
int security_path_link(struct dentry *old_dentry, struct path *new_dir,
struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
return 0;
return security_ops->path_link(old_dentry, new_dir, new_dentry);
}
int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
struct path *new_dir, struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
(new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
return 0;
return security_ops->path_rename(old_dir, old_dentry, new_dir,
new_dentry);
}
int security_path_truncate(struct path *path)
{
if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
return 0;
return security_ops->path_truncate(path);
}
int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
mode_t mode)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->path_chmod(dentry, mnt, mode);
}
int security_path_chown(struct path *path, uid_t uid, gid_t gid)
{
if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
return 0;
return security_ops->path_chown(path, uid, gid);
}
int security_path_chroot(struct path *path)
{
return security_ops->path_chroot(path);
}
#endif
int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return security_ops->inode_create(dir, dentry, mode);
}
EXPORT_SYMBOL_GPL(security_inode_create);
int security_inode_link(struct dentry *old_dentry, struct inode *dir,
struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
return 0;
return security_ops->inode_link(old_dentry, dir, new_dentry);
}
int security_inode_unlink(struct inode *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_unlink(dir, dentry);
}
int security_inode_symlink(struct inode *dir, struct dentry *dentry,
const char *old_name)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return security_ops->inode_symlink(dir, dentry, old_name);
}
int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return security_ops->inode_mkdir(dir, dentry, mode);
}
EXPORT_SYMBOL_GPL(security_inode_mkdir);
int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_rmdir(dir, dentry);
}
int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return security_ops->inode_mknod(dir, dentry, mode, dev);
}
int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
(new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
return 0;
return security_ops->inode_rename(old_dir, old_dentry,
new_dir, new_dentry);
}
int security_inode_readlink(struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_readlink(dentry);
}
int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_follow_link(dentry, nd);
}
int security_inode_permission(struct inode *inode, int mask)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return security_ops->inode_permission(inode, mask);
}
int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_setattr(dentry, attr);
}
EXPORT_SYMBOL_GPL(security_inode_setattr);
int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_getattr(mnt, dentry);
}
int security_inode_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_setxattr(dentry, name, value, size, flags);
}
void security_inode_post_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return;
security_ops->inode_post_setxattr(dentry, name, value, size, flags);
}
int security_inode_getxattr(struct dentry *dentry, const char *name)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_getxattr(dentry, name);
}
int security_inode_listxattr(struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_listxattr(dentry);
}
int security_inode_removexattr(struct dentry *dentry, const char *name)
{
if (unlikely(IS_PRIVATE(dentry->d_inode)))
return 0;
return security_ops->inode_removexattr(dentry, name);
}
int security_inode_need_killpriv(struct dentry *dentry)
{
return security_ops->inode_need_killpriv(dentry);
}
int security_inode_killpriv(struct dentry *dentry)
{
return security_ops->inode_killpriv(dentry);
}
int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
{
if (unlikely(IS_PRIVATE(inode)))
return -EOPNOTSUPP;
return security_ops->inode_getsecurity(inode, name, buffer, alloc);
}
int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
{
if (unlikely(IS_PRIVATE(inode)))
return -EOPNOTSUPP;
return security_ops->inode_setsecurity(inode, name, value, size, flags);
}
int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return security_ops->inode_listsecurity(inode, buffer, buffer_size);
}
void security_inode_getsecid(const struct inode *inode, u32 *secid)
{
security_ops->inode_getsecid(inode, secid);
}
int security_file_permission(struct file *file, int mask)
{
int ret;
ret = security_ops->file_permission(file, mask);
if (ret)
return ret;
return fsnotify_perm(file, mask);
}
int security_file_alloc(struct file *file)
{
return security_ops->file_alloc_security(file);
}
void security_file_free(struct file *file)
{
security_ops->file_free_security(file);
}
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
return security_ops->file_ioctl(file, cmd, arg);
}
int security_file_mmap(struct file *file, unsigned long reqprot,
unsigned long prot, unsigned long flags,
unsigned long addr, unsigned long addr_only)
{
int ret;
ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
if (ret)
return ret;
return ima_file_mmap(file, prot);
}
int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
unsigned long prot)
{
return security_ops->file_mprotect(vma, reqprot, prot);
}
int security_file_lock(struct file *file, unsigned int cmd)
{
return security_ops->file_lock(file, cmd);
}
int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
{
return security_ops->file_fcntl(file, cmd, arg);
}
int security_file_set_fowner(struct file *file)
{
return security_ops->file_set_fowner(file);
}
int security_file_send_sigiotask(struct task_struct *tsk,
struct fown_struct *fown, int sig)
{
return security_ops->file_send_sigiotask(tsk, fown, sig);
}
int security_file_receive(struct file *file)
{
return security_ops->file_receive(file);
}
int security_dentry_open(struct file *file, const struct cred *cred)
{
int ret;
ret = security_ops->dentry_open(file, cred);
if (ret)
return ret;
return fsnotify_perm(file, MAY_OPEN);
}
int security_task_create(unsigned long clone_flags)
{
return security_ops->task_create(clone_flags);
}
int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
{
return security_ops->cred_alloc_blank(cred, gfp);
}
void security_cred_free(struct cred *cred)
{
security_ops->cred_free(cred);
}
int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
{
return security_ops->cred_prepare(new, old, gfp);
}
void security_transfer_creds(struct cred *new, const struct cred *old)
{
security_ops->cred_transfer(new, old);
}
int security_kernel_act_as(struct cred *new, u32 secid)
{
return security_ops->kernel_act_as(new, secid);
}
int security_kernel_create_files_as(struct cred *new, struct inode *inode)
{
return security_ops->kernel_create_files_as(new, inode);
}
int security_kernel_module_request(char *kmod_name)
{
return security_ops->kernel_module_request(kmod_name);
}
int security_task_fix_setuid(struct cred *new, const struct cred *old,
int flags)
{
return security_ops->task_fix_setuid(new, old, flags);
}
int security_task_setpgid(struct task_struct *p, pid_t pgid)
{
return security_ops->task_setpgid(p, pgid);
}
int security_task_getpgid(struct task_struct *p)
{
return security_ops->task_getpgid(p);
}
int security_task_getsid(struct task_struct *p)
{
return security_ops->task_getsid(p);
}
void security_task_getsecid(struct task_struct *p, u32 *secid)
{
security_ops->task_getsecid(p, secid);
}
EXPORT_SYMBOL(security_task_getsecid);
int security_task_setnice(struct task_struct *p, int nice)
{
return security_ops->task_setnice(p, nice);
}
int security_task_setioprio(struct task_struct *p, int ioprio)
{
return security_ops->task_setioprio(p, ioprio);
}
int security_task_getioprio(struct task_struct *p)
{
return security_ops->task_getioprio(p);
}
int security_task_setrlimit(struct task_struct *p, unsigned int resource,
struct rlimit *new_rlim)
{
return security_ops->task_setrlimit(p, resource, new_rlim);
}
int security_task_setscheduler(struct task_struct *p)
{
return security_ops->task_setscheduler(p);
}
int security_task_getscheduler(struct task_struct *p)
{
return security_ops->task_getscheduler(p);
}
int security_task_movememory(struct task_struct *p)
{
return security_ops->task_movememory(p);
}
int security_task_kill(struct task_struct *p, struct siginfo *info,
int sig, u32 secid)
{
return security_ops->task_kill(p, info, sig, secid);
}
int security_task_wait(struct task_struct *p)
{
return security_ops->task_wait(p);
}
int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5)
{
return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
}
void security_task_to_inode(struct task_struct *p, struct inode *inode)
{
security_ops->task_to_inode(p, inode);
}
int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
{
return security_ops->ipc_permission(ipcp, flag);
}
void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
{
security_ops->ipc_getsecid(ipcp, secid);
}
int security_msg_msg_alloc(struct msg_msg *msg)
{
return security_ops->msg_msg_alloc_security(msg);
}
void security_msg_msg_free(struct msg_msg *msg)
{
security_ops->msg_msg_free_security(msg);
}
int security_msg_queue_alloc(struct msg_queue *msq)
{
return security_ops->msg_queue_alloc_security(msq);
}
void security_msg_queue_free(struct msg_queue *msq)
{
security_ops->msg_queue_free_security(msq);
}
int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
{
return security_ops->msg_queue_associate(msq, msqflg);
}
int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
{
return security_ops->msg_queue_msgctl(msq, cmd);
}
int security_msg_queue_msgsnd(struct msg_queue *msq,
struct msg_msg *msg, int msqflg)
{
return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
}
int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
struct task_struct *target, long type, int mode)
{
return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
}
int security_shm_alloc(struct shmid_kernel *shp)
{
return security_ops->shm_alloc_security(shp);
}
void security_shm_free(struct shmid_kernel *shp)
{
security_ops->shm_free_security(shp);
}
int security_shm_associate(struct shmid_kernel *shp, int shmflg)
{
return security_ops->shm_associate(shp, shmflg);
}
int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
{
return security_ops->shm_shmctl(shp, cmd);
}
int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
{
return security_ops->shm_shmat(shp, shmaddr, shmflg);
}
int security_sem_alloc(struct sem_array *sma)
{
return security_ops->sem_alloc_security(sma);
}
void security_sem_free(struct sem_array *sma)
{
security_ops->sem_free_security(sma);
}
int security_sem_associate(struct sem_array *sma, int semflg)
{
return security_ops->sem_associate(sma, semflg);
}
int security_sem_semctl(struct sem_array *sma, int cmd)
{
return security_ops->sem_semctl(sma, cmd);
}
int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
unsigned nsops, int alter)
{
return security_ops->sem_semop(sma, sops, nsops, alter);
}
void security_d_instantiate(struct dentry *dentry, struct inode *inode)
{
if (unlikely(inode && IS_PRIVATE(inode)))
return;
security_ops->d_instantiate(dentry, inode);
}
EXPORT_SYMBOL(security_d_instantiate);
int security_getprocattr(struct task_struct *p, char *name, char **value)
{
return security_ops->getprocattr(p, name, value);
}
int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
{
return security_ops->setprocattr(p, name, value, size);
}
int security_netlink_send(struct sock *sk, struct sk_buff *skb)
{
return security_ops->netlink_send(sk, skb);
}
int security_netlink_recv(struct sk_buff *skb, int cap)
{
return security_ops->netlink_recv(skb, cap);
}
EXPORT_SYMBOL(security_netlink_recv);
int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
{
return security_ops->secid_to_secctx(secid, secdata, seclen);
}
EXPORT_SYMBOL(security_secid_to_secctx);
int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
{
return security_ops->secctx_to_secid(secdata, seclen, secid);
}
EXPORT_SYMBOL(security_secctx_to_secid);
void security_release_secctx(char *secdata, u32 seclen)
{
security_ops->release_secctx(secdata, seclen);
}
EXPORT_SYMBOL(security_release_secctx);
int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
{
return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
}
EXPORT_SYMBOL(security_inode_notifysecctx);
int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
{
return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
}
EXPORT_SYMBOL(security_inode_setsecctx);
int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
{
return security_ops->inode_getsecctx(inode, ctx, ctxlen);
}
EXPORT_SYMBOL(security_inode_getsecctx);
#ifdef CONFIG_SECURITY_NETWORK
int security_unix_stream_connect(struct socket *sock, struct socket *other,
struct sock *newsk)
{
return security_ops->unix_stream_connect(sock, other, newsk);
}
EXPORT_SYMBOL(security_unix_stream_connect);
int security_unix_may_send(struct socket *sock, struct socket *other)
{
return security_ops->unix_may_send(sock, other);
}
EXPORT_SYMBOL(security_unix_may_send);
int security_socket_create(int family, int type, int protocol, int kern)
{
return security_ops->socket_create(family, type, protocol, kern);
}
int security_socket_post_create(struct socket *sock, int family,
int type, int protocol, int kern)
{
return security_ops->socket_post_create(sock, family, type,
protocol, kern);
}
int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
{
return security_ops->socket_bind(sock, address, addrlen);
}
int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
{
return security_ops->socket_connect(sock, address, addrlen);
}
int security_socket_listen(struct socket *sock, int backlog)
{
return security_ops->socket_listen(sock, backlog);
}
int security_socket_accept(struct socket *sock, struct socket *newsock)
{
return security_ops->socket_accept(sock, newsock);
}
int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
{
return security_ops->socket_sendmsg(sock, msg, size);
}
int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
int size, int flags)
{
return security_ops->socket_recvmsg(sock, msg, size, flags);
}
int security_socket_getsockname(struct socket *sock)
{
return security_ops->socket_getsockname(sock);
}
int security_socket_getpeername(struct socket *sock)
{
return security_ops->socket_getpeername(sock);
}
int security_socket_getsockopt(struct socket *sock, int level, int optname)
{
return security_ops->socket_getsockopt(sock, level, optname);
}
int security_socket_setsockopt(struct socket *sock, int level, int optname)
{
return security_ops->socket_setsockopt(sock, level, optname);
}
int security_socket_shutdown(struct socket *sock, int how)
{
return security_ops->socket_shutdown(sock, how);
}
int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
{
return security_ops->socket_sock_rcv_skb(sk, skb);
}
EXPORT_SYMBOL(security_sock_rcv_skb);
int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
int __user *optlen, unsigned len)
{
return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
}
int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
{
return security_ops->socket_getpeersec_dgram(sock, skb, secid);
}
EXPORT_SYMBOL(security_socket_getpeersec_dgram);
int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
{
return security_ops->sk_alloc_security(sk, family, priority);
}
void security_sk_free(struct sock *sk)
{
security_ops->sk_free_security(sk);
}
void security_sk_clone(const struct sock *sk, struct sock *newsk)
{
security_ops->sk_clone_security(sk, newsk);
}
void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
{
security_ops->sk_getsecid(sk, &fl->secid);
}
EXPORT_SYMBOL(security_sk_classify_flow);
void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
{
security_ops->req_classify_flow(req, fl);
}
EXPORT_SYMBOL(security_req_classify_flow);
void security_sock_graft(struct sock *sk, struct socket *parent)
{
security_ops->sock_graft(sk, parent);
}
EXPORT_SYMBOL(security_sock_graft);
int security_inet_conn_request(struct sock *sk,
struct sk_buff *skb, struct request_sock *req)
{
return security_ops->inet_conn_request(sk, skb, req);
}
EXPORT_SYMBOL(security_inet_conn_request);
void security_inet_csk_clone(struct sock *newsk,
const struct request_sock *req)
{
security_ops->inet_csk_clone(newsk, req);
}
void security_inet_conn_established(struct sock *sk,
struct sk_buff *skb)
{
security_ops->inet_conn_established(sk, skb);
}
int security_tun_dev_create(void)
{
return security_ops->tun_dev_create();
}
EXPORT_SYMBOL(security_tun_dev_create);
void security_tun_dev_post_create(struct sock *sk)
{
return security_ops->tun_dev_post_create(sk);
}
EXPORT_SYMBOL(security_tun_dev_post_create);
int security_tun_dev_attach(struct sock *sk)
{
return security_ops->tun_dev_attach(sk);
}
EXPORT_SYMBOL(security_tun_dev_attach);
#endif /* CONFIG_SECURITY_NETWORK */
#ifdef CONFIG_SECURITY_NETWORK_XFRM
int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
{
return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
}
EXPORT_SYMBOL(security_xfrm_policy_alloc);
int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
struct xfrm_sec_ctx **new_ctxp)
{
return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
}
void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
{
security_ops->xfrm_policy_free_security(ctx);
}
EXPORT_SYMBOL(security_xfrm_policy_free);
int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
{
return security_ops->xfrm_policy_delete_security(ctx);
}
int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
{
return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
}
EXPORT_SYMBOL(security_xfrm_state_alloc);
int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
struct xfrm_sec_ctx *polsec, u32 secid)
{
if (!polsec)
return 0;
/*
* We want the context to be taken from secid which is usually
* from the sock.
*/
return security_ops->xfrm_state_alloc_security(x, NULL, secid);
}
int security_xfrm_state_delete(struct xfrm_state *x)
{
return security_ops->xfrm_state_delete_security(x);
}
EXPORT_SYMBOL(security_xfrm_state_delete);
void security_xfrm_state_free(struct xfrm_state *x)
{
security_ops->xfrm_state_free_security(x);
}
int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
{
return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
}
int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
struct xfrm_policy *xp, struct flowi *fl)
{
return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
}
int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
{
return security_ops->xfrm_decode_session(skb, secid, 1);
}
void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
{
int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
BUG_ON(rc);
}
EXPORT_SYMBOL(security_skb_classify_flow);
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
#ifdef CONFIG_KEYS
int security_key_alloc(struct key *key, const struct cred *cred,
unsigned long flags)
{
return security_ops->key_alloc(key, cred, flags);
}
void security_key_free(struct key *key)
{
security_ops->key_free(key);
}
int security_key_permission(key_ref_t key_ref,
const struct cred *cred, key_perm_t perm)
{
return security_ops->key_permission(key_ref, cred, perm);
}
int security_key_getsecurity(struct key *key, char **_buffer)
{
return security_ops->key_getsecurity(key, _buffer);
}
#endif /* CONFIG_KEYS */
#ifdef CONFIG_AUDIT
int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
{
return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
}
int security_audit_rule_known(struct audit_krule *krule)
{
return security_ops->audit_rule_known(krule);
}
void security_audit_rule_free(void *lsmrule)
{
security_ops->audit_rule_free(lsmrule);
}
int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
struct audit_context *actx)
{
return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
}
#endif /* CONFIG_AUDIT */